A polynomial‐time approximation scheme for the maximal overlap of two independent Erdős–Rényi graphs

For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms Jg. 65; H. 1; S. 220 - 257
Hauptverfasser: Ding, Jian, Du, Hang, Gong, Shuyang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York John Wiley & Sons, Inc 01.08.2024
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1042-9832, 1098-2418
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approximates the maximal overlap up to a multiplicative factor that is arbitrarily close to 1. As a by‐product, we prove that the maximal overlap is asymptotically n2α−1$$ \frac{n}{2\alpha -1} $$ for p=n−α$$ p={n}^{-\alpha } $$ with some constant α∈(1/2,1)$$ \alpha \in \left(1/2,1\right) $$.
AbstractList For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approximates the maximal overlap up to a multiplicative factor that is arbitrarily close to 1. As a by‐product, we prove that the maximal overlap is asymptotically n2α−1$$ \frac{n}{2\alpha -1} $$ for p=n−α$$ p={n}^{-\alpha } $$ with some constant α∈(1/2,1)$$ \alpha \in \left(1/2,1\right) $$.
For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approximates the maximal overlap up to a multiplicative factor that is arbitrarily close to 1. As a by‐product, we prove that the maximal overlap is asymptotically n2α−1$$ \frac{n}{2\alpha -1} $$ for p=n−α$$ p={n}^{-\alpha } $$ with some constant α∈(1/2,1)$$ \alpha \in \left(1/2,1\right) $$.
For two independent Erdős–Rényi graphs , we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approximates the maximal overlap up to a multiplicative factor that is arbitrarily close to 1. As a by‐product, we prove that the maximal overlap is asymptotically for with some constant .
Author Du, Hang
Ding, Jian
Gong, Shuyang
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0002-3078-3793
  surname: Ding
  fullname: Ding, Jian
  email: dingjian@math.pku.edu.cn
  organization: Peking University
– sequence: 2
  givenname: Hang
  orcidid: 0009-0001-3716-7627
  surname: Du
  fullname: Du, Hang
  organization: Department of Mathematics, MIT
– sequence: 3
  givenname: Shuyang
  orcidid: 0009-0007-2975-4614
  surname: Gong
  fullname: Gong, Shuyang
  organization: Peking University
BookMark eNp9UEtOwzAQtRBItIUFN7DEikVaf0ISL6uqfKRKSAXWkWs71CWJg51SsusRQFyALdcAcZGeBLdlhQQaaWY08958XhvslqZUABxh1MUIkZ51vEuwtx3QwoglAQlxsrvOQxKwhJJ90HZuhhCKKaEtcN-Hlcmb0hSa56vlc60LBXlVWfOkC15rU0InpsoXM2NhPVWw4OtODs2jsjmvoMlgvTBQl1JVyruyhkMrv17cavk6_nwvG_3xdmd5NXUHYC_juVOHP7EDbs-GN4OLYHR1fjnojwJBWEyCiAk24ZkQisY8zqSUjMX-XiwoEomMIp5gdUoYDlUoQ8l4JCc8zBBlZCIRzWgHHG_n-i8e5srV6czMbelXphRFMaMUJ9ijTrYoYY1zVmVpZf1jtkkxStdapl7LdKOlx_Z-YYWuN-rUluv8P8ZC56r5e3Q6vu5vGd_lUI15
CitedBy_id crossref_primary_10_1214_25_AOS2545
crossref_primary_10_1007_s00440_025_01370_z
Cites_doi 10.1145/3564246.3585156
10.1007/s10208-022-09570-y
10.3115/1220575.1220624
10.1088/1742-5468/ac70d2
10.1073/pnas.0806627105
10.1214/15-AOP1084
10.1016/0097-3165(90)90070-D
10.1007/s00440-022-01184-3
10.4171/pm/2014
10.1109/TIT.2022.3169005
10.1109/SP.2008.33
10.1007/s10208-022-09575-7
10.1145/2897518.2897548
10.1145/2020408.2020596
10.1109/TIT.2023.3265009
10.1145/3341617.3326151
10.1002/rsa.20934
10.1371/journal.pone.0121002
10.1090/dimacs/016/01
10.1145/2512938.2512952
10.1002/cpa.21922
10.1214/21-AAP1703
10.1073/pnas.2108492118
10.1080/00018732.2016.1211393
10.1214/23-AOS2305
10.1145/321958.321975
10.1007/s00440-020-00997-4
10.1109/CVPR.2005.320
10.14778/2794367.2794371
10.1109/ACSSC.2017.8335178
10.1109/SFCS.1996.548460
10.1109/FOCS.2019.00087
10.1017/CBO9780511813603
10.1214/22-AAP1786
10.1007/978-3-642-14165-2_50
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/rsa.21212
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2418
EndPage 257
ExternalDocumentID 10_1002_rsa_21212
RSA21212
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12231002
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2972-69c9bafcce37a7fddd9970071c30c8d66a81e52914e4d4d9a6dba4f0392bd03f3
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001179592600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1042-9832
IngestDate Wed Aug 13 03:42:51 EDT 2025
Tue Nov 18 21:38:57 EST 2025
Sat Nov 29 02:48:14 EST 2025
Sun Sep 21 06:14:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2972-69c9bafcce37a7fddd9970071c30c8d66a81e52914e4d4d9a6dba4f0392bd03f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3078-3793
0009-0001-3716-7627
0009-0007-2975-4614
PQID 3067933181
PQPubID 1016429
PageCount 38
ParticipantIDs proquest_journals_3067933181
crossref_primary_10_1002_rsa_21212
crossref_citationtrail_10_1002_rsa_21212
wiley_primary_10_1002_rsa_21212_RSA21212
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Hoboken
PublicationTitle Random structures & algorithms
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2023; 51
1990; 55
2019; 3
1976; 23
2023; 33
2021; 22
2023; 186
2011
2010
2019; 32
2017; 45
2015; 10
2022; 23
2009
2008
2022; 68
1996
2006; 19
2005
2020; 57
2008; 105
2021; 185
2020; 125
2015; 8
2021; 74
2023; 69
2022; 2022
2021; 34
2021; 179
2023
2021; 134
2021
2020
2021; 118
2016; 65
2014; 15
2019
2018
2017
2005; 1
2016
1994; 16
2017; 18
2022; 32
2013
2018; 75
Ganassali L. (e_1_2_7_28_1) 2021
e_1_2_7_3_1
Racz M. Z. (e_1_2_7_51_1) 2021; 34
Cullina D. (e_1_2_7_9_1) 2016
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
Cour T. (e_1_2_7_8_1) 2006
Nenadov R. (e_1_2_7_47_1) 2021
Wu Y. (e_1_2_7_61_1) 2021
Cullina D. (e_1_2_7_11_1) 2020
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_39_1
Manurangsi P. (e_1_2_7_37_1) 2021
Yu L. (e_1_2_7_65_1) 2021; 22
Raghavendra P. (e_1_2_7_53_1) 2018
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
Narayanan A. (e_1_2_7_46_1) 2009
e_1_2_7_48_1
e_1_2_7_29_1
Abbe E. (e_1_2_7_2_1) 2017; 18
e_1_2_7_30_1
Barak B. (e_1_2_7_5_1) 2019
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Lyzinski V. (e_1_2_7_35_1) 2014; 15
Ganassali L. (e_1_2_7_27_1) 2020
References_xml – volume: 8
  start-page: 1010
  issue: 10
  year: 2015
  end-page: 1021
  article-title: Growing a graph matching from a handful of seeds
  publication-title: Proc. VLDB Endow.
– year: 2005
– volume: 74
  start-page: 1021
  issue: 5
  year: 2021
  end-page: 1044
  article-title: Following the ground states of full‐RSB spherical spin glasses
  publication-title: Commun. Pure Appl. Math.
– volume: 65
  start-page: 453
  issue: 5
  year: 2016
  end-page: 552
  article-title: Statistical physics of inference: Thresholds and algorithms
  publication-title: Adv. Phys.
– volume: 125
  start-page: 1633
  year: 2020
  end-page: 1665
– volume: 134
  start-page: 2080
  year: 2021
  end-page: 2102
– volume: 2022
  issue: 6
  year: 2022
  article-title: Aligning random graphs with a sub‐tree similarity message‐passing algorithm
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 15
  start-page: 3513
  year: 2014
  end-page: 3540
  article-title: Seeded graph matching for correlated Erdos‐Rényi graphs
  publication-title: J. Mach. Learn. Res.
– start-page: 63
  year: 2016
  end-page: 72
– start-page: 253
  year: 2017
  end-page: 257
– volume: 32
  start-page: 1058
  year: 2022
  end-page: 1111
  article-title: Correlated randomly growing graphs
  publication-title: Ann. Appl. Probab.
– volume: 185
  start-page: 10:1
  year: 2021
  end-page: 10:21
– start-page: 1235
  year: 2011
  end-page: 1243
– start-page: 3389
  year: 2018
  end-page: 3423
– volume: 75
  start-page: 159
  issue: 2
  year: 2018
  end-page: 186
  article-title: Notes on computational‐to‐statistical gaps: Predictions using statistical physics
  publication-title: Port. Math.
– volume: 179
  start-page: 29
  issue: 1‐2
  year: 2021
  end-page: 115
  article-title: Efficient random graph matching via degree profiles
  publication-title: Probab. Theory Relat. Fields
– volume: 33
  start-page: 2519
  year: 2023
  end-page: 2558
  article-title: Testing correlation of unlabeled random graphs
  publication-title: Ann, Appl. Probab.
– volume: 23
  start-page: 1567
  year: 2022
  end-page: 1617
  article-title: Spectral graph matching and regularized quadratic relaxations II: Erdos‐Rényi graphs and universality
  publication-title: Found. Comput. Math.
– volume: 185
  year: 2021
– volume: 23
  start-page: 555
  year: 1976
  end-page: 565
  article-title: P‐complete approximation problems
  publication-title: J. ACM
– volume: 18
  start-page: 86
  issue: 177
  year: 2017
  article-title: Community detection and stochastic block models: Recent developments
  publication-title: J. Mach. Learn. Res.
– volume: 55
  start-page: 247
  issue: 2
  year: 1990
  end-page: 255
  article-title: Counting extensions
  publication-title: J. Comb. Theory Ser. A
– volume: 19
  year: 2006
– volume: 3
  issue: 2
  year: 2019
  article-title: Analysis of a canonical labeling algorithm for the alignment of correlated Erdos‐Rényi graphs
  publication-title: Proc. ACM Meas. Anal. Comput. Syst.
– volume: 45
  start-page: 1190
  issue: 2
  year: 2017
  end-page: 1217
  article-title: Extremal cuts of sparse random graphs
  publication-title: Ann. Probab.
– volume: 32
  year: 2019
– volume: 69
  start-page: 5289
  year: 2023
  end-page: 5298
  article-title: Detection threshold for correlated Erdos‐Renyi graphs via densest subgraph
  publication-title: IEEE Trans. Inform. Theory
– volume: 51
  start-page: 1718
  issue: 4
  year: 2023
  end-page: 1743
  article-title: Matching recovery threshold for correlated random graphs
  publication-title: Ann. Stat.
– volume: 22
  year: 2021
  article-title: Graph matching with partially‐correct seeds
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 26
  year: 2005
  end-page: 33
– start-page: 594
  year: 2010
  end-page: 604
– start-page: 1417
  year: 2019
  end-page: 1433
– start-page: 99
  year: 2020
  end-page: 100
– volume: 34
  start-page: 22259
  year: 2021
  end-page: 22273
  article-title: Correlated stochastic block models: Exact graph matching with applications to recovering communities
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 111
  year: 2008
  end-page: 125
– start-page: 383
  year: 2021
  end-page: 424
– start-page: 814
  year: 2016
  end-page: 827
– volume: 57
  start-page: 570
  issue: 3
  year: 2020
  end-page: 611
  article-title: Seeded graph matching via large neighborhood statistics
  publication-title: Random Struct. Algoritm.
– volume: 23
  start-page: 1511
  year: 2022
  end-page: 1565
  article-title: Spectral graph matching and regularized quadratic relaxations: Algorithm and theory
  publication-title: Found. Comput. Math.
– volume: 68
  start-page: 5391
  issue: 8
  year: 2022
  end-page: 5417
  article-title: Settling the sharp reconstruction thresholds of random graph matching
  publication-title: IEEE Trans. Inform. Theory
– volume: 105
  start-page: 12763
  year: 2008
  end-page: 12768
  article-title: Global alignment of multiple protein interaction networks with application to functional orthology detection
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 186
  start-page: 327
  year: 2023
  end-page: 389
  article-title: Exact matching of random graphs with constant correlation
  publication-title: Probab. Theory Relat. Fields
– start-page: 119
  year: 2013
  end-page: 130
– year: 2023
– volume: 16
  start-page: 1
  year: 1994
  end-page: 42
– volume: 118
  issue: 41
  year: 2021
  article-title: The overlap gap property: A topological barrier to optimizing over random structures
  publication-title: Proc. Natl. Acad. Sci.
– volume: 10
  start-page: 1
  issue: 4
  year: 2015
  end-page: 17
  article-title: Fast approximate quadratic programming for graph matching
  publication-title: PLoS One
– start-page: 21
  year: 1996
  end-page: 30
– start-page: 387
  year: 2005
  end-page: 394
– start-page: 173
  year: 2009
  end-page: 187
– ident: e_1_2_7_34_1
– ident: e_1_2_7_20_1
– ident: e_1_2_7_39_1
  doi: 10.1145/3564246.3585156
– volume-title: Advances in neural information processing systems
  year: 2006
  ident: e_1_2_7_8_1
– ident: e_1_2_7_22_1
  doi: 10.1007/s10208-022-09570-y
– start-page: 3389
  volume-title: Proc. Int. Congr. Math
  year: 2018
  ident: e_1_2_7_53_1
– ident: e_1_2_7_25_1
– ident: e_1_2_7_31_1
  doi: 10.3115/1220575.1220624
– volume: 15
  start-page: 3513
  year: 2014
  ident: e_1_2_7_35_1
  article-title: Seeded graph matching for correlated Erdos‐Rényi graphs
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_7_50_1
  doi: 10.1088/1742-5468/ac70d2
– start-page: 383
  volume-title: Statistical problems with planted structures: Information‐theoretical and computational limits
  year: 2021
  ident: e_1_2_7_61_1
– ident: e_1_2_7_17_1
– ident: e_1_2_7_56_1
  doi: 10.1073/pnas.0806627105
– ident: e_1_2_7_60_1
– ident: e_1_2_7_13_1
  doi: 10.1214/15-AOP1084
– volume: 18
  start-page: 86
  issue: 177
  year: 2017
  ident: e_1_2_7_2_1
  article-title: Community detection and stochastic block models: Recent developments
  publication-title: J. Mach. Learn. Res.
– start-page: 63
  volume-title: Proc. 2016 ACM SIGMETRICS Int. Conf. Meas. Model. Comput. Sci., SIGMETRICS ‘16
  year: 2016
  ident: e_1_2_7_9_1
– ident: e_1_2_7_57_1
  doi: 10.1016/0097-3165(90)90070-D
– ident: e_1_2_7_10_1
– ident: e_1_2_7_16_1
– ident: e_1_2_7_30_1
– ident: e_1_2_7_38_1
  doi: 10.1007/s00440-022-01184-3
– ident: e_1_2_7_4_1
  doi: 10.4171/pm/2014
– ident: e_1_2_7_32_1
– ident: e_1_2_7_62_1
  doi: 10.1109/TIT.2022.3169005
– ident: e_1_2_7_45_1
  doi: 10.1109/SP.2008.33
– ident: e_1_2_7_21_1
  doi: 10.1007/s10208-022-09575-7
– ident: e_1_2_7_43_1
  doi: 10.1145/2897518.2897548
– ident: e_1_2_7_49_1
  doi: 10.1145/2020408.2020596
– start-page: 10:1
  volume-title: 12th Innov. Theor. Comput. Sci. Conf. (ITCS 2021)
  year: 2021
  ident: e_1_2_7_37_1
– ident: e_1_2_7_14_1
  doi: 10.1109/TIT.2023.3265009
– start-page: 2080
  volume-title: Proc. 34th Conf. Learn. Theory
  year: 2021
  ident: e_1_2_7_28_1
– ident: e_1_2_7_12_1
  doi: 10.1145/3341617.3326151
– ident: e_1_2_7_44_1
  doi: 10.1002/rsa.20934
– ident: e_1_2_7_59_1
  doi: 10.1371/journal.pone.0121002
– volume-title: Adv. Neural Inf. Process. Syst
  year: 2019
  ident: e_1_2_7_5_1
– ident: e_1_2_7_29_1
– ident: e_1_2_7_48_1
  doi: 10.1090/dimacs/016/01
– ident: e_1_2_7_64_1
  doi: 10.1145/2512938.2512952
– ident: e_1_2_7_40_1
– ident: e_1_2_7_58_1
  doi: 10.1002/cpa.21922
– ident: e_1_2_7_52_1
  doi: 10.1214/21-AAP1703
– start-page: 173
  volume-title: 2009 30th IEEE Symp. Secur. Priv
  year: 2009
  ident: e_1_2_7_46_1
– ident: e_1_2_7_7_1
– ident: e_1_2_7_24_1
  doi: 10.1073/pnas.2108492118
– ident: e_1_2_7_66_1
  doi: 10.1080/00018732.2016.1211393
– ident: e_1_2_7_15_1
  doi: 10.1214/23-AOS2305
– ident: e_1_2_7_54_1
  doi: 10.1145/321958.321975
– ident: e_1_2_7_19_1
  doi: 10.1007/s00440-020-00997-4
– start-page: 1633
  volume-title: Proc. 33rd Conf. Learn. Theory
  year: 2020
  ident: e_1_2_7_27_1
– ident: e_1_2_7_6_1
  doi: 10.1109/CVPR.2005.320
– ident: e_1_2_7_33_1
  doi: 10.14778/2794367.2794371
– ident: e_1_2_7_55_1
  doi: 10.1109/ACSSC.2017.8335178
– volume: 34
  start-page: 22259
  year: 2021
  ident: e_1_2_7_51_1
  article-title: Correlated stochastic block models: Exact graph matching with applications to recovering communities
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 22
  year: 2021
  ident: e_1_2_7_65_1
  article-title: Graph matching with partially‐correct seeds
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_7_3_1
  doi: 10.1109/SFCS.1996.548460
– ident: e_1_2_7_42_1
  doi: 10.1109/FOCS.2019.00087
– ident: e_1_2_7_18_1
– volume-title: 12th Innov. Theor. Comput. Sci. Conf
  year: 2021
  ident: e_1_2_7_47_1
– ident: e_1_2_7_41_1
  doi: 10.1017/CBO9780511813603
– ident: e_1_2_7_26_1
– ident: e_1_2_7_63_1
  doi: 10.1214/22-AAP1786
– ident: e_1_2_7_23_1
– start-page: 99
  volume-title: Abstr. 2020 SIGMETRICS/Perform. Jt. Int. Conf. Meas. Model. Comput. Syst
  year: 2020
  ident: e_1_2_7_11_1
– ident: e_1_2_7_36_1
  doi: 10.1007/978-3-642-14165-2_50
SSID ssj0007323
Score 2.400637
Snippet For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two...
For two independent Erdős–Rényi graphs , we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex...
For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 220
SubjectTerms Algorithms
Graph theory
Graphs
greedy algorithm
Polynomials
polynomial‐time approximation scheme
random graph matching
Title A polynomial‐time approximation scheme for the maximal overlap of two independent Erdős–Rényi graphs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.21212
https://www.proquest.com/docview/3067933181
Volume 65
WOSCitedRecordID wos001179592600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007323
  issn: 1042-9832
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFA5j80Iv_BenU4J44U1dlnZpg1dDN7zQIdPB7kqaNDCs3Vjnz-72CIov4K2vofgiexKTtusUFATvSnvSluScky_h5PsA2CcWkgolYEMgphYoRHCDSUIM6mEsEXO4w1EsNmE3m06nQy9y4Gh6Fibhh8g23HRkxPlaBzjzovKMNHQQsUOVd7XCcAErv63mQeGk1WifZYnYNnFSX29hgyrPnRILIVzOGn-fjmYY8ytSjaeaxtK_fnIZLKYIE9YSl1gBOT9cBQvnGT1rtAaua7DfC0b6RDILJuNHLTAPY3bxh25ylBGqRa-vbipIC1VDeMP0kwDqgs-A9WFPwuF9D3YzEd0hrA_Ex1M0GT-33l_DUfftJebCjtZBu1G_Oj41UtUFg2NqY4NQTj0mOfdNm9lSCEGprZEINxF3BCHMqfhVTCuWbwlLUEaExyyJFNDyBDKluQHyYS_0NwGkEnNKuYewNK2qslUDT7CHZYUKmyNWBAfTznd5SkmulTECNyFTxq7qPzfuvyLYy0z7CQ_HT0al6Qi6aShGrl4TUVOlror6XDxWv7_AbV3W4outv5tug3msgE5SFFgC-eHg1t8Bc_xu2I0Gu6lPfgJgDuqL
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEA6ignrwX_w3iAcv1WzaTRvwsqiL4rrIquCtpEkDi3V32a4_e9tHUHwBr76G4ov4JE7ablVQELyVdtKWmcnkS5j5BqEN5hANKIFaigjYoDAlLaEZs3hAqSbCk54kSbMJt1r1Li74yQDa6dfCpPwQ-YGbmRlJvDYT3BxIb3-yhrZjsQWB17QYHnLAjcC_h_Zq5fNKHoldm6YJ9g61OLhun1mI0O188Pf16BNkfoWqyVpTnvjfX06i8Qxj4lLqFFNoIGxMo7HjnKA1nkGXJdxqRl1Tkyyi9969aTGPE37xu3pazIhh2xvCTQC1GAbiK2GeRNikfEaihZsad26buJ630e3g_bZ6e4jfe4-11-dGt_7ylLBhx7PovLx_tntgZX0XLEm5Sy3GJQ-EljK0XeFqpRTnrsEi0ibSU4wJrxAWKS84oaMcxQVTgXA0AagVKGJrew4NNpqNcB5hrqnkXAaEatspgiyYntGA6gJXriRiAW32te_LjJTc9MaI_JROmfqgPz_R3wJaz0VbKRPHT0LLfRP62WSMfbMr4jYErwJ8LjHW7y_wa6el5GLx76JraOTg7LjiVw6rR0tolALsSVMEl9Fgp30drqBhedOpx-3VzEE_AFv07ns
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSsMwFD7IFNEL_8V_g3jhTTVLu7QBb4Y6FHXIVPCupEkDw7qNdf7sbo-g-ALe-hqKL-KTmLRdVVAQvCvtSVuSk5PvhJzvA1inDlYaJRBLYq4TFCqFxRWlFgsIUZh7whM4EZtwq1Xv4oKdDMB2vxYm5YfIN9zMzEjitZngYUuqrU_W0HbMN3XgNRLDg44RkSnA4G6tcn6UR2LXJukBe4dYTLtun1kIk6288ff16BNkfoWqyVpTGf_fX07AWIYxUTl1ikkYCBtTMHqcE7TG03BZRq1m1DU1yTx6790biXmU8Ivf1dNiRqTT3lDf1KAW6YboipsnETJHPiPeQk2FOrdNVM9ldDtory3fHuL33mPt9bnRrb88JWzY8QycV_bOdvatTHfBEoS5xKJMsIArIULb5a6SUjLmGiwibCw8SSn3imGJsKITOtKRjFMZcEdhDbUCiW1lz0Kh0WyEc4CYIoIxEWCibKekbfXQUxIQVWTSFZjPw0a_932RkZIbbYzIT-mUia_7z0_6bx7WctNWysTxk9FSfwj9bDLGvsmKmK2DV1F_Lhms31_g107LycXC301XYfhkt-IfHVQPF2GEaNSTnhBcgkKnfR0uw5C46dTj9krmnx8Dfu32
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+polynomial%E2%80%90time+approximation+scheme+for+the+maximal+overlap+of+two+independent+Erd%C5%91s%E2%80%93R%C3%A9nyi%C2%A0graphs&rft.jtitle=Random+structures+%26+algorithms&rft.au=Ding%2C+Jian&rft.au=Du%2C+Hang&rft.au=Gong%2C+Shuyang&rft.date=2024-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=65&rft.issue=1&rft.spage=220&rft.epage=257&rft_id=info:doi/10.1002%2Frsa.21212&rft.externalDBID=10.1002%252Frsa.21212&rft.externalDocID=RSA21212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon