A polynomial‐time approximation scheme for the maximal overlap of two independent Erdős–Rényi graphs
For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approxi...
Uloženo v:
| Vydáno v: | Random structures & algorithms Ročník 65; číslo 1; s. 220 - 257 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
John Wiley & Sons, Inc
01.08.2024
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1042-9832, 1098-2418 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approximates the maximal overlap up to a multiplicative factor that is arbitrarily close to 1. As a by‐product, we prove that the maximal overlap is asymptotically n2α−1$$ \frac{n}{2\alpha -1} $$ for p=n−α$$ p={n}^{-\alpha } $$ with some constant α∈(1/2,1)$$ \alpha \in \left(1/2,1\right) $$. |
|---|---|
| AbstractList | For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approximates the maximal overlap up to a multiplicative factor that is arbitrarily close to 1. As a by‐product, we prove that the maximal overlap is asymptotically n2α−1$$ \frac{n}{2\alpha -1} $$ for p=n−α$$ p={n}^{-\alpha } $$ with some constant α∈(1/2,1)$$ \alpha \in \left(1/2,1\right) $$. For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approximates the maximal overlap up to a multiplicative factor that is arbitrarily close to 1. As a by‐product, we prove that the maximal overlap is asymptotically n2α−1$$ \frac{n}{2\alpha -1} $$ for p=n−α$$ p={n}^{-\alpha } $$ with some constant α∈(1/2,1)$$ \alpha \in \left(1/2,1\right) $$. For two independent Erdős–Rényi graphs , we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approximates the maximal overlap up to a multiplicative factor that is arbitrarily close to 1. As a by‐product, we prove that the maximal overlap is asymptotically for with some constant . |
| Author | Du, Hang Ding, Jian Gong, Shuyang |
| Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0002-3078-3793 surname: Ding fullname: Ding, Jian email: dingjian@math.pku.edu.cn organization: Peking University – sequence: 2 givenname: Hang orcidid: 0009-0001-3716-7627 surname: Du fullname: Du, Hang organization: Department of Mathematics, MIT – sequence: 3 givenname: Shuyang orcidid: 0009-0007-2975-4614 surname: Gong fullname: Gong, Shuyang organization: Peking University |
| BookMark | eNp9UEtOwzAQtRBItIUFN7DEikVaf0ISL6uqfKRKSAXWkWs71CWJg51SsusRQFyALdcAcZGeBLdlhQQaaWY08958XhvslqZUABxh1MUIkZ51vEuwtx3QwoglAQlxsrvOQxKwhJJ90HZuhhCKKaEtcN-Hlcmb0hSa56vlc60LBXlVWfOkC15rU0InpsoXM2NhPVWw4OtODs2jsjmvoMlgvTBQl1JVyruyhkMrv17cavk6_nwvG_3xdmd5NXUHYC_juVOHP7EDbs-GN4OLYHR1fjnojwJBWEyCiAk24ZkQisY8zqSUjMX-XiwoEomMIp5gdUoYDlUoQ8l4JCc8zBBlZCIRzWgHHG_n-i8e5srV6czMbelXphRFMaMUJ9ijTrYoYY1zVmVpZf1jtkkxStdapl7LdKOlx_Z-YYWuN-rUluv8P8ZC56r5e3Q6vu5vGd_lUI15 |
| CitedBy_id | crossref_primary_10_1214_25_AOS2545 crossref_primary_10_1007_s00440_025_01370_z |
| Cites_doi | 10.1145/3564246.3585156 10.1007/s10208-022-09570-y 10.3115/1220575.1220624 10.1088/1742-5468/ac70d2 10.1073/pnas.0806627105 10.1214/15-AOP1084 10.1016/0097-3165(90)90070-D 10.1007/s00440-022-01184-3 10.4171/pm/2014 10.1109/TIT.2022.3169005 10.1109/SP.2008.33 10.1007/s10208-022-09575-7 10.1145/2897518.2897548 10.1145/2020408.2020596 10.1109/TIT.2023.3265009 10.1145/3341617.3326151 10.1002/rsa.20934 10.1371/journal.pone.0121002 10.1090/dimacs/016/01 10.1145/2512938.2512952 10.1002/cpa.21922 10.1214/21-AAP1703 10.1073/pnas.2108492118 10.1080/00018732.2016.1211393 10.1214/23-AOS2305 10.1145/321958.321975 10.1007/s00440-020-00997-4 10.1109/CVPR.2005.320 10.14778/2794367.2794371 10.1109/ACSSC.2017.8335178 10.1109/SFCS.1996.548460 10.1109/FOCS.2019.00087 10.1017/CBO9780511813603 10.1214/22-AAP1786 10.1007/978-3-642-14165-2_50 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/rsa.21212 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1098-2418 |
| EndPage | 257 |
| ExternalDocumentID | 10_1002_rsa_21212 RSA21212 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12231002 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XSW XV2 ZZTAW ~IA ~WT AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2972-69c9bafcce37a7fddd9970071c30c8d66a81e52914e4d4d9a6dba4f0392bd03f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001179592600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1042-9832 |
| IngestDate | Wed Aug 13 03:42:51 EDT 2025 Tue Nov 18 21:38:57 EST 2025 Sat Nov 29 02:48:14 EST 2025 Sun Sep 21 06:14:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2972-69c9bafcce37a7fddd9970071c30c8d66a81e52914e4d4d9a6dba4f0392bd03f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3078-3793 0009-0001-3716-7627 0009-0007-2975-4614 |
| PQID | 3067933181 |
| PQPubID | 1016429 |
| PageCount | 38 |
| ParticipantIDs | proquest_journals_3067933181 crossref_primary_10_1002_rsa_21212 crossref_citationtrail_10_1002_rsa_21212 wiley_primary_10_1002_rsa_21212_RSA21212 |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 2024-08-00 20240801 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Hoboken |
| PublicationTitle | Random structures & algorithms |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2023; 51 1990; 55 2019; 3 1976; 23 2023; 33 2021; 22 2023; 186 2011 2010 2019; 32 2017; 45 2015; 10 2022; 23 2009 2008 2022; 68 1996 2006; 19 2005 2020; 57 2008; 105 2021; 185 2020; 125 2015; 8 2021; 74 2023; 69 2022; 2022 2021; 34 2021; 179 2023 2021; 134 2021 2020 2021; 118 2016; 65 2014; 15 2019 2018 2017 2005; 1 2016 1994; 16 2017; 18 2022; 32 2013 2018; 75 Ganassali L. (e_1_2_7_28_1) 2021 e_1_2_7_3_1 Racz M. Z. (e_1_2_7_51_1) 2021; 34 Cullina D. (e_1_2_7_9_1) 2016 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_49_1 Cour T. (e_1_2_7_8_1) 2006 Nenadov R. (e_1_2_7_47_1) 2021 Wu Y. (e_1_2_7_61_1) 2021 Cullina D. (e_1_2_7_11_1) 2020 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_58_1 e_1_2_7_39_1 Manurangsi P. (e_1_2_7_37_1) 2021 Yu L. (e_1_2_7_65_1) 2021; 22 Raghavendra P. (e_1_2_7_53_1) 2018 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 Narayanan A. (e_1_2_7_46_1) 2009 e_1_2_7_48_1 e_1_2_7_29_1 Abbe E. (e_1_2_7_2_1) 2017; 18 e_1_2_7_30_1 Barak B. (e_1_2_7_5_1) 2019 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Lyzinski V. (e_1_2_7_35_1) 2014; 15 Ganassali L. (e_1_2_7_27_1) 2020 |
| References_xml | – volume: 8 start-page: 1010 issue: 10 year: 2015 end-page: 1021 article-title: Growing a graph matching from a handful of seeds publication-title: Proc. VLDB Endow. – year: 2005 – volume: 74 start-page: 1021 issue: 5 year: 2021 end-page: 1044 article-title: Following the ground states of full‐RSB spherical spin glasses publication-title: Commun. Pure Appl. Math. – volume: 65 start-page: 453 issue: 5 year: 2016 end-page: 552 article-title: Statistical physics of inference: Thresholds and algorithms publication-title: Adv. Phys. – volume: 125 start-page: 1633 year: 2020 end-page: 1665 – volume: 134 start-page: 2080 year: 2021 end-page: 2102 – volume: 2022 issue: 6 year: 2022 article-title: Aligning random graphs with a sub‐tree similarity message‐passing algorithm publication-title: J. Stat. Mech. Theory Exp. – volume: 15 start-page: 3513 year: 2014 end-page: 3540 article-title: Seeded graph matching for correlated Erdos‐Rényi graphs publication-title: J. Mach. Learn. Res. – start-page: 63 year: 2016 end-page: 72 – start-page: 253 year: 2017 end-page: 257 – volume: 32 start-page: 1058 year: 2022 end-page: 1111 article-title: Correlated randomly growing graphs publication-title: Ann. Appl. Probab. – volume: 185 start-page: 10:1 year: 2021 end-page: 10:21 – start-page: 1235 year: 2011 end-page: 1243 – start-page: 3389 year: 2018 end-page: 3423 – volume: 75 start-page: 159 issue: 2 year: 2018 end-page: 186 article-title: Notes on computational‐to‐statistical gaps: Predictions using statistical physics publication-title: Port. Math. – volume: 179 start-page: 29 issue: 1‐2 year: 2021 end-page: 115 article-title: Efficient random graph matching via degree profiles publication-title: Probab. Theory Relat. Fields – volume: 33 start-page: 2519 year: 2023 end-page: 2558 article-title: Testing correlation of unlabeled random graphs publication-title: Ann, Appl. Probab. – volume: 23 start-page: 1567 year: 2022 end-page: 1617 article-title: Spectral graph matching and regularized quadratic relaxations II: Erdos‐Rényi graphs and universality publication-title: Found. Comput. Math. – volume: 185 year: 2021 – volume: 23 start-page: 555 year: 1976 end-page: 565 article-title: P‐complete approximation problems publication-title: J. ACM – volume: 18 start-page: 86 issue: 177 year: 2017 article-title: Community detection and stochastic block models: Recent developments publication-title: J. Mach. Learn. Res. – volume: 55 start-page: 247 issue: 2 year: 1990 end-page: 255 article-title: Counting extensions publication-title: J. Comb. Theory Ser. A – volume: 19 year: 2006 – volume: 3 issue: 2 year: 2019 article-title: Analysis of a canonical labeling algorithm for the alignment of correlated Erdos‐Rényi graphs publication-title: Proc. ACM Meas. Anal. Comput. Syst. – volume: 45 start-page: 1190 issue: 2 year: 2017 end-page: 1217 article-title: Extremal cuts of sparse random graphs publication-title: Ann. Probab. – volume: 32 year: 2019 – volume: 69 start-page: 5289 year: 2023 end-page: 5298 article-title: Detection threshold for correlated Erdos‐Renyi graphs via densest subgraph publication-title: IEEE Trans. Inform. Theory – volume: 51 start-page: 1718 issue: 4 year: 2023 end-page: 1743 article-title: Matching recovery threshold for correlated random graphs publication-title: Ann. Stat. – volume: 22 year: 2021 article-title: Graph matching with partially‐correct seeds publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 26 year: 2005 end-page: 33 – start-page: 594 year: 2010 end-page: 604 – start-page: 1417 year: 2019 end-page: 1433 – start-page: 99 year: 2020 end-page: 100 – volume: 34 start-page: 22259 year: 2021 end-page: 22273 article-title: Correlated stochastic block models: Exact graph matching with applications to recovering communities publication-title: Adv. Neural Inf. Process. Syst. – start-page: 111 year: 2008 end-page: 125 – start-page: 383 year: 2021 end-page: 424 – start-page: 814 year: 2016 end-page: 827 – volume: 57 start-page: 570 issue: 3 year: 2020 end-page: 611 article-title: Seeded graph matching via large neighborhood statistics publication-title: Random Struct. Algoritm. – volume: 23 start-page: 1511 year: 2022 end-page: 1565 article-title: Spectral graph matching and regularized quadratic relaxations: Algorithm and theory publication-title: Found. Comput. Math. – volume: 68 start-page: 5391 issue: 8 year: 2022 end-page: 5417 article-title: Settling the sharp reconstruction thresholds of random graph matching publication-title: IEEE Trans. Inform. Theory – volume: 105 start-page: 12763 year: 2008 end-page: 12768 article-title: Global alignment of multiple protein interaction networks with application to functional orthology detection publication-title: Proc. Natl. Acad. Sci. USA – volume: 186 start-page: 327 year: 2023 end-page: 389 article-title: Exact matching of random graphs with constant correlation publication-title: Probab. Theory Relat. Fields – start-page: 119 year: 2013 end-page: 130 – year: 2023 – volume: 16 start-page: 1 year: 1994 end-page: 42 – volume: 118 issue: 41 year: 2021 article-title: The overlap gap property: A topological barrier to optimizing over random structures publication-title: Proc. Natl. Acad. Sci. – volume: 10 start-page: 1 issue: 4 year: 2015 end-page: 17 article-title: Fast approximate quadratic programming for graph matching publication-title: PLoS One – start-page: 21 year: 1996 end-page: 30 – start-page: 387 year: 2005 end-page: 394 – start-page: 173 year: 2009 end-page: 187 – ident: e_1_2_7_34_1 – ident: e_1_2_7_20_1 – ident: e_1_2_7_39_1 doi: 10.1145/3564246.3585156 – volume-title: Advances in neural information processing systems year: 2006 ident: e_1_2_7_8_1 – ident: e_1_2_7_22_1 doi: 10.1007/s10208-022-09570-y – start-page: 3389 volume-title: Proc. Int. Congr. Math year: 2018 ident: e_1_2_7_53_1 – ident: e_1_2_7_25_1 – ident: e_1_2_7_31_1 doi: 10.3115/1220575.1220624 – volume: 15 start-page: 3513 year: 2014 ident: e_1_2_7_35_1 article-title: Seeded graph matching for correlated Erdos‐Rényi graphs publication-title: J. Mach. Learn. Res. – ident: e_1_2_7_50_1 doi: 10.1088/1742-5468/ac70d2 – start-page: 383 volume-title: Statistical problems with planted structures: Information‐theoretical and computational limits year: 2021 ident: e_1_2_7_61_1 – ident: e_1_2_7_17_1 – ident: e_1_2_7_56_1 doi: 10.1073/pnas.0806627105 – ident: e_1_2_7_60_1 – ident: e_1_2_7_13_1 doi: 10.1214/15-AOP1084 – volume: 18 start-page: 86 issue: 177 year: 2017 ident: e_1_2_7_2_1 article-title: Community detection and stochastic block models: Recent developments publication-title: J. Mach. Learn. Res. – start-page: 63 volume-title: Proc. 2016 ACM SIGMETRICS Int. Conf. Meas. Model. Comput. Sci., SIGMETRICS ‘16 year: 2016 ident: e_1_2_7_9_1 – ident: e_1_2_7_57_1 doi: 10.1016/0097-3165(90)90070-D – ident: e_1_2_7_10_1 – ident: e_1_2_7_16_1 – ident: e_1_2_7_30_1 – ident: e_1_2_7_38_1 doi: 10.1007/s00440-022-01184-3 – ident: e_1_2_7_4_1 doi: 10.4171/pm/2014 – ident: e_1_2_7_32_1 – ident: e_1_2_7_62_1 doi: 10.1109/TIT.2022.3169005 – ident: e_1_2_7_45_1 doi: 10.1109/SP.2008.33 – ident: e_1_2_7_21_1 doi: 10.1007/s10208-022-09575-7 – ident: e_1_2_7_43_1 doi: 10.1145/2897518.2897548 – ident: e_1_2_7_49_1 doi: 10.1145/2020408.2020596 – start-page: 10:1 volume-title: 12th Innov. Theor. Comput. Sci. Conf. (ITCS 2021) year: 2021 ident: e_1_2_7_37_1 – ident: e_1_2_7_14_1 doi: 10.1109/TIT.2023.3265009 – start-page: 2080 volume-title: Proc. 34th Conf. Learn. Theory year: 2021 ident: e_1_2_7_28_1 – ident: e_1_2_7_12_1 doi: 10.1145/3341617.3326151 – ident: e_1_2_7_44_1 doi: 10.1002/rsa.20934 – ident: e_1_2_7_59_1 doi: 10.1371/journal.pone.0121002 – volume-title: Adv. Neural Inf. Process. Syst year: 2019 ident: e_1_2_7_5_1 – ident: e_1_2_7_29_1 – ident: e_1_2_7_48_1 doi: 10.1090/dimacs/016/01 – ident: e_1_2_7_64_1 doi: 10.1145/2512938.2512952 – ident: e_1_2_7_40_1 – ident: e_1_2_7_58_1 doi: 10.1002/cpa.21922 – ident: e_1_2_7_52_1 doi: 10.1214/21-AAP1703 – start-page: 173 volume-title: 2009 30th IEEE Symp. Secur. Priv year: 2009 ident: e_1_2_7_46_1 – ident: e_1_2_7_7_1 – ident: e_1_2_7_24_1 doi: 10.1073/pnas.2108492118 – ident: e_1_2_7_66_1 doi: 10.1080/00018732.2016.1211393 – ident: e_1_2_7_15_1 doi: 10.1214/23-AOS2305 – ident: e_1_2_7_54_1 doi: 10.1145/321958.321975 – ident: e_1_2_7_19_1 doi: 10.1007/s00440-020-00997-4 – start-page: 1633 volume-title: Proc. 33rd Conf. Learn. Theory year: 2020 ident: e_1_2_7_27_1 – ident: e_1_2_7_6_1 doi: 10.1109/CVPR.2005.320 – ident: e_1_2_7_33_1 doi: 10.14778/2794367.2794371 – ident: e_1_2_7_55_1 doi: 10.1109/ACSSC.2017.8335178 – volume: 34 start-page: 22259 year: 2021 ident: e_1_2_7_51_1 article-title: Correlated stochastic block models: Exact graph matching with applications to recovering communities publication-title: Adv. Neural Inf. Process. Syst. – volume: 22 year: 2021 ident: e_1_2_7_65_1 article-title: Graph matching with partially‐correct seeds publication-title: J. Mach. Learn. Res. – ident: e_1_2_7_3_1 doi: 10.1109/SFCS.1996.548460 – ident: e_1_2_7_42_1 doi: 10.1109/FOCS.2019.00087 – ident: e_1_2_7_18_1 – volume-title: 12th Innov. Theor. Comput. Sci. Conf year: 2021 ident: e_1_2_7_47_1 – ident: e_1_2_7_41_1 doi: 10.1017/CBO9780511813603 – ident: e_1_2_7_26_1 – ident: e_1_2_7_63_1 doi: 10.1214/22-AAP1786 – ident: e_1_2_7_23_1 – start-page: 99 volume-title: Abstr. 2020 SIGMETRICS/Perform. Jt. Int. Conf. Meas. Model. Comput. Syst year: 2020 ident: e_1_2_7_11_1 – ident: e_1_2_7_36_1 doi: 10.1007/978-3-642-14165-2_50 |
| SSID | ssj0007323 |
| Score | 2.400637 |
| Snippet | For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two... For two independent Erdős–Rényi graphs , we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex... For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 220 |
| SubjectTerms | Algorithms Graph theory Graphs greedy algorithm Polynomials polynomial‐time approximation scheme random graph matching |
| Title | A polynomial‐time approximation scheme for the maximal overlap of two independent Erdős–Rényi graphs |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.21212 https://www.proquest.com/docview/3067933181 |
| Volume | 65 |
| WOSCitedRecordID | wos001179592600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1098-2418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007323 issn: 1042-9832 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB2kutCFb_HNIC7cxKYzaSaDq6ItLqpIfdBdmMwDirEtTX10109Q_AG3_obij_glzkzSqKAguAvJTBLmPubc4d5zAdgmSvnW-xHMdIAiXOFEgfAdyZUkUkmBbS3MRZ0cHwfNJj0ZA3ujWpiUHyI_cDOWYf21MXAWJcVP0tBewna13zUdhseR1ttyAYwfNGrn9dwRE4zS_HoPOVRr7ohYyEXFfPL37egTY35Fqnarqc386ydnwXSGMGElVYk5MCbb82DqKKdnTRbAZQV2O_HAVCSz-H14bxrMQ8suftdKSxmhDnqlvqkhLdQT4RUzT2JoEj5j1oUdBfu3HdjKm-j2YbUn3h6S9-Fj4_W5PWi9PFku7GQRnNeqZ_uHTtZ1weGIEuT4lNOIKc4lJowoIQSlxCARjl2uxeizoCTLiJY86QlPUOaLiHnK1UArEi5WeAkU2p22XAbQwEkmGY5U2fNkgJkrIsEZKVMeKJ-KFbAzWvyQZ5TkpjNGHKZkyijU6xfa9VsBW_nQbsrD8dOg9ZEEw8wUk9DERBRr11XSn7Oy-v0FYeO0Yi9W_z50DUwiDXTSpMB1UOj3ruUGmOA3_VbS28x08gO9n-uz |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7ECurBt1ifi3jwEk2zaTYLXoq2KNYi9YG3sNkHFGNbmvrozZ-g-Ae8-jcU_0h_ibubNCooCN5CMpuE2ZnZb5eZbwDYwFJ6JvphRNUGhdvcCn3uWYJJgYUUHJlamPMqrtX8iwtyPAR2BrUwCT9EduCmPcPEa-3g-kB6-5M1tBPTLRV4dYvhnKvMSNl3bq9eOatmkRgjJ0mwdx2LKNMdMAvZznY2-Pt69Akyv0JVs9ZUJv_3l1NgIsWYsJQYxTQYEs0ZMH6UEbTGs-CyBNutqKdrkmnUv3_QLeah4Re_ayTFjFBte4W6qUAtVAPhFdVPIqhTPiPahi0Ju7ct2Mja6HZhucPfH-P-_VP97aXZa7w-GzbseA6cVcqnu_tW2nfBYg7BjuURRkIqGRMIUyw554RgjUUYspmaSI_6BVF0SMEVLnc5oR4PqSttBbVCbiOJ5sFws9UUCwBqQEkFRaEsuq7wEbV5yBnFRcJ86RGeB5sD7QcsJSXXvTGiIKFTdgKlv8DoLw_WM9F2wsTxk9DyYAqD1BnjQO-KCFLBq6A-Zybr9xcE9ZOSuVj8u-gaGN0_PaoG1YPa4RIYcxTsSVIEl8Fwt3MtVsAIu-k24s5qaqAfyKPvow |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NattAEB6MU0pzSH9DkzrpUnroRY2slbVa6MXEFgl1TXCbkJtY7Q-YqLaRnKS--RES-gK99jUa8iJ-kuyuZLmFFAq9CWlWEjOzs98sO98AvCVKBTb6Ecx0giJc4SShCBzJlSRSSYFtLcxJj_T74ekpParBh2UtTMEPUW24mZlh47WZ4HIi1N6KNTTL2XsdeE2L4TXfNJGpw1pnEB33qkhMsFccsPc9h2rXXTILud5eNfjP9WgFMn-HqnatiR7_318-gY0SY6J24RRPoSZHz2D9U0XQmj-HszaajNOZqUlm6WJ-ZVrMI8sv_m1YFDMinfZKfVODWqQHoq_MPEmROfKZsgkaKzS9HKNh1UZ3irqZuL3OF_Pvg5ufo9nw1w_Lhp2_gOOo-2X_wCn7Ljjco8RzAsppwhTnEhNGlBCCUmKwCMcu14YMWNiULY82fekLX1AWiIT5ytVQKxEuVngT6qPxSL4EZAAlkwwnquX7MsTMFYngjLQoD1VAxRa8W2o_5iUpuemNkcYFnbIXa_3FVn9b8KYSnRRMHPcJNZYmjMvJmMcmK6JYB6-m_pw11t9fEA8-t-3F9r-LvoaHR50o7h32P76CR55GPcUJwQbUp9m53IEH_GI6zLPd0j_vAG8F7x4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+polynomial%E2%80%90time+approximation+scheme+for+the+maximal+overlap+of+two+independent+Erd%C5%91s%E2%80%93R%C3%A9nyi%C2%A0graphs&rft.jtitle=Random+structures+%26+algorithms&rft.au=Ding%2C+Jian&rft.au=Du%2C+Hang&rft.au=Gong%2C+Shuyang&rft.date=2024-08-01&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=65&rft.issue=1&rft.spage=220&rft.epage=257&rft_id=info:doi/10.1002%2Frsa.21212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rsa_21212 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon |