Reinforcement learning method for target hunting control of multi‐robot systems with obstacles
Aiming at the target encirclement problem of multi‐robot systems, a target hunting control method based on reinforcement learning is proposed. First, the Markov game modeling for the multi‐robot system is carried out. According to the task of hunting, potential energy models are designed to meet the...
Saved in:
| Published in: | International journal of intelligent systems Vol. 37; no. 12; pp. 11275 - 11298 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
John Wiley & Sons, Inc
01.12.2022
|
| Subjects: | |
| ISSN: | 0884-8173, 1098-111X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Aiming at the target encirclement problem of multi‐robot systems, a target hunting control method based on reinforcement learning is proposed. First, the Markov game modeling for the multi‐robot system is carried out. According to the task of hunting, potential energy models are designed to meet the requirements of arriving at the desired state and avoiding obstacles. The multi‐robot reinforcement learning algorithm guided by the potential energy models is presented to perform the hunting, where reinforcement learning principles are combined with the model control. Secondly, based on the potential energy models, the target‐tracking hunting strategy and the target‐circumnavigation hunting strategy are established. In the former, the consensus tracking of multi‐robot systems is achieved by designing the velocity potential energy function. And in the latter, virtual circumnavigation points are added to construct the potential energy function, which realizes the desired circumnavigation. Finally, the effectiveness of target hunting control based on the multi‐robot reinforcement learning method is verified by simulation. |
|---|---|
| AbstractList | Aiming at the target encirclement problem of multi‐robot systems, a target hunting control method based on reinforcement learning is proposed. First, the Markov game modeling for the multi‐robot system is carried out. According to the task of hunting, potential energy models are designed to meet the requirements of arriving at the desired state and avoiding obstacles. The multi‐robot reinforcement learning algorithm guided by the potential energy models is presented to perform the hunting, where reinforcement learning principles are combined with the model control. Secondly, based on the potential energy models, the target‐tracking hunting strategy and the target‐circumnavigation hunting strategy are established. In the former, the consensus tracking of multi‐robot systems is achieved by designing the velocity potential energy function. And in the latter, virtual circumnavigation points are added to construct the potential energy function, which realizes the desired circumnavigation. Finally, the effectiveness of target hunting control based on the multi‐robot reinforcement learning method is verified by simulation. |
| Author | Liu, Li Fan, Zhilin Han, Yilin Liu, Fei Yang, Hongyong |
| Author_xml | – sequence: 1 givenname: Zhilin orcidid: 0000-0001-7232-5785 surname: Fan fullname: Fan, Zhilin organization: Ludong University – sequence: 2 givenname: Hongyong orcidid: 0000-0002-8044-8221 surname: Yang fullname: Yang, Hongyong email: hyyang@yeah.net organization: Ludong University – sequence: 3 givenname: Fei orcidid: 0000-0002-1541-501X surname: Liu fullname: Liu, Fei email: liufeildu@163.com organization: Ludong University – sequence: 4 givenname: Li surname: Liu fullname: Liu, Li organization: Ludong University – sequence: 5 givenname: Yilin surname: Han fullname: Han, Yilin organization: Ludong University |
| BookMark | eNp1kM9KAzEYxINUsK0efIOAJw_bJtlskz1K8U-hKEgFbzGbzbYpu0lNspTefASf0Sdxa3sSPX2H-c0M3wxAzzqrAbjEaIQRImNj44ikiJIT0Mco5wnG-LUH-ohzmnDM0jMwCGGNEMaMZn3w9qyNrZxXutE2wlpLb41dwkbHlSthp8Ao_VJHuGpt3CvK2ehdDV0Fm7aO5uvj07vCRRh2IeomwK2JK-iKEKWqdTgHp5Wsg7443iF4ubtdTB-S-dP9bHozTxTJGUkmShdYVQUtM6Urmk54haUijBWU54hRzlCpmVR8kpUsVbxQKmM8JYWqqKSqTIfg6pC78e691SGKtWu97SoFYVmOCKU56qjxgVLeheB1JZSJMpr9T9LUAiOxn1F0M4qfGTvH9S_HxptG-t2f7DF9a2q9-x8Us8fFwfENpjqHdw |
| CitedBy_id | crossref_primary_10_1007_s12204_025_2816_6 crossref_primary_10_1109_TSMC_2025_3541105 crossref_primary_10_1007_s13748_024_00321_4 crossref_primary_10_1109_TIV_2024_3452483 |
| Cites_doi | 10.1109/TNN.2011.2169808 10.1109/TPDS.2015.2407900 10.1016/j.ins.2021.11.054 10.1016/j.eswa.2019.04.056 10.1109/TFUZZ.2013.2272480 10.1002/int.22264 10.1109/TAC.2011.2173417 10.1109/TDSC.2019.2894411 10.1016/j.neucom.2021.05.015 10.1016/j.asoc.2018.07.047 10.1016/B978-1-55860-335-6.50027-1 10.1016/j.sysconle.2010.07.010 10.1016/j.neucom.2021.12.039 10.1016/j.neucom.2019.03.045 10.1109/TDSC.2020.3015886 10.1016/j.jnca.2020.102661 10.3724/SP.J.1004.2013.00057 10.1002/int.22894 10.1016/j.jfranklin.2020.07.041 10.1016/B978-1-55860-307-3.50049-6 10.1016/j.robot.2021.103866 10.1109/TCST.2020.3035476 10.1016/j.jfranklin.2017.09.034 10.1016/j.jfranklin.2020.05.018 10.1109/TKDE.2020.3009221 10.1016/j.robot.2022.104043 10.1016/j.robot.2014.08.018 10.1109/TITS.2018.2841967 10.1109/TSMC.2020.3030706 10.1109/TKDE.2020.3015835 10.1016/j.asoc.2019.01.036 10.1109/TAC.2020.3046714 10.1109/TDSC.2022.3143566 10.1016/j.automatica.2015.01.014 10.1007/s11424-020-9152-6 10.1109/ISIE.2019.8781205 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2022 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/int.23042 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1098-111X |
| EndPage | 11298 |
| ExternalDocumentID | 10_1002_int_23042 INT23042 |
| Genre | article |
| GrantInformation_xml | – fundername: Major Basic Research Project of Natural Science Foundation of Shandong Province of China funderid: ZR2018ZC0438 – fundername: National Natural Science Foundation of China funderid: 61673200 – fundername: Key Research and Development Program of Yantai City of China funderid: 2019XDHZ085 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WWI WXSBR WYISQ WZISG XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION O8X PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2972-6ceb1cfb4d5cef4368f1ac277b489074870de7ac865d73c8bcc57832bcf4a4cd3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000847653200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0884-8173 |
| IngestDate | Sat Sep 06 22:12:03 EDT 2025 Tue Nov 18 21:29:56 EST 2025 Sat Nov 29 04:01:57 EST 2025 Wed Jan 22 16:21:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2972-6ceb1cfb4d5cef4368f1ac277b489074870de7ac865d73c8bcc57832bcf4a4cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1541-501X 0000-0001-7232-5785 0000-0002-8044-8221 |
| PQID | 2759024490 |
| PQPubID | 1026350 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2759024490 crossref_citationtrail_10_1002_int_23042 crossref_primary_10_1002_int_23042 wiley_primary_10_1002_int_23042_INT23042 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 20221201 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of intelligent systems |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2022; 474 2021; 47 2022; 151 2010; 59 2021; 66 2021; 22 2020; 162 2021; 145 2019; 77 2015; 53 2021; 29 2020; 35 1994 1993 2012; 57 2014; 22 2022; 585 37 2021; 34 2013; 39 2019; 20 2021; 453 2022 2021 2021; 18 2015; 63 2019; 26 2022; 34 2019 2020; 357 2011; 22 2019; 356 2022; 52 2018; 72 2019; 350 2016; 27 2019; 131 2022; 19 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 e_1_2_12_38_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_20_1 e_1_2_12_21_1 e_1_2_12_22_1 Yuan F (e_1_2_12_7_1) 2021 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_25_1 e_1_2_12_26_1 Li T (e_1_2_12_14_1) 2021; 18 e_1_2_12_27_1 Li R (e_1_2_12_28_1) 2019; 26 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 Wu Z (e_1_2_12_40_1) 2021; 47 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_12_1 Liu F (e_1_2_12_41_1) 2021; 22 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_10_1 e_1_2_12_9_1 |
| References_xml | – volume: 53 start-page: 400 issue: C year: 2015 end-page: 407 article-title: Enclosing a target by nonholonomic mobile robots with bearing‐only measurements publication-title: Automatica – volume: 57 start-page: 889 issue: 4 year: 2012 end-page: 903 article-title: Circumnavigation using distance measurements under slow drift publication-title: IEEE Trans Autom Control – volume: 59 start-page: 654 issue: 10 year: 2010 end-page: 661 article-title: Local control strategy for moving‐target‐enclosing under dynamically changing network topology publication-title: Syst Control Lett – volume: 47 start-page: 424 issue: 2 year: 2021 article-title: Swarm rounding up method of UAV based on situation cognition publication-title: J Beijing Univ Aeronaut Astronaut – volume: 22 start-page: 2062 issue: 12 year: 2011 end-page: 2077 article-title: Bioinspired neural network for real‐time cooperative hunting by multirobots in unknown environments publication-title: IEEE Trans Neural Netw – volume: 34 start-page: 2306 issue: 5 year: 2022 end-page: 2323 article-title: MAS‐encryption and its applications in privacy‐preserving classifiers publication-title: IEEE Trans Knowl Data Eng – volume: 145 year: 2021 article-title: Adaptive heterogeneous multi‐robot collaboration from formal task specifications publication-title: Robot Auton Syst – volume: 357 start-page: 7537 issue: 12 year: 2020 end-page: 7555 article-title: Distributed hunting problem of multi‐quadrotor systems via bearing constraint method subject to time delays publication-title: J Franklin Inst – volume: 39 start-page: 57 issue: 1 year: 2013 end-page: 68 article-title: A self‐organizing cooperative hunting by swarm robotic systems based on loose‐preference rule publication-title: Acta Autom Sin – volume: 162 year: 2020 article-title: Group motion of autonomous vehicles with anti‐disturbance protection publication-title: J Netw Comput Appl – start-page: 1 year: 2022 article-title: Attacking deep reinforcement learning with decoupled adversarial policy – year: 2021 – volume: 72 start-page: 298 year: 2018 end-page: 311 article-title: Improving particle swarm optimization via adaptive switching asynchronous‐synchronous update publication-title: Appl Soft Comput – volume: 77 start-page: 236 year: 2019 end-page: 251 article-title: Mobile robot path planning using membrane evolutionary artificial potential field publication-title: Appl Soft Comput – volume: 356 start-page: 752 issue: 2 year: 2019 end-page: 765 article-title: Containment control of heterogeneous fractional‐order multi‐agent systems – volume: 66 start-page: 5696 issue: 12 year: 2021 end-page: 5710 article-title: Distributed entrapping control of multiagent systems using bearing measurements publication-title: IEEE Trans Autom Control – volume: 19 start-page: 67 issue: 1 year: 2022 end-page: 76 article-title: Efficient and secure outsourcing of differentially private data publishing with multiple evaluators publication-title: IEEE Trans Depend Secure Comput – volume: 357 start-page: 10737 issue: 15 year: 2020 end-page: 10756 article-title: Circular motion of multiple nonholonomic robots under switching topology with ordinal ranking publication-title: J Franklin Inst – volume: 22 start-page: 9 issue: 3 year: 2021 end-page: 14 article-title: Design of Att‐MADDPG hunting control method for multi‐UAV cooperation publication-title: J Air Force Eng Univ Nat Sci Ed – volume: 35 start-page: 1416 issue: 9 year: 2020 end-page: 1432 article-title: Optimal control of distributed multiagent systems with finite‐time group flocking publication-title: Int J Intell Syst – volume: 18 start-page: 460 issue: 1 year: 2021 end-page: 474 article-title: Searchable symmetric encryption with forward search privacy publication-title: IEEE Trans Depend Secure Comput – volume: 52 start-page: 1705 issue: 3 year: 2022 end-page: 1715 article-title: Moving target surrounding control of linear multiagent systems with input saturation publication-title: IEEE Trans Syst Man Cybern Syst – volume: 22 start-page: 723 issue: 4 year: 2014 end-page: 735 article-title: Rule‐based cooperative continuous ant colony optimization to improve the accuracy of fuzzy system design publication-title: IEEE Trans Fuzzy Syst – start-page: 157 year: 1994 end-page: 163 – volume: 34 start-page: 2962 issue: 6 year: 2022 end-page: 2974 article-title: The dynamic privacy‐preserving mechanisms for online dynamic social networks publication-title: IEEE Trans Knowl Data Eng – volume: 34 start-page: 995 issue: 3 year: 2021 end-page: 1013 article-title: Distributed finite‐time integral sliding‐mode control for multi‐agent systems with multiple disturbances based on nonlinear disturbance observers publication-title: J Syst Sci Complex – volume: 18 start-page: 2969 issue: 6 year: 2021 end-page: 2982 article-title: NPMML: A framework for non‐interactive privacy‐preserving multi‐party machine learning publication-title: IEEE Trans Depend Secure Comput – volume: 585 start-page: 454 year: 2022 end-page: 470 article-title: Self‐attention‐based multi‐agent continuous control method in cooperative environments publication-title: Inf Sci – volume: 63 start-page: 68 year: 2015 end-page: 79 article-title: Formation control driven by cooperative object tracking publication-title: Robot Auton Syst – volume: 453 start-page: 272 year: 2021 end-page: 285 article-title: Bio‐inspired adaptive formation tracking control for swarm systems with application to UAV swarm systems publication-title: Neurocomputing – start-page: 1385 year: 2019 end-page: 1390 – volume: 474 start-page: 94 year: 2022 end-page: 106 article-title: Sub‐AVG: overestimation reduction for cooperative multi‐agent reinforcement learning publication-title: Neurocomputing – volume: 131 start-page: 148 year: 2019 end-page: 171 article-title: A reinforcement learning‐based multi‐agent framework applied for solving routing and scheduling problems publication-title: Expert Syst Appl – volume: 350 start-page: 282 year: 2019 end-page: 290 article-title: Adaptive leader‐following formation control with collision avoidance for a class of second‐order nonlinear multi‐agent systems publication-title: Neurocomputing – volume: 20 start-page: 959 issue: 3 year: 2019 end-page: 974 article-title: Path planning and cooperative control for automated vehicle platoon using hybrid automata publication-title: IEEE Trans Intell Transp Syst – volume: 26 start-page: 510 issue: 3 year: 2019 end-page: 514 article-title: Cooperative hunting strategy for multi‐mobile robot systems based on dynamic hunting points publication-title: Control Eng China – volume: 29 start-page: 2287 issue: 6 year: 2021 end-page: 2298 article-title: Multi‐agent formation tracking for autonomous surface vehicles publication-title: IEEE Trans Control Syst Technol – volume: 37 start-page: 7571 end-page: 7583 article-title: Robust flocking of multiple intelligent agents with multiple disturbances publication-title: Int J Intell Syst – start-page: 330 year: 1993 end-page: 337 – volume: 27 start-page: 585 issue: 2 year: 2016 end-page: 599 article-title: A survey of task allocation and load balancing in distributed systems publication-title: IEEE Trans Parallel Distrib Syst – volume: 151 year: 2022 article-title: A parallel shape formation method for swarm robotics publication-title: Robot Auton Syst – ident: e_1_2_12_16_1 doi: 10.1109/TNN.2011.2169808 – ident: e_1_2_12_18_1 doi: 10.1109/TPDS.2015.2407900 – ident: e_1_2_12_38_1 doi: 10.1016/j.ins.2021.11.054 – ident: e_1_2_12_36_1 doi: 10.1016/j.eswa.2019.04.056 – ident: e_1_2_12_13_1 doi: 10.1109/TFUZZ.2013.2272480 – ident: e_1_2_12_4_1 doi: 10.1002/int.22264 – ident: e_1_2_12_31_1 doi: 10.1109/TAC.2011.2173417 – ident: e_1_2_12_5_1 doi: 10.1109/TDSC.2019.2894411 – ident: e_1_2_12_30_1 doi: 10.1016/j.neucom.2021.05.015 – ident: e_1_2_12_12_1 doi: 10.1016/j.asoc.2018.07.047 – ident: e_1_2_12_42_1 doi: 10.1016/B978-1-55860-335-6.50027-1 – ident: e_1_2_12_32_1 doi: 10.1016/j.sysconle.2010.07.010 – ident: e_1_2_12_37_1 doi: 10.1016/j.neucom.2021.12.039 – ident: e_1_2_12_24_1 doi: 10.1016/j.neucom.2019.03.045 – ident: e_1_2_12_9_1 doi: 10.1109/TDSC.2020.3015886 – ident: e_1_2_12_10_1 doi: 10.1016/j.jnca.2020.102661 – ident: e_1_2_12_29_1 doi: 10.3724/SP.J.1004.2013.00057 – ident: e_1_2_12_3_1 doi: 10.1002/int.22894 – ident: e_1_2_12_33_1 doi: 10.1016/j.jfranklin.2020.07.041 – volume: 18 start-page: 2969 issue: 6 year: 2021 ident: e_1_2_12_14_1 article-title: NPMML: A framework for non‐interactive privacy‐preserving multi‐party machine learning publication-title: IEEE Trans Depend Secure Comput – ident: e_1_2_12_35_1 doi: 10.1016/B978-1-55860-307-3.50049-6 – ident: e_1_2_12_2_1 doi: 10.1016/j.robot.2021.103866 – volume: 47 start-page: 424 issue: 2 year: 2021 ident: e_1_2_12_40_1 article-title: Swarm rounding up method of UAV based on situation cognition publication-title: J Beijing Univ Aeronaut Astronaut – ident: e_1_2_12_25_1 doi: 10.1109/TCST.2020.3035476 – ident: e_1_2_12_26_1 doi: 10.1016/j.jfranklin.2017.09.034 – ident: e_1_2_12_34_1 doi: 10.1016/j.jfranklin.2020.05.018 – volume: 22 start-page: 9 issue: 3 year: 2021 ident: e_1_2_12_41_1 article-title: Design of Att‐MADDPG hunting control method for multi‐UAV cooperation publication-title: J Air Force Eng Univ Nat Sci Ed – ident: e_1_2_12_8_1 doi: 10.1109/TKDE.2020.3009221 – ident: e_1_2_12_22_1 doi: 10.1016/j.robot.2022.104043 – ident: e_1_2_12_23_1 doi: 10.1016/j.robot.2014.08.018 – volume-title: Research on the Coordination Mechanism of Traditional Chinese Medicine Medical Record Data Standardization and Characteristic Protection Under Big Data Environment year: 2021 ident: e_1_2_12_7_1 – ident: e_1_2_12_19_1 doi: 10.1109/TITS.2018.2841967 – ident: e_1_2_12_17_1 doi: 10.1109/TSMC.2020.3030706 – ident: e_1_2_12_6_1 doi: 10.1109/TKDE.2020.3015835 – ident: e_1_2_12_20_1 doi: 10.1016/j.asoc.2019.01.036 – ident: e_1_2_12_27_1 doi: 10.1109/TAC.2020.3046714 – ident: e_1_2_12_39_1 doi: 10.1109/TDSC.2022.3143566 – ident: e_1_2_12_15_1 doi: 10.1016/j.automatica.2015.01.014 – ident: e_1_2_12_11_1 doi: 10.1007/s11424-020-9152-6 – ident: e_1_2_12_21_1 doi: 10.1109/ISIE.2019.8781205 – volume: 26 start-page: 510 issue: 3 year: 2019 ident: e_1_2_12_28_1 article-title: Cooperative hunting strategy for multi‐mobile robot systems based on dynamic hunting points publication-title: Control Eng China |
| SSID | ssj0011745 |
| Score | 2.3568742 |
| Snippet | Aiming at the target encirclement problem of multi‐robot systems, a target hunting control method based on reinforcement learning is proposed. First, the... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11275 |
| SubjectTerms | Algorithms Control methods Control systems Hunting Intelligent systems Machine learning multi‐robot systems Obstacle avoidance Potential energy potential energy function reinforcement learning Robot control Robots Strategy target hunting Teaching methods Tracking |
| Title | Reinforcement learning method for target hunting control of multi‐robot systems with obstacles |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.23042 https://www.proquest.com/docview/2759024490 |
| Volume | 37 |
| WOSCitedRecordID | wos000847653200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yevDiW1xdJYgHL8U2TZsUT6IuCssisgveajJNVJBWdqtnf4K_0V9iHu2qoCB4KyR9MJmZfJ3MfIPQgYasoGYsyFKuAyoEDTIVR0Gkwgwk41pwVyg8YMMhv7nJrubQcVsL4_khZgE3axnOX1sDF3J69Eka-lDWNouZGv87T4ze0g6aP7vujwezQwQDthMPImnAIxa3xEIhOZrd_H07-sSYX5Gq22r6y__6yBW01CBMfOJVYhXNqXINLbfdG3BjzOvo9lo51lRwAULctI-4w76nNDYj2KeJ43vfTgI3ae240tjlIb6_vk0qWdXY00FPsQ3q4koawGlz7TbQuH8-Or0Imn4LAZCMkSAF47hBS1okoLSlpteRAMKYpNz-QxvTLhQTwNOkYDFwCWDsPSYSNBUUingTdcqqVFsIRyJNhFI8jHVBY51woAJYUURUSR3SuIsOW7Hn0JCR254Yj7mnUSa5kVzuJNdF-7OpT56B46dJvXbt8sYIpzlhlpuG0iw0r3Or9PsD8svhyF1s_33qDlokthjCJbf0UKeePKtdtAAv9cN0stdo4wf-POei |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kCnqxPrE-g3jwsriPbJMFL6KWirWIVOhtzc4mWpCutNWzP8Hf6C8xj92qoCB4W0j2wWRm8u1k5huAA4VJTvWYlzS58qgQ1EtkFHiB9BPMGFeC20LhDut2eb-fXM_AcVUL4_ghpgE3YxnWXxsDNwHpo0_W0MFwYtKYqXbAs1SrUVyD2bOb1m1neoqg0XbsUCT1eMCiilnID4-mN3_fjz5B5leoaveaVv1_X7kEiyXGJCdOKZZhRg5XoF71byClOa_C3Y20vKloQ4SkbCBxT1xXaaJHiEsUJw-uoQQpE9tJoYjNRHx_fRsVWTEhjhB6TExYlxSZhpwm224NblvnvdO2V3Zc8DBMWOg1UbtuVBnNY5TKkNOrQGDIWEa5-YvWxp1LJpA345xFyDNEbfFRmKGigmIerUNtWAzlBpBANGMhJfcjldNIxRypQJbnAZWZ8mnUgMNK7imWdOSmK8Zj6oiUw1RLLrWSa8D-dOqT4-D4adJ2tXhpaYbjNGSGnYbSxNevs8v0-wPSi27PXmz-feoezLd7V520c9G93IKF0JRG2FSXbahNRs9yB-bwZTIYj3ZL1fwA0zjrkg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5iRbz4Fh9Vg3jwsriP7CYLXkQtiqWItNDbmp0kWpDd0lbP_gR_o7_EPHZbBQXB20JmH0zyTWYnM98gdKwgFUSPeWnClEc4J14qo8ALpJ9CTpnizBYKt2mnw_r99G4OndW1MI4fYhpwM8iw9toAXA6FOp2xhg6KiUljJtoAN0icJhqWjcv7Vq89PUXQ3nbsvEjisYBGNbOQH55Ob_6-H82czK-uqt1rWiv_-8pVtFz5mPjcLYo1NCeLdbRS92_AFZw30MO9tLypYEOEuGog8YhdV2msR7BLFMdPrqEErhLbcamwzUT8eHsflXk5wY4QeoxNWBeXuXY5TbbdJuq1rroX117VccGDMKWhl4A23aByImKQypDTq4BDSGlOmPmL1uAWknJgSSxoBCwH0IiPwhwU4QREtIXmi7KQ2wgHPIm5lMyPlCCRihkQDlSIgMhc-STaQSe13jOo6MhNV4znzBEph5nWXGY1t4OOpqJDx8Hxk1CznrysguE4C6lhpyEk9fXr7DT9_oDsptO1F7t_Fz1Ei3eXrax907ndQ0uhqYywmS5NND8Zvch9tACvk8F4dFCtzE9-musN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+learning+method+for+target+hunting+control+of+multi%E2%80%90robot+systems+with+obstacles&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Fan%2C+Zhilin&rft.au=Yang%2C+Hongyong&rft.au=Liu%2C+Fei&rft.au=Liu%2C+Li&rft.date=2022-12-01&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=37&rft.issue=12&rft.spage=11275&rft.epage=11298&rft_id=info:doi/10.1002%2Fint.23042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_int_23042 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |