A polynomial‐time approximation scheme for the maximal overlap of two independent Erdős–Rényi graphs
For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approxi...
Uloženo v:
| Vydáno v: | Random structures & algorithms Ročník 65; číslo 1; s. 220 - 257 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
John Wiley & Sons, Inc
01.08.2024
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1042-9832, 1098-2418 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approximates the maximal overlap up to a multiplicative factor that is arbitrarily close to 1. As a by‐product, we prove that the maximal overlap is asymptotically n2α−1$$ \frac{n}{2\alpha -1} $$ for p=n−α$$ p={n}^{-\alpha } $$ with some constant α∈(1/2,1)$$ \alpha \in \left(1/2,1\right) $$. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1042-9832 1098-2418 |
| DOI: | 10.1002/rsa.21212 |