Recent developments in symmetry‐adapted perturbation theory

Symmetry‐adapted perturbation theory (SAPT) is a well‐established method to compute accurate intermolecular interaction energies in terms of physical effects such as electrostatics, induction (polarization), dispersion, and exchange. With many theory levels and variants, and several computer impleme...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wiley interdisciplinary reviews. Computational molecular science Ročník 10; číslo 3; s. e1452 - n/a
Hlavní autor: Patkowski, Konrad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA Wiley Periodicals, Inc 01.05.2020
Wiley Subscription Services, Inc
Témata:
ISSN:1759-0876, 1759-0884
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Symmetry‐adapted perturbation theory (SAPT) is a well‐established method to compute accurate intermolecular interaction energies in terms of physical effects such as electrostatics, induction (polarization), dispersion, and exchange. With many theory levels and variants, and several computer implementations available, closed‐shell SAPT has been applied to produce numerous intermolecular potential energy surfaces for complexes of experimental interest, and to elucidate the interactions in various complexes relevant to catalysis, organic synthesis, and biochemistry. In contrast, the development of SAPT for general open‐shell complexes is still a work in progress. In the last decade, new developments from several research groups, including the author's, have greatly enhanced the capabilities of SAPT. The new and emerging approaches are designed to make SAPT more widely applicable (including interactions involving multireference systems, complexes in arbitrary spin states, and intramolecular noncovalent interactions), more accurate (enhanced description of intramolecular correlation, a better account of exchange effects, relativistic SAPT, and explicitly correlated SAPT), and more efficient (enhanced density‐fitted implementations, linear‐scaling variants, empirical dispersion, and an implementation on graphics processing units). The new developments open up avenues for SAPT applications to an unprecedented variety of weakly interacting complexes. This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Electronic Structure Theory > Density Functional Theory Molecular and Statistical Mechanics > Molecular Interactions Most important concepts reviewed in this work, shaped into a noncovalently interacting complex.
AbstractList Symmetry‐adapted perturbation theory (SAPT) is a well‐established method to compute accurate intermolecular interaction energies in terms of physical effects such as electrostatics, induction (polarization), dispersion, and exchange. With many theory levels and variants, and several computer implementations available, closed‐shell SAPT has been applied to produce numerous intermolecular potential energy surfaces for complexes of experimental interest, and to elucidate the interactions in various complexes relevant to catalysis, organic synthesis, and biochemistry. In contrast, the development of SAPT for general open‐shell complexes is still a work in progress. In the last decade, new developments from several research groups, including the author's, have greatly enhanced the capabilities of SAPT. The new and emerging approaches are designed to make SAPT more widely applicable (including interactions involving multireference systems, complexes in arbitrary spin states, and intramolecular noncovalent interactions), more accurate (enhanced description of intramolecular correlation, a better account of exchange effects, relativistic SAPT, and explicitly correlated SAPT), and more efficient (enhanced density‐fitted implementations, linear‐scaling variants, empirical dispersion, and an implementation on graphics processing units). The new developments open up avenues for SAPT applications to an unprecedented variety of weakly interacting complexes.This article is categorized under:Electronic Structure Theory > Ab Initio Electronic Structure MethodsElectronic Structure Theory > Density Functional TheoryMolecular and Statistical Mechanics > Molecular Interactions
Symmetry‐adapted perturbation theory (SAPT) is a well‐established method to compute accurate intermolecular interaction energies in terms of physical effects such as electrostatics, induction (polarization), dispersion, and exchange. With many theory levels and variants, and several computer implementations available, closed‐shell SAPT has been applied to produce numerous intermolecular potential energy surfaces for complexes of experimental interest, and to elucidate the interactions in various complexes relevant to catalysis, organic synthesis, and biochemistry. In contrast, the development of SAPT for general open‐shell complexes is still a work in progress. In the last decade, new developments from several research groups, including the author's, have greatly enhanced the capabilities of SAPT. The new and emerging approaches are designed to make SAPT more widely applicable (including interactions involving multireference systems, complexes in arbitrary spin states, and intramolecular noncovalent interactions), more accurate (enhanced description of intramolecular correlation, a better account of exchange effects, relativistic SAPT, and explicitly correlated SAPT), and more efficient (enhanced density‐fitted implementations, linear‐scaling variants, empirical dispersion, and an implementation on graphics processing units). The new developments open up avenues for SAPT applications to an unprecedented variety of weakly interacting complexes. This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Electronic Structure Theory > Density Functional Theory Molecular and Statistical Mechanics > Molecular Interactions
Symmetry‐adapted perturbation theory (SAPT) is a well‐established method to compute accurate intermolecular interaction energies in terms of physical effects such as electrostatics, induction (polarization), dispersion, and exchange. With many theory levels and variants, and several computer implementations available, closed‐shell SAPT has been applied to produce numerous intermolecular potential energy surfaces for complexes of experimental interest, and to elucidate the interactions in various complexes relevant to catalysis, organic synthesis, and biochemistry. In contrast, the development of SAPT for general open‐shell complexes is still a work in progress. In the last decade, new developments from several research groups, including the author's, have greatly enhanced the capabilities of SAPT. The new and emerging approaches are designed to make SAPT more widely applicable (including interactions involving multireference systems, complexes in arbitrary spin states, and intramolecular noncovalent interactions), more accurate (enhanced description of intramolecular correlation, a better account of exchange effects, relativistic SAPT, and explicitly correlated SAPT), and more efficient (enhanced density‐fitted implementations, linear‐scaling variants, empirical dispersion, and an implementation on graphics processing units). The new developments open up avenues for SAPT applications to an unprecedented variety of weakly interacting complexes. This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Electronic Structure Theory > Density Functional Theory Molecular and Statistical Mechanics > Molecular Interactions Most important concepts reviewed in this work, shaped into a noncovalently interacting complex.
Author Patkowski, Konrad
Author_xml – sequence: 1
  givenname: Konrad
  orcidid: 0000-0002-4468-207X
  surname: Patkowski
  fullname: Patkowski, Konrad
  email: kjp0013@auburn.edu
  organization: Auburn University
BookMark eNp1kMlOwzAURS1UJErpgj-IxIpFWg9JHC9YoIpJKkJiEEvLsV9EqkzYbqvs-AS-kS8hHcQCwdu8uzj3vqd7jAZ1UwNCpwRPCMZ0utaVm5AopgdoSHgsQpym0eBH8-QIjZ1b4H4iQSgjQ3TxCBpqHxhYQdm0Va9dUNSB66oKvO2-Pj6VUa0HE7Rg_dJmyhdNHfg3aGx3gg5zVToY7_cIvVxfPc9uw_nDzd3sch5qKjgNY64UN0wkWRwxoeOME6A4UsIQw6lOExEDIzpXOEqxAI0NpZTrzOSExSqnbITOdrmtbd6X4LxcNEtb9yclZQITkjCKe2q6o7RtnLOQS1347bveqqKUBMtNTXJTk9zU1DvOfzlaW1TKdn-y-_R1UUL3PyhfZ_dPW8c3hIR64A
CitedBy_id crossref_primary_10_3390_ijms241713324
crossref_primary_10_1016_j_fluid_2021_113236
crossref_primary_10_3390_bioengineering11010051
crossref_primary_10_1021_jacsau_5c00842
crossref_primary_10_1063_5_0216596
crossref_primary_10_1146_annurev_physchem_062422_023532
crossref_primary_10_1007_s11224_022_02053_4
crossref_primary_10_1002_ange_202316364
crossref_primary_10_1002_qua_26266
crossref_primary_10_1002_cplu_202300523
crossref_primary_10_1021_jacs_4c13291
crossref_primary_10_1080_00268976_2025_2540491
crossref_primary_10_3390_molecules29051043
crossref_primary_10_3390_ijms232415773
crossref_primary_10_1021_acs_jpca_5c05103
crossref_primary_10_3390_solids5030023
crossref_primary_10_1002_jcc_26377
crossref_primary_10_1002_anie_202512342
crossref_primary_10_3390_ijms25010602
crossref_primary_10_1002_jcc_27386
crossref_primary_10_1016_j_cej_2024_158989
crossref_primary_10_1002_adma_202402314
crossref_primary_10_1002_ajoc_202400611
crossref_primary_10_1063_5_0219185
crossref_primary_10_1016_j_comptc_2021_113419
crossref_primary_10_1021_acs_chemrev_4c00869
crossref_primary_10_1021_acscentsci_4c00058
crossref_primary_10_3390_ma17112689
crossref_primary_10_1016_j_comptc_2025_115282
crossref_primary_10_1080_00268976_2022_2109526
crossref_primary_10_1007_s11696_023_03022_9
crossref_primary_10_1016_j_jmgm_2021_107835
crossref_primary_10_1016_j_dyepig_2025_112813
crossref_primary_10_3390_ma18051077
crossref_primary_10_1038_s41598_025_10722_7
crossref_primary_10_1002_ange_202512342
crossref_primary_10_1002_jcc_26765
crossref_primary_10_1007_s00894_022_05190_z
crossref_primary_10_1021_acs_jcim_5c00617
crossref_primary_10_1016_j_foodres_2025_116763
crossref_primary_10_1002_cphc_202400498
crossref_primary_10_1039_D4TA09136A
crossref_primary_10_1021_acsomega_5c07079
crossref_primary_10_1080_17460441_2025_2555271
crossref_primary_10_1016_j_cej_2021_129638
crossref_primary_10_3390_molecules26216719
crossref_primary_10_3390_molecules28114478
crossref_primary_10_1103_PhysRevResearch_6_043021
crossref_primary_10_3390_ijms21217908
crossref_primary_10_3390_ijms241713349
crossref_primary_10_1021_acs_jctc_5c00629
crossref_primary_10_1016_j_cpc_2021_107933
crossref_primary_10_3390_ijms251910762
crossref_primary_10_1016_j_jics_2021_100208
crossref_primary_10_3390_nano12162757
crossref_primary_10_1038_s42004_024_01329_6
crossref_primary_10_1016_j_chemphys_2022_111556
crossref_primary_10_1038_s41598_024_60741_z
crossref_primary_10_1080_00268976_2025_2478202
crossref_primary_10_1002_anie_202316364
crossref_primary_10_3390_catal12050561
crossref_primary_10_3390_molecules26113119
crossref_primary_10_1002_cphc_202400608
crossref_primary_10_1016_j_cplett_2025_142348
crossref_primary_10_1002_advs_202414394
crossref_primary_10_1039_D5RA04351D
crossref_primary_10_1063_5_0275311
crossref_primary_10_1021_jacs_3c01030
crossref_primary_10_1002_cctc_202100342
crossref_primary_10_1016_j_cej_2022_135053
crossref_primary_10_1088_1361_6463_ad3bc4
crossref_primary_10_1063_5_0039256
crossref_primary_10_3390_ijms25158272
crossref_primary_10_3390_molecules28237900
crossref_primary_10_1007_s11696_022_02500_w
crossref_primary_10_1016_j_molliq_2025_128061
Cites_doi 10.1126/science.1254419
10.1063/1.4929479
10.1063/1.466661
10.1039/c002653k
10.1063/1.1594713
10.1063/1.2712434
10.1063/1.1564816
10.1063/1.4811833
10.1103/PhysRevLett.84.4072
10.1016/0009-2614(94)01402-H
10.1021/jp107557p
10.1002/wcms.1361
10.1039/b804513e
10.1039/C3CP53035C
10.1080/00268976.2013.827253
10.1063/1.3567306
10.1063/1.4812182
10.1021/acs.jctc.7b01053
10.1021/ct401111c
10.1002/qua.560230203
10.1063/1.5001028
10.1016/j.cplett.2009.03.073
10.1063/1.1499488
10.1021/ct400481r
10.1063/1.464179
10.1021/acs.chemrev.6b00446
10.1002/wcms.86
10.1021/ja3063309
10.1021/acs.jctc.8b00034
10.1021/jp064095o
10.1073/pnas.0408475102
10.1063/1.1327260
10.1063/1.470309
10.1016/S0065-3276(08)60214-2
10.1021/jp503182h
10.1103/PhysRevA.53.1316
10.1021/jp412765t
10.1063/1.480567
10.1021/jp073685z
10.1021/acs.jpca.6b12930
10.1002/jcc.24908
10.1002/jcc.26003
10.1002/jcc.540110311
10.1063/1.456069
10.1002/qua.560140306
10.1016/j.cplett.2007.11.014
10.1039/C9CP00422J
10.1103/PhysRevLett.108.236402
10.1021/ct800471b
10.1063/1.3073302
10.1063/1.473831
10.1002/wcms.1168
10.1021/acs.jpca.9b06028
10.1021/acs.jctc.5b00002
10.1063/1.463475
10.1063/1.3300064
10.1021/ct400057w
10.1007/BF01341258
10.1021/jz301015p
10.1021/acs.jctc.6b00141
10.1063/1.470646
10.1021/jp412779q
10.1021/ja304528m
10.1002/qua.560180414
10.1063/1.4986291
10.1039/C3CP55188A
10.1039/c2cp00015f
10.1021/jp511101n
10.1063/1.1445115
10.1039/B415208E
10.1021/ct300200m
10.1080/00268976.2012.746478
10.1021/ct400149j
10.1063/1.4871116
10.1063/1.1461814
10.1063/1.466432
10.1016/S0009-2614(02)01097-7
10.1063/1.4827297
10.1002/jcc.25084
10.1063/1.4813523
10.1063/1.4903765
10.1021/acs.jpcc.7b02128
10.1021/acs.jctc.8b00527
10.1021/ct200185h
10.1021/jp303790r
10.1063/1.2889006
10.1002/qua.560320202
10.1063/1.3656681
10.1002/jcc.21759
10.1063/1.462569
10.1021/acs.jpclett.6b00780
10.1021/acs.jctc.6b00913
10.1021/ja5101245
10.1021/ct500478t
10.1063/1.1542871
10.1063/1.3079541
10.1063/1.5087208
10.1080/00268977900101601
10.1063/1.2409292
10.1063/1.1671609
10.1063/1.4963385
10.1021/acs.chemrev.5b00560
10.1039/b807329e
10.1007/s002140050442
10.1063/1.3426316
10.1063/1.465554
10.1063/1.1676119
10.1063/1.464913
10.1063/1.2784391
10.1021/jp300109y
10.1021/cr200204r
10.1016/j.comptc.2012.05.012
10.1135/cccc20040141
10.1063/1.4997569
10.1021/acs.jctc.6b00969
10.1063/1.467225
10.1103/PhysRevB.37.785
10.1021/acs.jctc.9b00547
10.1063/1.5111869
10.1002/slct.201700671
10.1021/acs.chemrev.5b00644
10.1021/ja204294q
10.1039/C4CP04354E
10.1146/annurev-physchem-040215-112047
10.1021/jp205031e
10.1039/C6CP07475H
10.1021/ar0402006
10.1063/1.2126975
10.1063/1.4936830
10.1039/df9654000007
10.1063/1.452542
10.1016/j.comptc.2017.03.008
10.1016/j.cplett.2007.07.065
10.1002/wcms.82
10.1021/ct5010593
10.1039/C9DT00182D
10.1021/ct500724p
10.1103/PhysRevLett.119.123401
10.1063/1.2968556
10.1080/00268978800100171
10.1021/jp305700k
10.1021/acs.jctc.8b01058
10.1063/1.1589749
10.1063/1.4931809
10.1021/acs.chemrev.5b00526
10.1039/b204199p
10.1080/00268978500102021
10.1007/BF00533487
10.1039/c2cp24060b
10.1063/1.4978951
10.1021/cr00031a008
10.1063/1.478522
10.1021/cr990048z
10.1063/1.447867
10.1063/1.4867969
10.1021/ar400303a
10.1039/b708483h
10.1016/0301-0104(73)80059-X
10.1063/1.4869686
10.1063/1.3451077
10.1021/acs.jpclett.9b01156
10.1039/C8CP05749D
10.1063/1.1924593
10.1016/S0009-2614(99)00515-1
10.1063/1.5030434
10.1002/anie.201409487
10.1039/C4CS00375F
10.1063/1.2173256
10.1080/00268976.2017.1317861
10.1021/acs.jctc.5b00588
10.1002/wcms.1326
10.1021/jp003883p
10.1063/1.2834918
10.1021/ct900108f
10.1103/PhysRevA.70.062505
10.1021/jp208150b
10.1021/acs.jctc.8b00058
10.1039/C0CP00968G
10.1103/RevModPhys.79.291
10.1063/1.470171
10.1063/1.2905808
10.1135/cccc20051109
10.1103/PhysRevLett.101.115503
10.1039/c2cp23949c
10.1002/jcc.24226
10.1002/jcc.23994
10.1021/ja401420w
10.1103/PhysRevA.94.042708
10.1021/ct100182u
10.1002/chem.201802385
10.1063/1.456153
10.1080/00268970110105424
10.1007/s00214-019-2414-5
10.1063/1.3668283
10.1063/1.4907204
10.1021/jp076412c
10.1063/1.4889855
10.1021/ct200106a
10.1063/1.3276460
10.1021/jp4016933
10.1021/acs.chemrev.5b00652
10.1063/1.1311289
10.1039/C8CP04962A
10.1021/ct200673a
10.1063/1.4758455
10.1007/430_004
10.1021/acs.jctc.6b00209
10.1021/cr200168z
10.1021/ct400036b
10.1063/1.4734597
10.1063/1.467218
10.1039/C6CP05030A
10.1103/PhysRevLett.103.263201
10.1002/wcms.8
10.1002/qua.560100211
10.1063/1.4900478
10.1063/1.2936122
10.1021/jz9002444
10.1103/PhysRevA.50.2138
10.1021/jp5098603
10.1007/s00214-010-0748-0
10.1021/acs.jctc.5b01241
10.1063/1.1319649
10.1063/1.5116151
10.1021/ct9005882
10.1063/1.2135288
10.1021/acs.chemrev.5b00648
10.1063/1.1679012
10.1063/1.3159673
10.1063/1.3382344
10.1103/PhysRevLett.121.113402
10.1039/c3cp52312h
10.1080/00268970600673975
10.1063/1.481120
10.1021/jacs.8b07985
10.1103/PhysRevA.49.2421
10.1039/C7CC03116E
10.1021/acs.jpcb.7b03714
10.1021/ct501115m
10.1103/PhysRevLett.77.3865
10.1063/1.4826520
10.1016/S0065-3276(08)60381-0
10.1063/1.439880
10.1021/acs.jctc.7b00851
10.1080/00268970600693395
10.1007/BF00558020
10.1063/1.1383587
10.1063/1.5086079
10.1002/wcms.30
10.1063/1.4927575
10.1021/ja100936w
10.1063/1.2817618
10.1063/1.3479400
10.1021/ct3008809
10.1021/ct200243s
10.1021/jacs.7b02349
10.1063/1.469994
10.1021/acs.jpcb.5b05115
10.1063/1.5021891
10.1103/PhysRevLett.52.997
10.1002/qua.560450502
10.1021/acs.jctc.5b00267
10.1063/1.1476007
10.1016/j.cplett.2005.08.048
10.1039/C4CP03376K
10.1002/chem.201200497
10.1021/cr00031a001
10.1021/ct700167b
10.1063/1.461528
10.1007/s00214-002-0377-3
10.1039/C5CP07281F
10.1002/(SICI)1097-461X(1996)60:1<273::AID-QUA28>3.0.CO;2-E
10.1063/1.2954017
10.1016/S0009-2614(02)01796-7
10.1021/acs.jpcb.6b09489
10.1021/cr200148b
10.1063/1.5075487
10.1063/1.438313
10.1039/b719725j
10.1021/acs.chemmater.5b03266
10.1002/anie.201807751
10.1021/acs.jctc.7b00174
10.1063/1.4867071
10.1016/S0009-2614(89)87395-6
10.1103/PhysRev.73.360
10.1039/C9CP01762C
10.1021/ct500490b
10.1063/1.1723844
10.1021/ja802849j
10.1039/c002656e
10.1080/00268979909483008
10.1063/1.3560026
10.1039/C2CP42810E
10.1016/j.jphotobiol.2018.11.007
10.1063/1.1824898
10.1021/acs.jctc.5b00687
10.1080/01442350110071957
10.1002/qua.560480303
10.1063/1.4883517
10.1016/B978-044451719-7/50076-7
10.1021/jp3108182
10.1063/1.1899143
10.1016/S0009-2614(02)00533-X
10.1002/wcms.1181
10.1002/wcms.1189
10.1063/1.2191500
10.1016/0009-2614(93)87156-W
10.1063/1.441359
10.1016/j.cplett.2005.08.060
10.1021/acs.jctc.6b00155
10.1063/1.3058477
10.1080/00268976.2014.952696
10.1021/ct2002946
10.1063/1.3054300
10.1021/cr00005a013
10.1021/acs.jpca.6b05248
10.1103/RevModPhys.85.693
10.1039/b310529f
10.1063/1.2770721
10.1021/acs.jpca.6b08945
10.1093/acprof:oso/9780199672394.001.0001
10.1002/qua.25379
10.1002/cphc.201600942
10.1021/jp110374b
10.1039/C7CP03665E
10.1021/jz402663k
10.1002/wcms.1297
10.1103/PhysRevA.33.3742
10.1016/0009-2614(81)85452-8
10.1080/01442350601081931
10.1021/acs.jctc.8b00470
10.1002/qua.560100208
10.1063/1.2358353
10.1021/jp960694r
10.1002/wcms.1294
10.1021/jacs.5b04066
10.1007/BFb0016643
10.1002/wcms.1164
10.1021/ct400250u
10.1063/1.2933312
10.1063/1.4986081
10.1063/1.474405
10.1063/1.4800981
10.1016/0009-2614(94)01027-7
10.1063/1.4968529
10.1016/0009-2614(75)80278-8
10.1021/ct900232j
10.1021/ct100686e
10.1021/acs.jpclett.6b02585
10.1063/1.5053802
10.1021/ct200111a
10.1016/S0009-2614(02)00538-9
10.1007/s00894-012-1428-x
10.1063/1.3672810
10.1021/acs.jpcb.6b05328
10.1039/b709192c
10.1103/PhysRevLett.91.033201
10.1021/ct0501093
10.1021/jp900490p
10.1002/wcms.1355
10.1063/1.4927304
10.1063/1.1379330
10.1021/jp209335y
10.1063/1.473556
10.1063/1.1620496
10.1021/acs.chemmater.6b02930
10.1016/j.comptc.2018.02.019
10.1039/C9CS00060G
10.1002/anie.201102982
10.1063/1.2364489
10.1021/ar400326q
10.1021/cr2001383
10.1021/acs.jctc.5b00296
10.1039/B600027D
10.1002/anie.201508056
10.1021/jp8105919
10.1002/chem.200700602
10.1038/nature10367
10.1063/1.1594722
10.1039/C8CP02029A
10.1021/acs.chemrev.5b00577
10.1016/S0166-1280(01)00478-X
10.1063/1.480901
10.1021/ct300778e
10.1021/acs.jctc.6b01198
10.1063/1.5007929
10.1021/ct400704a
10.1002/wcms.84
10.1039/C9CP03015H
10.1063/1.4867135
10.1021/acs.jctc.7b00797
10.1063/1.3176515
10.1021/acs.jctc.6b00523
10.1080/00268979650026262
10.1021/cr200093j
10.1063/1.2733648
10.1021/acsomega.8b01339
10.1063/1.4961095
10.1063/1.2137315
10.1063/1.4893990
10.1002/cphc.201601405
10.1021/jp400051b
10.1021/acs.jctc.7b01233
10.1063/1.477711
10.1016/0009-2614(67)80007-1
10.1039/C6CP03784D
10.1063/1.473860
10.1002/chem.201701031
10.1063/1.3683219
10.1007/s00214-012-1235-6
10.1039/c3cp52768a
10.1063/1.4979993
10.1021/acs.chemrev.5b00533
10.1021/ct050304h
10.1016/0003-4916(74)90333-9
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
2020 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
– notice: 2020 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7QH
7TN
7UA
C1K
F1W
H96
JQ2
L.G
DOI 10.1002/wcms.1452
DatabaseName CrossRef
Aqualine
Oceanic Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-0884
EndPage n/a
ExternalDocumentID 10_1002_wcms_1452
WCMS1452
Genre reviewArticle
GrantInformation_xml – fundername: U.S. National Science Foundation CAREER
  funderid: CHE‐1351978
GroupedDBID 05W
0R~
1OC
1VH
31~
33P
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-A
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
WYJ
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
LH4
7QH
7TN
7UA
C1K
F1W
H96
JQ2
L.G
ID FETCH-LOGICAL-c2972-57aa7d396b5439c5b71e204a9d1d72c8695e31cfa04809ec0d2227cbdf135af23
IEDL.DBID DRFUL
ISICitedReferencesCount 186
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000499677600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1759-0876
IngestDate Mon Nov 24 18:10:56 EST 2025
Sat Nov 29 02:23:38 EST 2025
Tue Nov 18 21:44:00 EST 2025
Wed Jan 22 16:34:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2972-57aa7d396b5439c5b71e204a9d1d72c8695e31cfa04809ec0d2227cbdf135af23
Notes Funding information
U.S. National Science Foundation CAREER, Grant/Award Number: CHE‐1351978
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4468-207X
PQID 2390116320
PQPubID 2034594
PageCount 47
ParticipantIDs proquest_journals_2390116320
crossref_citationtrail_10_1002_wcms_1452
crossref_primary_10_1002_wcms_1452
wiley_primary_10_1002_wcms_1452_WCMS1452
PublicationCentury 2000
PublicationDate May/June 2020
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May/June 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Wiley interdisciplinary reviews. Computational molecular science
PublicationYear 2020
Publisher Wiley Periodicals, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Periodicals, Inc
– name: Wiley Subscription Services, Inc
References 2011; 115
1979; 38
2011; 477
1987; 32
2019; 10
2019; 15
2015; 142
2015; 143
2012; 18
2012; 14
1981; 83
2008; 101
1996; 77
1984; 52
2010; 1
2015; 137
2019; 21
2013; 117
2019; 25
1996; 60
2013; 111
2005; 70
2019; 151
1981; 74
2019; 150
2010; 6
1983; 23
1976; 41
2011; 135
2011; 1
2019; 190
1943; 11
2013; 85
1943; 17
2008; 129
2006; 110
1975; 36
2008; 128
1934; 6
1999; 101
2016; 18
2016; 17
2011; 134
2007; 13
2011; 133
2011; 7
2016; 12
2017; 139
2001; 20
2017; 53
2006; D62
2016; 7
2019; 40
2015; 113
1967; 1
2019; 48
1999; 110
2005; 7
2005; 1
2015; 119
2006; 104
2016; 28
2017; 146
2018; 1129
2017; 147
2012; 998
2008; 130
1973; 2
1996; 88
2017; 119
1964; 1
1990; 11
1989; 157
1986; 33
2004; 69
2002; 117
2002; 357
2002; 116
1996; 100
1992; 97
1979; 71
2017; 115
2017; 117
1992; 96
2001; 105
2013; 19
1994; 100
1987; 86
2014; 5
2013; 15
2014; 4
2003; 91
2004; 70
2017; 38
2002; 100
2003; 5
2016; 116
2002; 108
2017; 121
1985; 55
1994; 229
2007; 26
2006; 125
2006; 124
2007; 126
1948; 73
2007; 127
1969; 50
2010; 127
2017; 23
2005
1978; 14
1995; 233
2016; 120
1996; 53
1980; 18
1993; 99
2007; 111
1993; 98
2017; 13
2010; 132
2010; 133
2017; 19
1995; 103
2017; 18
2009; 5
2013
2008; 450
2001; 115
2001; 114
2018; 57
2010; 12
2010; 11
2006; 39
1991; 95
2009; 473
2016; 145
2009; 113
2001; 547
2007; 79
2014; 136
2013; 9
2018; 8
2012; 131
2018; 39
2018; 3
2012; 134
2016; B72
2005; 102
2010; 114
2014; 16
2007; 9
1991; 91
2007; 3
2012; 136
2012; 137
2014; 10
1993; 48
2007; 445
2019; 9
1993; 45
2000; 113
2005; 116
2015; 54
1997
2014; 47
1997; 28
2002; 4
2016; 94
2000; 112
2018; 20
2012; 108
1965; 40
2012; 112
2002; 362
2005; 122
2005; 123
1973; 28
2000; 84
2014; 140
2000; 100
2014; 141
1994; 94
2012; 116
2009; 103
2018; 14
2017; 7
2004; 120
2015; 36
2018; 121
2003; 119
2017; 2
2003; 118
1993; 208
1993; B
1988; 37
1973; 58
2005; 414
2005; 415
1996; 181
2011; 13
2019; 123
1997; 106
1997; 107
1980; 73
2017; 1116
1974; 82
2015; 44
1999; 96
2003; 367
2014; 118
2015; 17
2018; 140
1984; 81
2018; 149
2015; 11
2018; 148
2006; 8
2011; 32
1994; 49
2008; 10
2009; 130
2009; 131
2006; 2
1999; 307
2016; 55
1976; 10
2012; 2
2012; 3
1930; 60
2013; 138
1989; 90
2013; 139
2011; 50
2019; 138
1998; 109
2013; 135
1988; 63
1994; 50
2014; 345
2016; 67
2012; 8
e_1_2_10_210_1
e_1_2_10_233_1
e_1_2_10_256_1
e_1_2_10_279_1
e_1_2_10_158_1
e_1_2_10_342_1
e_1_2_10_365_1
e_1_2_10_388_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_13_1
Jeziorski B (e_1_2_10_82_1) 1993
e_1_2_10_222_1
e_1_2_10_245_1
e_1_2_10_268_1
e_1_2_10_147_1
e_1_2_10_330_1
e_1_2_10_353_1
e_1_2_10_376_1
e_1_2_10_399_1
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_211_1
e_1_2_10_257_1
e_1_2_10_234_1
e_1_2_10_341_1
e_1_2_10_159_1
e_1_2_10_90_1
Bistoni G (e_1_2_10_16_1) 2019; 9
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_38_1
e_1_2_10_364_1
e_1_2_10_15_1
e_1_2_10_387_1
e_1_2_10_269_1
e_1_2_10_200_1
e_1_2_10_246_1
e_1_2_10_223_1
e_1_2_10_352_1
e_1_2_10_148_1
e_1_2_10_409_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_49_1
e_1_2_10_375_1
e_1_2_10_26_1
e_1_2_10_398_1
e_1_2_10_190_1
e_1_2_10_258_1
e_1_2_10_235_1
Coupled Korona T. (e_1_2_10_343_1) 2010
e_1_2_10_340_1
e_1_2_10_363_1
e_1_2_10_91_1
e_1_2_10_137_1
e_1_2_10_39_1
e_1_2_10_114_1
e_1_2_10_386_1
e_1_2_10_247_1
e_1_2_10_201_1
e_1_2_10_224_1
e_1_2_10_351_1
e_1_2_10_374_1
e_1_2_10_408_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_103_1
e_1_2_10_397_1
e_1_2_10_236_1
e_1_2_10_259_1
e_1_2_10_213_1
e_1_2_10_385_1
e_1_2_10_419_1
e_1_2_10_362_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_17_1
e_1_2_10_309_1
e_1_2_10_225_1
e_1_2_10_248_1
e_1_2_10_202_1
e_1_2_10_350_1
e_1_2_10_396_1
e_1_2_10_407_1
e_1_2_10_373_1
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_180_1
e_1_2_10_252_1
e_1_2_10_275_1
e_1_2_10_298_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_421_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_2_1
e_1_2_10_300_1
e_1_2_10_323_1
e_1_2_10_346_1
e_1_2_10_369_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_241_1
e_1_2_10_264_1
e_1_2_10_287_1
e_1_2_10_32_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_334_1
e_1_2_10_357_1
e_1_2_10_311_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_253_1
e_1_2_10_299_1
e_1_2_10_22_1
e_1_2_10_230_1
e_1_2_10_420_1
e_1_2_10_276_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_322_1
e_1_2_10_368_1
e_1_2_10_3_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_345_1
e_1_2_10_242_1
e_1_2_10_288_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_265_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_333_1
e_1_2_10_379_1
Reilly AM (e_1_2_10_238_1) 2016; 72
e_1_2_10_310_1
e_1_2_10_68_1
e_1_2_10_356_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_231_1
e_1_2_10_254_1
e_1_2_10_277_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_344_1
e_1_2_10_367_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_220_1
e_1_2_10_289_1
e_1_2_10_11_1
e_1_2_10_243_1
e_1_2_10_266_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_332_1
e_1_2_10_355_1
e_1_2_10_378_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_232_1
e_1_2_10_278_1
e_1_2_10_255_1
e_1_2_10_157_1
e_1_2_10_320_1
e_1_2_10_389_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_36_1
e_1_2_10_366_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_59_1
e_1_2_10_221_1
e_1_2_10_267_1
e_1_2_10_244_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_331_1
e_1_2_10_354_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_47_1
e_1_2_10_377_1
e_1_2_10_271_1
e_1_2_10_339_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_294_1
e_1_2_10_402_1
e_1_2_10_207_1
e_1_2_10_380_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_304_1
e_1_2_10_327_1
e_1_2_10_173_1
e_1_2_10_196_1
e_1_2_10_260_1
e_1_2_10_51_1
e_1_2_10_283_1
e_1_2_10_413_1
e_1_2_10_219_1
e_1_2_10_391_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_338_1
e_1_2_10_162_1
e_1_2_10_315_1
e_1_2_10_185_1
e_1_2_10_272_1
e_1_2_10_41_1
e_1_2_10_401_1
e_1_2_10_424_1
e_1_2_10_295_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_349_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_98_1
e_1_2_10_326_1
e_1_2_10_7_1
e_1_2_10_303_1
e_1_2_10_261_1
e_1_2_10_284_1
e_1_2_10_412_1
e_1_2_10_390_1
e_1_2_10_337_1
e_1_2_10_64_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_87_1
e_1_2_10_314_1
e_1_2_10_250_1
e_1_2_10_273_1
e_1_2_10_42_1
e_1_2_10_400_1
e_1_2_10_423_1
e_1_2_10_296_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_348_1
e_1_2_10_53_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_302_1
e_1_2_10_325_1
e_1_2_10_175_1
Szalewicz K (e_1_2_10_84_1) 1997
e_1_2_10_262_1
e_1_2_10_30_1
e_1_2_10_411_1
e_1_2_10_285_1
e_1_2_10_336_1
e_1_2_10_359_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_313_1
e_1_2_10_274_1
e_1_2_10_43_1
e_1_2_10_251_1
e_1_2_10_20_1
e_1_2_10_422_1
e_1_2_10_297_1
e_1_2_10_130_1
e_1_2_10_199_1
Bukowski R (e_1_2_10_425_1)
e_1_2_10_301_1
e_1_2_10_347_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_324_1
e_1_2_10_263_1
e_1_2_10_240_1
e_1_2_10_31_1
Fermi E (e_1_2_10_127_1) 1934; 6
e_1_2_10_410_1
e_1_2_10_286_1
e_1_2_10_188_1
e_1_2_10_312_1
e_1_2_10_335_1
e_1_2_10_358_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_214_1
e_1_2_10_237_1
e_1_2_10_290_1
e_1_2_10_361_1
e_1_2_10_384_1
e_1_2_10_418_1
Li X (e_1_2_10_212_1) 2006; 62
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_308_1
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_249_1
e_1_2_10_372_1
e_1_2_10_395_1
e_1_2_10_406_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_319_1
e_1_2_10_215_1
e_1_2_10_291_1
e_1_2_10_417_1
e_1_2_10_360_1
e_1_2_10_383_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_19_1
e_1_2_10_307_1
e_1_2_10_204_1
e_1_2_10_280_1
e_1_2_10_227_1
e_1_2_10_405_1
e_1_2_10_371_1
e_1_2_10_394_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_318_1
Muto Y (e_1_2_10_321_1) 1943; 17
e_1_2_10_239_1
e_1_2_10_292_1
e_1_2_10_216_1
e_1_2_10_404_1
e_1_2_10_416_1
e_1_2_10_382_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_306_1
e_1_2_10_329_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_281_1
e_1_2_10_415_1
Patkowski K (e_1_2_10_28_1) 2017
e_1_2_10_393_1
e_1_2_10_370_1
e_1_2_10_61_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_317_1
e_1_2_10_270_1
e_1_2_10_108_1
e_1_2_10_217_1
e_1_2_10_293_1
e_1_2_10_403_1
e_1_2_10_426_1
e_1_2_10_229_1
e_1_2_10_381_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_305_1
e_1_2_10_195_1
e_1_2_10_9_1
e_1_2_10_328_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_282_1
e_1_2_10_414_1
e_1_2_10_218_1
e_1_2_10_392_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_316_1
e_1_2_10_184_1
References_xml – volume: 117
  start-page: 4714
  year: 2017
  end-page: 4758
  article-title: First‐principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications
  publication-title: Chem Rev
– volume: 9
  start-page: 2687
  year: 2013
  end-page: 2696
  article-title: Accuracy and efficiency of coupled‐cluster theory using density fitting/Cholesky decomposition, frozen natural orbitals, and a ‐transformed Hamiltonian
  publication-title: J Chem Theory Comput
– volume: 10
  start-page: 2735
  year: 2008
  end-page: 2746
  article-title: Physical origins of interactions in dimers of polycyclic aromatic hydrocarbons
  publication-title: Phys Chem Chem Phys
– volume: 98
  start-page: 5648
  year: 1993
  end-page: 5652
  article-title: Density‐functional thermochemistry. 3. The role of exact exchange
  publication-title: J Chem Phys
– volume: 150
  year: 2019
  article-title: Spin splittings from first‐order symmetry‐adapted perturbation theory without single‐exchange approximation
  publication-title: J Chem Phys
– volume: 147
  start-page: 161727
  year: 2017
  article-title: The BioFragment Database (BFDb): An open‐data platform for computational chemistry analysis of noncovalent interactions
  publication-title: J Chem Phys
– volume: 17
  start-page: 629
  year: 1943
  article-title: Force between nonpolar molecules
  publication-title: Proc Phys Math Soc Jpn
– volume: 13
  start-page: 3185
  year: 2017
  end-page: 3197
  article-title: Psi4 1.1: An open‐source electronic structure program emphasizing automation, advanced libraries, and interoperability
  publication-title: J Chem Theory Comput
– volume: 139
  year: 2013
  article-title: On asymptotic behavior of density functional theory
  publication-title: J Chem Phys
– volume: 13
  start-page: 732
  year: 2011
  end-page: 743
  article-title: On the accuracy of DFT‐SAPT, MP2, SCS‐MP2, MP2C, and DFT+Disp methods for the interaction energies of endohedral complexes of the C fullerene with a rare gas atom
  publication-title: Phys Chem Chem Phys
– volume: 19
  start-page: 26787
  year: 2017
  end-page: 26798
  article-title: A theoretical study of complexes between fullerenes and concave receptors with interest in photovoltaics
  publication-title: Phys Chem Chem Phys
– volume: 139
  year: 2013
  article-title: An improved treatment of empirical dispersion and a many‐body energy decomposition scheme for the explicit polarization plus symmetry‐adapted perturbation Theory (XSAPT) method
  publication-title: J Chem Phys
– volume: 23
  start-page: 341
  year: 1983
  end-page: 363
  article-title: Towards a “chemical” Hamiltonian
  publication-title: Int J Quantum Chem
– volume: 148
  start-page: 164110
  year: 2018
  article-title: First‐order symmetry‐adapted perturbation theory for multiplet splittings
  publication-title: J Chem Phys
– volume: 125
  start-page: 234109
  year: 2006
  article-title: Assessment of a long‐range corrected hybrid functional
  publication-title: J Chem Phys
– volume: 357
  start-page: 301
  year: 2002
  end-page: 306
  article-title: Intermolecular forces from asymptotically corrected density functional description of monomers
  publication-title: Chem Phys Lett
– volume: 13
  start-page: 1638
  year: 2017
  end-page: 1646
  article-title: Empirical D3 dispersion as a replacement for ab initio dispersion terms in density functional theory‐based symmetry‐adapted perturbation theory
  publication-title: J Chem Theory Comput
– volume: 14
  start-page: 271
  year: 1978
  end-page: 287
  article-title: Symmetry forcing and convergence properties of perturbation expansions for molecular interaction energies
  publication-title: Int J Quantum Chem
– volume: 18
  start-page: 26057
  year: 2016
  end-page: 26068
  article-title: Chiral recognition by fullerenes: CHFClBr enantiomers in the C cage
  publication-title: Phys Chem Chem Phys
– volume: 50
  start-page: 7847
  year: 2011
  end-page: 7849
  article-title: Taking the aromaticity out of aromatic interactions
  publication-title: Angew Chem Int Ed
– volume: 146
  start-page: 120901
  year: 2017
  article-title: Perspective: Found in translation: Quantum chemical tools for grasping noncovalent interactions
  publication-title: J Chem Phys
– volume: 139
  start-page: 6550
  year: 2017
  end-page: 6553
  article-title: Measurement of solvent OH‐ interactions using a molecular balance
  publication-title: J Am Chem Soc
– volume: 9
  start-page: 5561
  year: 2007
  end-page: 5569
  article-title: Potential energy surface for cyclotrimethylene trinitramine dimer from symmetry‐adapted perturbation theory
  publication-title: Phys Chem Chem Phys
– volume: 123
  start-page: 214103
  year: 2005
  article-title: Intermolecular potentials based on symmetry‐adapted perturbation theory including dispersion energies from time‐dependent density functional calculations
  publication-title: J Chem Phys
– volume: 98
  start-page: 2481
  year: 1993
  end-page: 2483
  article-title: On the use of bond functions in molecular calculations
  publication-title: J Chem Phys
– volume: 307
  start-page: 265
  year: 1999
  end-page: 271
  article-title: Accurate static polarizabilities by density functional theory: Assessment of the PBE0 model
  publication-title: Chem Phys Lett
– volume: 28
  start-page: 3
  year: 2016
  end-page: 16
  article-title: Noncovalent intermolecular interactions in organic electronic materials: Implications for the molecular packing vs electronic properties of acenes
  publication-title: Chem Mater
– volume: 121
  start-page: 208
  year: 2017
  end-page: 220
  article-title: Modeling carbon dioxide vibrational frequencies in ionic liquids: I. Ab initio calculations
  publication-title: J Phys Chem B
– volume: 10
  start-page: 49
  year: 2014
  end-page: 57
  article-title: Comparing counterpoise‐corrected, uncorrected, and averaged binding energies for benchmarking noncovalent interactions
  publication-title: J Chem Theory Comput
– volume: 36
  start-page: 1763
  year: 2015
  end-page: 1771
  article-title: Benchmark calculations of the adsorption of aromatic molecules on graphene
  publication-title: J Comput Chem
– volume: 48
  start-page: 6328
  year: 2019
  end-page: 6332
  article-title: Strong stacking interactions of metal‐chelate rings are caused by substantial electrostatic component
  publication-title: Dalton Trans
– volume: 14
  start-page: 7679
  year: 2012
  end-page: 7699
  article-title: Rapid computation of intermolecular interactions in molecular and ionic clusters: Self‐consistent polarization plus symmetry‐adapted perturbation theory
  publication-title: Phys Chem Chem Phys
– volume: 28
  start-page: 235
  year: 1973
  end-page: 239
  article-title: On asymptotic calculation of the exchange interaction
  publication-title: Theor Chim Acta
– volume: 7
  start-page: 1476
  year: 2011
  end-page: 1483
  article-title: Small molecules in C and C : Which complexes could be stabilized?
  publication-title: J Chem Theory Comput
– volume: 122
  start-page: 214109
  year: 2005
  article-title: Symmetry‐adapted perturbation theory calculations of intermolecular forces employing density functional description of monomers
  publication-title: J Chem Phys
– volume: 17
  start-page: 6423
  year: 2015
  end-page: 6432
  article-title: Choosing a density functional for modeling adsorptive hydrogen storage: Reference quantum mechanical calculations and a comparison of dispersion‐corrected density functionals
  publication-title: Phys Chem Chem Phys
– volume: 94
  start-page: 1887
  year: 1994
  end-page: 1930
  article-title: Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes
  publication-title: Chem Rev
– volume: 53
  start-page: 1316
  year: 1996
  end-page: 1322
  article-title: Determination of frequency‐dependent polarizabilities using current density‐functional theory
  publication-title: Phys Rev A
– volume: 5
  start-page: 1585
  year: 2009
  end-page: 1596
  article-title: Symmetry‐adapted perturbation theory applied to endohedral fullerene complexes: A stability study of H @ C and 2H @ C
  publication-title: J Chem Theory Comput
– volume: 36
  start-page: 451
  year: 1975
  end-page: 456
  article-title: Simple but reliable method for prediction of intermolecular potentials
  publication-title: Chem Phys Lett
– volume: 112
  start-page: 321
  year: 2012
  end-page: 370
  article-title: Constrained density functional theory
  publication-title: Chem Rev
– volume: 13
  start-page: 3
  year: 2017
  end-page: 91
– year: 2013
– volume: 25
  start-page: 400
  year: 2019
  end-page: 416
  article-title: Pancake bonding: An unusual Pi‐stacking interaction
  publication-title: Chem A Eur J
– volume: 14
  start-page: 5128
  year: 2018
  end-page: 5142
  article-title: A simple correction for nonadditive dispersion within extended symmetry‐adapted perturbation theory (XSAPT)
  publication-title: J Chem Theory Comput
– volume: 37
  start-page: 785
  year: 1988
  end-page: 789
  article-title: Development of the Colle‐Salvetti correlation‐energy formula into a functional of the electron density
  publication-title: Phys Rev B
– volume: 127
  start-page: 124303
  year: 2007
  article-title: Pair potential for helium from symmetry‐adapted perturbation theory calculations and from supermolecular data
  publication-title: J Chem Phys
– volume: 106
  start-page: 9668
  year: 1997
  end-page: 9687
  article-title: Symmetry‐adapted perturbation theory of three‐body nonadditivity of intermolecular interaction energy
  publication-title: J Chem Phys
– volume: 150
  start-page: 074302
  year: 2019
  article-title: Theoretical study of the complexes of dichlorobenzene isomers with argon. II SAPT analysis of the intermolecular interaction
  publication-title: J Chem Phys
– volume: 113
  start-page: 184
  year: 2015
  end-page: 215
  article-title: Advances in molecular quantum chemistry contained in the Q‐Chem 4 program package
  publication-title: Mol Phys
– volume: 21
  start-page: 6160
  year: 2019
  end-page: 6170
  article-title: A comparison between hydrogen and halogen bonding: The hypohalous acid‐water dimers, HOX⋯H O (X = F, Cl, Br)
  publication-title: Phys Chem Chem Phys
– volume: 141
  start-page: 174309
  year: 2014
  article-title: The interaction of OH(X Π) with H : potential energy surfaces and bound states
  publication-title: J Chem Phys
– volume: 116
  start-page: 11920
  year: 2012
  end-page: 11926
  article-title: Buckyplates and Buckybowls: Examining the effects of curvature on ‐ interactions
  publication-title: J Phys Chem A
– volume: 99
  start-page: 8856
  year: 1993
  end-page: 8869
  article-title: Many‐body perturbation theory of electrostatic interactions between molecules: Comparison with full configuration interaction for four‐electron dimers
  publication-title: J Chem Phys
– volume: 11
  start-page: 299
  year: 1943
  end-page: 300
  article-title: Interaction of the van der Waals type between three atoms
  publication-title: J Chem Phys
– volume: 20
  start-page: 28840
  year: 2018
  end-page: 28847
  article-title: The non‐covalently bound SO⋯H O system, including an interpretation of the differences between SO⋯H O and O ⋯H O
  publication-title: Phys Chem Chem Phys
– volume: 233
  start-page: 134
  year: 1995
  end-page: 137
  article-title: A density‐functional study of van der Waals forces: Rare gas diatomics
  publication-title: Chem Phys Lett
– volume: 190
  start-page: 110
  year: 2019
  end-page: 117
  article-title: Revealing structural involvement of chromophores in algal light harvesting complexes using symmetry‐adapted perturbation theory
  publication-title: J Photochem Photobiol B: Biol
– volume: 85
  start-page: 693
  year: 2013
  end-page: 749
  article-title: Theory and application of explicitly correlated Gaussians
  publication-title: Rev Mod Phys
– volume: 1
  start-page: 1096
  year: 2005
  end-page: 1109
  article-title: Interacting quantum atoms: A correlated energy decomposition scheme based on the quantum theory of atoms in molecules
  publication-title: J Chem Theory Comput
– volume: 119
  start-page: 235
  year: 2015
  end-page: 252
  article-title: Accurate and efficient quantum chemistry calculations for noncovalent interactions in many‐body systems: The XSAPT family of methods
  publication-title: J Phys Chem A
– volume: 128
  start-page: 224104
  year: 2008
  article-title: First‐order exchange energy of intermolecular interactions from coupled cluster density matrices and their cumulants
  publication-title: J Chem Phys
– volume: 115
  start-page: 14659
  year: 2011
  end-page: 14667
  article-title: Nature of hydrogen bonding in charged hydrogen‐bonded complexes and imidazolium‐based ionic liquids
  publication-title: J Phys Chem B
– volume: 121
  start-page: 1531
  year: 2017
  end-page: 1534
  article-title: Natural bond orbitals and the nature of the hydrogen bond
  publication-title: J Phys Chem A
– volume: 3
  start-page: 1890
  year: 2007
  end-page: 1900
  article-title: Design of a next generation force field: The X‐POL potential
  publication-title: J Chem Theory Comput
– volume: 94
  start-page: 1723
  year: 1994
  end-page: 1765
  article-title: Origins of structure and energetics of van der Waals clusters from ab‐initio calculations
  publication-title: Chem Rev
– volume: 116
  start-page: 5105
  year: 2016
  end-page: 5154
  article-title: Dispersion‐corrected mean‐field electronic structure methods
  publication-title: Chem Rev
– volume: 415
  start-page: 100
  year: 2005
  end-page: 105
  article-title: Hybrid functional with separated range
  publication-title: Chem Phys Lett
– volume: 12
  start-page: 2569
  year: 2016
  end-page: 2582
  article-title: Energy decomposition analysis with a stable charge‐transfer term for interpreting intermolecular interactions
  publication-title: J Chem Theory Comput
– volume: 21
  start-page: 6453
  year: 2019
  end-page: 6466
  article-title: Substituent effects in the so‐called cation⋯ interaction of benzene and its boron‐nitrogen doped analogues: Overlooked role of ‐skeleton
  publication-title: Phys Chem Chem Phys
– volume: 136
  year: 2012
  article-title: Many‐body effects are essential in a physically motivated CO force field
  publication-title: J Chem Phys
– volume: 119
  start-page: 11748
  year: 2015
  end-page: 11759
  article-title: Physical absorption of CO in protic and aprotic ionic liquids: An interaction perspective
  publication-title: J Phys Chem B
– volume: 126
  start-page: 194101
  year: 2007
  article-title: Three‐body symmetry‐adapted perturbation theory based on Kohn‐Sham description of the monomers
  publication-title: J Chem Phys
– volume: 8
  start-page: 4989
  year: 2012
  end-page: 5007
  article-title: A density functional with spherical atom dispersion terms
  publication-title: J Chem Theory Comput
– volume: 7
  start-page: 825
  year: 2011
  end-page: 829
  article-title: Can electron‐rich systems bind anions?
  publication-title: J Chem Theory Comput
– volume: 108
  start-page: 225
  year: 2002
  end-page: 231
  article-title: Two new symmetry‐adapted perturbation theories for the calculation of intermolecular interaction energies
  publication-title: Theor Chem Acc
– volume: 73
  start-page: 360
  year: 1948
  end-page: 372
  article-title: The influence of retardation on the London‐van der Waals forces
  publication-title: Phys Rev
– volume: 127
  start-page: 221106
  year: 2007
  article-title: A simple and efficient CCSD(T)‐F12 approximation
  publication-title: J Chem Phys
– volume: 9
  year: 2019
  article-title: Finding chemical concepts in the Hilbert space: Coupled cluster analyses of noncovalent interactions
  publication-title: WIREs Comput Mol Sci
– volume: 9
  start-page: 3364
  year: 2013
  end-page: 3374
  article-title: Accuracy of quantum chemical methods for large noncovalent complexes
  publication-title: J Chem Theory Comput
– volume: 17
  start-page: 3863
  year: 2016
  end-page: 3874
  article-title: On the stability of cyclophane derivates using a molecular fragmentation method
  publication-title: ChemPhysChem
– volume: 44
  start-page: 3177
  year: 2015
  end-page: 3211
  article-title: Energy decomposition analysis approaches and their evaluation on prototypical protein‐drug interaction patterns
  publication-title: Chem Soc Rev
– volume: 6
  start-page: 168
  year: 2010
  end-page: 178
  article-title: Accurate intermolecular interaction energies from a combination of MP2 and TDDFT response theory
  publication-title: J Chem Theory Comput
– volume: 116
  start-page: 7501
  year: 2016
  end-page: 7528
  article-title: Modeling molecular interactions in water: From pairwise to many‐body potential energy functions
  publication-title: Chem Rev
– volume: 114
  start-page: 12739
  year: 2010
  end-page: 12754
  article-title: Noncovalent interactions in extended systems described by the effective fragment potential method: Theory and application to nucleobase oligomers
  publication-title: J Phys Chem A
– volume: 140
  start-page: 16370
  year: 2018
  end-page: 16386
  article-title: Read between the molecules: Computational insights into organic semiconductors
  publication-title: J Am Chem Soc
– volume: 7
  year: 2017
  article-title: Generalized energy‐based fragmentation approach for modeling condensed phase systems
  publication-title: WIREs Comput Mol Sci
– volume: 112
  start-page: 4
  year: 2012
  end-page: 74
  article-title: Explicitly correlated electrons in molecules
  publication-title: Chem Rev
– volume: 104
  start-page: 2241
  year: 2006
  end-page: 2262
  article-title: Portable parallel implementation of symmetry‐adapted perturbation theory code
  publication-title: Mol Phys
– volume: 181
  start-page: 81
  year: 1996
  end-page: 172
– volume: 2
  start-page: 304
  year: 2012
  end-page: 326
  article-title: Wavefunction methods for noncovalent interactions
  publication-title: WIREs Comput Mol Sci
– volume: 60
  start-page: 273
  year: 1996
  end-page: 285
  article-title: On the limits of validity of the symmetrized Rayleigh‐Schrödinger perturbation theory
  publication-title: Int J Quantum Chem
– volume: 100
  start-page: 1312
  year: 1994
  end-page: 1325
  article-title: Many‐body theory of exchange effects in intermolecular interactions. Second‐quantization approach and comparison with full configuration interaction results
  publication-title: J Chem Phys
– volume: 55
  start-page: 912
  year: 2016
  end-page: 916
  article-title: Can dispersion forces govern aromatic stacking in an organic solvent?
  publication-title: Angew Chem Int Ed
– volume: 13
  start-page: 7731
  year: 2007
  end-page: 7744
  article-title: The concept of protobranching and its many paradigm shifting implications for energy evaluations
  publication-title: Chem A Eur J
– volume: 116
  start-page: 3042
  year: 2012
  end-page: 3047
  article-title: Breakdown of the single‐exchange approximation in third‐order symmetry‐adapted perturbation theory
  publication-title: J Phys Chem A
– volume: 117
  start-page: 3243
  year: 2013
  end-page: 3251
  article-title: Complexes between dihydrogen and amine, phosphine, and arsine derivatives. Hydrogen bond versus pnictogen interaction
  publication-title: J Phys Chem A
– volume: 119
  start-page: 4607
  year: 2003
  end-page: 4613
  article-title: Density fitting in second‐order linear‐R12 Møller‐Plesset perturbation theory
  publication-title: J Chem Phys
– volume: 50
  start-page: 2138
  year: 1994
  end-page: 2142
  article-title: From electron densities to Kohn‐Sham kinetic energies, orbital energies, exchange‐correlation potentials, and exchange‐correlation energies
  publication-title: Phys Rev A
– volume: 131
  start-page: 1235
  year: 2012
  article-title: Intermolecular exchange‐induction energies without overlap expansion
  publication-title: Theor Chem Acc
– volume: 112
  start-page: 112
  year: 2000
  end-page: 121
  article-title: Perturbation theory of three‐body exchange nonadditivity and application to helium trimer
  publication-title: J Chem Phys
– volume: 151
  year: 2019
  article-title: Platinum, gold, and silver standards of intermolecular interaction energy calculations
  publication-title: J Chem Phys
– volume: 130
  start-page: 104303
  year: 2009
  article-title: The water‐nitric oxide intermolecular potential‐energy surface revisited
  publication-title: J Chem Phys
– volume: 104
  start-page: 2303
  year: 2006
  end-page: 2316
  article-title: Time‐independent coupled cluster theory of the polarization propagator. Implementation and application of the singles and doubles model to dynamic polarizabilities and van der Waals constants
  publication-title: Mol Phys
– volume: 208
  start-page: 359
  year: 1993
  end-page: 363
  article-title: Use of approximate integrals in ab initio theory. An application in MP2 energy calculations
  publication-title: Chem Phys Lett
– volume: 133
  start-page: 13244
  year: 2011
  end-page: 13247
  article-title: Origin of the surprising enhancement of electrostatic energies by electron‐donating substituents in substituted sandwich benzene dimers
  publication-title: J Am Chem Soc
– volume: 117
  year: 2017
  article-title: On the role of substituent in noncovalent functionalization of graphene and organophosphor recognition: IQA and SAPT perspective
  publication-title: Int J Quantum Chem
– volume: 18
  start-page: 23067
  year: 2016
  end-page: 23079
  article-title: Probing non‐covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals
  publication-title: Phys Chem Chem Phys
– volume: 116
  start-page: 5614
  year: 2016
  end-page: 5641
  article-title: Experimental and theoretical determination of dissociation energies of dispersion‐dominated aromatic molecular complexes
  publication-title: Chem Rev
– volume: B
  start-page: 79
  year: 1993
– volume: 90
  start-page: 1752
  year: 1989
  end-page: 1766
  article-title: Analytic energy derivatives in many‐body methods. I First derivatives
  publication-title: J Chem Phys
– volume: 140
  year: 2014
  article-title: Noncovalent ⋯ interaction between graphene and aromatic molecule: Structure, energy, and nature
  publication-title: J Chem Phys
– volume: 121
  start-page: 113402
  year: 2018
  article-title: Do semilocal density‐functional approximations recover dispersion energies at small intermonomer separations?
  publication-title: Phys Rev Lett
– volume: 473
  start-page: 201
  year: 2009
  end-page: 205
  article-title: Charge‐transfer in symmetry‐adapted perturbation theory
  publication-title: Chem Phys Lett
– volume: 20
  start-page: 18241
  year: 2018
  end-page: 18251
  article-title: Analysis of transition state stabilization by non‐covalent interactions in organocatalysis: Application of atomic and functional‐group partitioned symmetry‐adapted perturbation theory to the addition of organoboron reagents to fluoroketones
  publication-title: Phys Chem Chem Phys
– volume: 70
  start-page: 1109
  year: 2005
  end-page: 1132
  article-title: Time‐independent coupled‐cluster theory of the polarization propagator
  publication-title: Collect Czech Chem Commun
– volume: 14
  start-page: 1737
  year: 2018
  end-page: 1753
  article-title: Large‐scale functional group symmetry‐adapted perturbation theory on graphical processing units
  publication-title: J Chem Theory Comput
– volume: 10
  start-page: 2706
  year: 2019
  end-page: 2714
  article-title: Accurate and efficient calculations for supramolecular complexes: Symmetry‐adapted perturbation theory with many‐body dispersion
  publication-title: J Phys Chem Lett
– volume: 1
  start-page: 325
  year: 1967
  end-page: 329
  article-title: Perturbation theory for exchange forces, I
  publication-title: Chem Phys Lett
– volume: 12
  start-page: 4184
  year: 2016
  end-page: 4208
  article-title: Ab initio atom‐atom potentials using CamCASP: Theory and application to many‐body models for the pyridine dimer
  publication-title: J Chem Theory Comput
– volume: 142
  start-page: 064102
  year: 2015
  article-title: Does DFT‐SAPT method provide spectroscopic accuracy?
  publication-title: J Chem Phys
– volume: 41
  start-page: 7
  year: 1976
  end-page: 15
  article-title: Convergence properties of the intermolecular force series (1/ ‐expansion)
  publication-title: Theor Chim Acta
– volume: 67
  start-page: 467
  year: 2016
  end-page: 488
  article-title: Next‐generation force fields from symmetry‐adapted perturbation theory
  publication-title: Annu Rev Phys Chem
– volume: 7
  start-page: 59
  year: 2005
  end-page: 66
  article-title: Optimization of auxiliary basis sets for RI‐MP2 and RI‐CC2 calculations: Core‐valence and quintuple‐zeta basis sets for H to Ar and QZVPP basis sets for Li to Kr
  publication-title: Phys Chem Chem Phys
– volume: 36
  start-page: 2412
  year: 2015
  end-page: 2428
  article-title: Interplay between tetrel and triel bonds in RC H CN⋯MF CN⋯BX complexes: A combined symmetry‐adapted perturbation theory, Møller‐Plesset, and quantum theory of atoms‐in‐molecules study
  publication-title: J Comput Chem
– volume: 12
  start-page: 3851
  year: 2016
  end-page: 3870
  article-title: Beyond Born‐Mayer: Improved models for short‐range repulsion in ab initio force fields
  publication-title: J Chem Theory Comput
– volume: 137
  year: 2012
  article-title: On the accuracy of explicitly correlated coupled‐cluster interaction energies—Have orbital results been beaten yet?
  publication-title: J Chem Phys
– volume: 141
  year: 2014
  article-title: Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition
  publication-title: J Chem Phys
– volume: 115
  start-page: 5955
  year: 2011
  end-page: 5964
  article-title: Evaluation of theoretical approaches for describing the interaction of water with linear Acenes
  publication-title: J Phys Chem A
– volume: 115
  start-page: 3540
  year: 2001
  end-page: 3544
  article-title: A long‐range correction scheme for generalized‐gradient‐approximation exchange functionals
  publication-title: J Chem Phys
– volume: 116
  start-page: 1892
  year: 2012
  end-page: 1903
  article-title: Ab initio, physically motivated force fields for CO adsorption in zeolitic imidazolate frameworks
  publication-title: J Phys Chem C
– volume: 112
  start-page: 403
  year: 2012
  end-page: 480
  article-title: Relativistic pseudopotentials: Their development and scope of applications
  publication-title: Chem Rev
– volume: 18
  start-page: 1071
  year: 1980
  end-page: 1089
  article-title: Degenerate symmetry‐adapted perturbation theory. Convergence properties of perturbation expansions for excited states of H ion
  publication-title: Int J Quantum Chem
– volume: 14
  start-page: 5105
  year: 2018
  end-page: 5117
  article-title: Dispersion energy of symmetry‐adapted perturbation theory from the explicitly correlated F12 approach
  publication-title: J Chem Theory Comput
– volume: 150
  year: 2019
  article-title: Understanding non‐covalent interactions in larger molecular complexes from first principles
  publication-title: J Chem Phys
– volume: 123
  start-page: 241102
  year: 2005
  article-title: Quasirelativistic theory equivalent to fully relativistic theory
  publication-title: J Chem Phys
– volume: 116
  start-page: 5188
  year: 2016
  end-page: 5215
  article-title: Noncovalent interactions by quantum Monte Carlo
  publication-title: Chem Rev
– volume: 47
  start-page: 3321
  year: 2014
  end-page: 3330
  article-title: Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in molecular systems
  publication-title: Acc Chem Res
– volume: 132
  start-page: 154104
  year: 2010
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu
  publication-title: J Chem Phys
– volume: 136
  start-page: 17386
  year: 2014
  end-page: 17389
  article-title: Quantum‐mechanical evaluation of ‐ versus substituent‐ interactions in stacking: Direct evidence for the Wheeler‐Houk picture
  publication-title: J Am Chem Soc
– volume: 124
  start-page: 104101
  year: 2006
  article-title: Towards a force field based on density fitting
  publication-title: J Chem Phys
– volume: 4
  start-page: 199
  year: 2014
  end-page: 224
  article-title: Wavefunction methods for the accurate characterization of water clusters
  publication-title: WIREs Comput Mol Sci
– volume: 95
  start-page: 6579
  year: 1991
  end-page: 6601
  article-title: Many‐body symmetry‐adapted perturbation theory of intermolecular interactions—H O and HF dimers
  publication-title: J Chem Phys
– volume: 132
  start-page: 184111
  year: 2010
  article-title: Density fitting and Cholesky decomposition approximations in symmetry‐adapted perturbation theory: Implementation and application to probe the nature of pi‐pi interactions in linear acenes
  publication-title: J Chem Phys
– volume: 113
  start-page: 3555
  year: 2009
  end-page: 3559
  article-title: CCSD(T) complete basis set limit relative energies for low‐lying water hexamer structures
  publication-title: J Phys Chem A
– volume: 123
  start-page: 161103
  year: 2005
  article-title: Exchange‐correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions
  publication-title: J Chem Phys
– volume: 53
  start-page: 6140
  year: 2017
  end-page: 6143
  article-title: Size‐dependent conformational change in halogen‐ interaction: From benzene to graphene
  publication-title: Chem Commun
– volume: 128
  start-page: 144107
  year: 2008
  article-title: Dispersion energy from density‐fitted density susceptibilities of singles and doubles coupled cluster theory
  publication-title: J Chem Phys
– volume: 12
  start-page: 8219
  year: 2010
  end-page: 8240
  article-title: Vibration‐rotation‐tunneling states of the benzene dimer: An ab initio study
  publication-title: Phys Chem Chem Phys
– volume: 125
  start-page: 184109
  year: 2006
  article-title: One‐electron properties and electrostatic interaction energies from the expectation value expression and wave function of singles and doubles coupled cluster theory
  publication-title: J Chem Phys
– volume: 11
  start-page: 932
  year: 2015
  end-page: 939
  article-title: Accurate treatment of large supramolecular complexes by double‐hybrid density functionals coupled with nonlocal van der Waals corrections
  publication-title: J Chem Theory Comput
– volume: 140
  start-page: 154107
  year: 2014
  article-title: Exploration of zeroth‐order wavefunctions and energies as a first step toward intramolecular symmetry‐adapted perturbation theory
  publication-title: J Chem Phys
– volume: 8
  start-page: 1963
  year: 2012
  end-page: 1969
  article-title: Efficient calculations of dispersion energies for nanoscale systems from coupled density response functions
  publication-title: J Chem Theory Comput
– volume: 147
  start-page: 181101
  year: 2017
  article-title: Communication: Symmetry‐adapted perturbation theory with intermolecular induction and dispersion energies from the Bethe‐Salpeter equation
  publication-title: J Chem Phys
– volume: 23
  start-page: 7887
  year: 2017
  end-page: 7890
  article-title: The surprising importance of peptide bond contacts in drug‐protein interactions
  publication-title: Chem A Eur J
– volume: 40
  start-page: 2248
  year: 2019
  end-page: 2283
  article-title: Nine questions on energy decomposition analysis
  publication-title: J Comput Chem
– volume: 131
  year: 2009
  article-title: Energy decomposition analysis of covalent bonds and intermolecular interactions
  publication-title: J Chem Phys
– volume: 10
  start-page: 1563
  year: 2014
  end-page: 1575
  article-title: Quantum mechanical calculation of noncovalent interactions: A large‐scale evaluation of PMx, DFT, and SAPT approaches
  publication-title: J Chem Theory Comput
– volume: 119
  start-page: 1388
  year: 2015
  end-page: 1395
  article-title: Chalcogen and pnicogen bonds in complexes of neutral icosahedral and bicapped square‐antiprismatic heteroboranes
  publication-title: J Phys Chem A
– volume: 8
  year: 2018
  article-title: Advanced models for water simulations
  publication-title: WIREs Comput Mol Sci
– volume: 47
  start-page: 3217
  year: 2014
  end-page: 3224
  article-title: Minimizing density functional failures for non‐covalent interactions beyond van der Waals complexes
  publication-title: Acc Chem Res
– volume: 120
  start-page: 6849
  year: 2004
  end-page: 6862
  article-title: Unified treatment of chemical and van der Waals forces via symmetry‐adapted perturbation expansion
  publication-title: J Chem Phys
– volume: 138
  start-page: 154101
  year: 2013
  article-title: Basis set converged weak interaction energies from conventional and explicitly correlated coupled‐cluster approach
  publication-title: J Chem Phys
– volume: 146
  start-page: 174108
  year: 2017
  article-title: SparseMaps‐A systematic infrastructure for reduced scaling electronic structure methods. V Linear scaling explicitly correlated coupled‐cluster method with pair natural orbitals
  publication-title: J Chem Phys
– volume: 39
  start-page: 83
  year: 2006
  end-page: 91
  article-title: Spin‐flip equation‐of‐motion coupled‐cluster electronic structure method for a description of excited states, bond breaking, diradicals, and triradicals
  publication-title: Acc Chem Res
– volume: 74
  start-page: 2384
  year: 1981
  end-page: 2396
  article-title: The complete active space SCF (CASSCF) method in a Newton‐Raphson formulation with application to the HNO molecule
  publication-title: J Chem Phys
– volume: 12
  start-page: 4778
  year: 2016
  end-page: 4792
  article-title: Decomposition of intermolecular interaction energies within the local pair natural orbital coupled cluster framework
  publication-title: J Chem Theory Comput
– volume: 143
  start-page: 154106
  year: 2015
  article-title: Exchange splitting of the interaction energy and the multipole expansion of the wave function
  publication-title: J Chem Phys
– volume: 111
  start-page: 3705
  year: 2013
  end-page: 3715
  article-title: A coupled cluster treatment of intramonomer electron correlation within symmetry‐adapted perturbation theory: Benchmark calculations and a comparison with a density‐functional theory description
  publication-title: Mol Phys
– volume: 11
  start-page: 2473
  year: 2015
  end-page: 2486
  article-title: Accurate description of intermolecular interactions involving ions using symmetry‐adapted perturbation theory
  publication-title: J Chem Theory Comput
– volume: 138
  start-page: 25
  year: 2019
  article-title: Evaluation of methods for obtaining dispersion energies used in density functional calculations of intermolecular interactions
  publication-title: Theor Chem Acc
– volume: 4
  start-page: 127
  year: 2014
  end-page: 144
  article-title: Symmetry‐adapted perturbation theory based on density functional theory for noncovalent interactions
  publication-title: WIREs Comput Mol Sci
– volume: 91
  year: 2003
  article-title: Dispersion energy from density‐functional theory description of monomers
  publication-title: Phys Rev Lett
– volume: 111
  start-page: 12822
  year: 2007
  end-page: 12838
  article-title: Interactions in diatomic dimers involving closed‐shell metals
  publication-title: J Phys Chem A
– volume: 134
  year: 2011
  article-title: An efficient, fragment‐based electronic structure method for molecular systems: Self‐consistent polarization with perturbative two‐body exchange and dispersion
  publication-title: J Chem Phys
– volume: 112
  start-page: 75
  year: 2012
  end-page: 107
  article-title: Explicitly correlated R12/F12 methods for electronic structure
  publication-title: Chem Rev
– volume: 17
  start-page: 858
  year: 2015
  end-page: 867
  article-title: On the directionality and non‐linearity of halogen and hydrogen bonds
  publication-title: Phys Chem Chem Phys
– volume: 129
  start-page: 084101
  year: 2008
  article-title: Symmetry‐adapted perturbation theory utilizing density functional description of monomers for high‐spin open‐shell complexes
  publication-title: J Chem Phys
– volume: 120
  start-page: 8461
  year: 2016
  end-page: 8468
  article-title: Halogen bonding with phosphine: Evidence for Mulliken inner complexes and the importance of relaxation energy
  publication-title: J Phys Chem A
– volume: 71
  start-page: 4993
  year: 1979
  end-page: 4999
  article-title: On first‐row diatomic molecules and local density models
  publication-title: J Chem Phys
– volume: 2
  start-page: 254
  year: 2012
  end-page: 272
  article-title: Symmetry‐adapted perturbation theory of intermolecular forces
  publication-title: WIREs Comput Mol Sci
– volume: 141
  year: 2014
  article-title: Intermolecular symmetry‐adapted perturbation theory study of large organic complexes
  publication-title: J Chem Phys
– volume: 145
  start-page: 134106
  year: 2016
  article-title: Density‐fitted open‐shell symmetry‐adapted perturbation theory and application to ‐stacking in benzene dimer cation and ionized DNA base pair steps
  publication-title: J Chem Phys
– volume: 118
  start-page: 4386
  year: 2003
  end-page: 4403
  article-title: three‐body interactions for water. I. Potential and structure of water trimer
  publication-title: J Chem Phys
– volume: 28
  start-page: 171
  year: 1997
  end-page: 188
  article-title: Convergence of symmetry‐adapted perturbation theory for the interaction between helium atoms and between a hydrogen molecule and a helium atom
  publication-title: Adv Quantum Chem
– volume: 8
  start-page: 1985
  year: 2006
  end-page: 1993
  article-title: Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs
  publication-title: Phys Chem Chem Phys
– volume: 16
  start-page: 7209
  year: 2014
  end-page: 7221
  article-title: Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids
  publication-title: Phys Chem Chem Phys
– volume: 21
  start-page: 15815
  year: 2019
  end-page: 15822
  article-title: Noble gas dimers confined inside C
  publication-title: Phys Chem Chem Phys
– volume: 135
  start-page: 174107
  year: 2011
  article-title: Large‐scale symmetry‐adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA‐intercalator interactions
  publication-title: J Chem Phys
– volume: 13
  start-page: 5404
  year: 2017
  end-page: 5419
  article-title: Intricacies of van der Waals interactions in systems with elongated bonds revealed by electron‐groups embedding and high‐level coupled‐cluster approaches
  publication-title: J Chem Theory Comput
– volume: 128
  start-page: 234108
  year: 2008
  article-title: The variational explicit polarization potential and analytical first derivative of energy: Towards a next generation force field
  publication-title: J Chem Phys
– volume: 1
  start-page: 3
  year: 2011
  end-page: 17
  article-title: Noncovalent interactions in biochemistry
  publication-title: WIREs Comput Mol Sci
– volume: D62
  start-page: 639
  year: 2006
  end-page: 647
  article-title: Interaction energies between glycopeptide antibiotics and substrates in complexes determined by X‐ray crystallography: Application of a theoretical databank of aspherical atoms and a symmetry‐adapted perturbation theory‐based set of interatomic potentials
  publication-title: Acta Crystallogr
– volume: 145
  start-page: 214305
  year: 2016
  article-title: Theoretical study of the buffer‐gas cooling and trapping of CrH(X ∑ ) by He atoms
  publication-title: J Chem Phys
– volume: 18
  start-page: 10297
  year: 2016
  end-page: 10308
  article-title: Analysis of transition state stabilization by non‐covalent interactions in the Houk‐List model of organocatalyzed intermolecular aldol additions using functional‐group symmetry‐adapted perturbation theory
  publication-title: Phys Chem Chem Phys
– volume: 100
  start-page: 14316
  year: 1996
  end-page: 14328
  article-title: Energy decomposition analyses for many‐body interaction and applications to water complexes
  publication-title: J Phys Chem
– volume: 58
  start-page: 4496
  year: 1973
  end-page: 4501
  article-title: Coulombic potential energy integrals and approximations
  publication-title: J Chem Phys
– volume: 88
  start-page: 741
  year: 1996
  end-page: 758
  article-title: Symmetry‐adapted perturbation theory for the calculation of Hartree‐Fock interaction energies
  publication-title: Mol Phys
– volume: 7
  start-page: 2197
  year: 2016
  end-page: 2203
  article-title: Revised damping parameters for the D3 dispersion correction to density functional Theory
  publication-title: J Phys Chem Lett
– volume: 117
  start-page: 7918
  year: 2013
  end-page: 7927
  article-title: Nature of noncovalent interactions in catenane supramolecular complexes: Calibrating the MM3 force field with ab initio, DFT, and SAPT methods
  publication-title: J Phys Chem A
– volume: 10
  start-page: 4332
  year: 2014
  end-page: 4341
  article-title: Intergeminal correction to the antisymmetrized product of strongly orthogonal geminals derived from the extended random phase approximation
  publication-title: J Chem Theory Comput
– volume: 48
  start-page: 4118
  year: 2019
  end-page: 4154
  article-title: Theory and practice of modeling van der Waals interactions in electronic‐structure calculations
  publication-title: Chem Soc Rev
– volume: 116
  start-page: 9591
  year: 2002
  end-page: 9601
  article-title: On the required shape corrections to the local density and generalized gradient approximations to the Kohn‐Sham potentials for molecular response calculations of (hyper)polarizabilities and excitation energies
  publication-title: J Chem Phys
– volume: 2
  start-page: 5157
  year: 2017
  end-page: 5166
  article-title: − , − , and − stacking interactions between six‐membered cyclic systems. Dispersion dominates and electrostatics commands
  publication-title: ChemistrySelect
– volume: 11
  start-page: 4727
  year: 2015
  end-page: 4732
  article-title: Polar flattening and the strength of halogen bonding
  publication-title: J Chem Theory Comput
– volume: 15
  start-page: 17742
  year: 2013
  end-page: 17751
  article-title: The relative roles of electrostatics and dispersion in the stabilization of halogen bonds
  publication-title: Phys Chem Chem Phys
– volume: 132
  year: 2010
  article-title: A second generation distributed point polarizable water model
  publication-title: J Chem Phys
– volume: 4
  start-page: 4285
  year: 2002
  end-page: 4291
  article-title: A fully direct RI‐HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency
  publication-title: Phys Chem Chem Phys
– volume: 119
  start-page: 3025
  year: 2003
  end-page: 3039
  article-title: Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm
  publication-title: J Chem Phys
– volume: 11
  start-page: 4197
  year: 2015
  end-page: 4204
  article-title: Assessment of empirical models versus high‐accuracy ab initio methods for nucleobase stacking: Evaluating the importance of charge penetration
  publication-title: J Chem Theory Comput
– volume: 1129
  start-page: 57
  year: 2018
  end-page: 69
  article-title: Intermolecular dispersion energies from coupled exact‐exchange Kohn‐Sham excitation energies and vectors
  publication-title: Comput Theor Chem
– volume: B72
  start-page: 439
  year: 2016
  end-page: 459
  article-title: Report on the sixth blind test of organic crystal structure prediction methods
  publication-title: Acta Crystallogr
– volume: 8
  start-page: 2835
  year: 2012
  end-page: 2843
  article-title: Accurate prediction of noncovalent interaction energies with the effective fragment potential method: Comparison of energy components to symmetry‐adapted perturbation theory for the S22 test set
  publication-title: J Chem Theory Comput
– volume: 112
  start-page: 632
  year: 2012
  end-page: 672
  article-title: Fragmentation methods: A route to accurate calculations on large systems
  publication-title: Chem Rev
– volume: 81
  start-page: 1929
  year: 1984
  end-page: 1939
  article-title: (Heisenberg) exchange and electrostatic interactions between O molecules: An ab initio study
  publication-title: J Chem Phys
– volume: 117
  start-page: 2053
  year: 2013
  end-page: 2066
  article-title: Physically‐motivated force fields from symmetry‐adapted perturbation theory
  publication-title: J Phys Chem A
– volume: 109
  start-page: 10180
  year: 1998
  end-page: 10189
  article-title: Improving virtual Kohn‐Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities
  publication-title: J Chem Phys
– volume: 120
  start-page: 6287
  year: 2016
  end-page: 6302
  article-title: Interaction of boron‐nitrogen doped benzene isomers with water
  publication-title: J Phys Chem A
– volume: 121
  start-page: 6148
  year: 2017
  end-page: 6162
  article-title: First‐principles interaction analysis assessment of the manganese cation in the catalytic activity of glycosyltransferases
  publication-title: J Phys Chem B
– volume: 147
  year: 2017
  article-title: The nature of three‐body interactions in DFT: Exchange and polarization effects
  publication-title: J Chem Phys
– volume: 20
  start-page: 617
  year: 2001
  end-page: 643
  article-title: Bond functions, basis set superposition errors and other practical issues with ab initio calculations of intermolecular potentials
  publication-title: Int Rev Phys Chem
– volume: 132
  start-page: 6498
  year: 2010
  end-page: 6506
  article-title: Revealing noncovalent interactions
  publication-title: J Am Chem Soc
– volume: 998
  start-page: 26
  year: 2012
  end-page: 33
  article-title: Halogen bond, hydrogen bond and N⋯C interaction—On interrelation among these three noncovalent interactions
  publication-title: Comp Theor Chem
– volume: 15
  start-page: 204
  year: 2013
  end-page: 212
  article-title: Nitrogen dioxide at the air‐water interface: Trapping, absorption, and solvation in the bulk and at the surface
  publication-title: Phys Chem Chem Phys
– volume: 345
  start-page: 640
  year: 2014
  end-page: 643
  article-title: Ab initio determination of the crystalline benzene lattice energy to sub‐kilojoule/mole accuracy
  publication-title: Science
– volume: 9
  start-page: 2151
  year: 2013
  end-page: 2155
  article-title: Describing noncovalent interactions beyond the common approximations: How accurate is the ‘Gold Standard,’ CCSD(T) at the complete basis set limit?
  publication-title: J Chem Theory Comput
– volume: 7
  start-page: 5198
  year: 2016
  end-page: 5204
  article-title: Implications of charge penetration for heteroatom‐containing organic semiconductors
  publication-title: J Phys Chem Lett
– volume: 82
  start-page: 89
  year: 1974
  end-page: 155
  article-title: Quantum electrodynamical corrections to fine‐structure of helium
  publication-title: Ann Phys
– volume: 362
  start-page: 319
  year: 2002
  end-page: 325
  article-title: Intermolecular induction and exchange‐induction energies from coupled‐perturbed Kohn‐Sham density functional theory
  publication-title: Chem Phys Lett
– volume: 103
  start-page: 9347
  year: 1995
  end-page: 9354
  article-title: A density functional theory study of frequency‐dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules
  publication-title: J Chem Phys
– volume: 111
  start-page: 2570
  year: 2013
  end-page: 2584
  article-title: Single‐determinant‐based symmetry‐adapted perturbation theory without single‐exchange approximation
  publication-title: Mol Phys
– volume: 137
  start-page: 164104
  year: 2012
  article-title: Symmetry‐adapted perturbation theory based on unrestricted Kohn‐Sham orbitals for high‐spin open‐shell van der Waals complexes
  publication-title: J Chem Phys
– volume: 143
  year: 2015
  article-title: Communication: Practical intramolecular symmetry adapted perturbation theory via Hartree‐Fock embedding
  publication-title: J Chem Phys
– volume: 7
  start-page: 2399
  year: 2011
  end-page: 2407
  article-title: Aurophilic interactions from wave function, symmetry‐adapted perturbation theory, and rangehybrid approaches
  publication-title: J Chem Theory Comput
– volume: 57
  start-page: 13853
  year: 2018
  end-page: 13857
  article-title: Theory meets experiment for noncovalent complexes: The puzzling case of pnicogen interactions
  publication-title: Angew Chem Int Ed
– volume: 100
  start-page: 5080
  year: 1994
  end-page: 5093
  article-title: Many‐body theory of exchange effects in intermolecular interactions. Density matrix approach and applications to He‐F , He‐HF, H ‐HF, and Ar‐H dimers
  publication-title: J Chem Phys
– volume: 127
  start-page: 211
  year: 2010
  end-page: 221
  article-title: Orbital relaxation and the third‐order induction energy in symmetry‐adapted perturbation theory
  publication-title: Theor Chem Acc
– volume: 96
  start-page: 6796
  year: 1992
  end-page: 6806
  article-title: Electron affinities of the 1st‐row atoms revisited—Systematic basis sets and wave functions
  publication-title: J Chem Phys
– volume: 14
  start-page: 2955
  year: 2018
  end-page: 2978
  article-title: Atomic orbital implementation of extended symmetry‐adapted perturbation theory (XSAPT) and benchmark calculations for large supramolecular complexes
  publication-title: J Chem Theory Comput
– volume: 14
  start-page: 1943
  year: 2018
  end-page: 1959
  article-title: DFT‐SAPT intermolecular interaction energies employing exact‐exchange Kohn‐Sham response methods
  publication-title: J Chem Theory Comput
– volume: 110
  start-page: 10345
  year: 2006
  end-page: 10354
  article-title: Potential energy surface for the benzene dimer and perturbational analysis of − interactions
  publication-title: J Phys Chem A
– volume: 112
  start-page: 3159
  year: 2000
  end-page: 3169
  article-title: Intramonomer correlation contributions to first‐order exchange nonadditivity in trimers
  publication-title: J Chem Phys
– volume: 134
  start-page: 11116
  year: 2012
  end-page: 11119
  article-title: The water hexamer: Cage, prism, or both. Full dimensional quantum simulations say both
  publication-title: J Am Chem Soc
– volume: 141
  start-page: 234111
  year: 2014
  article-title: Appointing silver and bronze standards for noncovalent interactions: A comparison of spin‐component‐scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches
  publication-title: J Chem Phys
– volume: 16
  start-page: 9987
  year: 2014
  end-page: 9996
  article-title: The strength and directionality of a halogen bond are co‐determined by the magnitude and size of the ‐hole
  publication-title: Phys Chem Chem Phys
– volume: 9
  start-page: 370
  year: 2013
  end-page: 389
  article-title: Interactions between methane and polycyclic aromatic hydrocarbons: A high accuracy benchmark study
  publication-title: J Chem Theory Comput
– volume: 70
  start-page: 062505
  year: 2004
  article-title: Long‐range–short‐range separation of the electron‐electron interaction in density‐functional theory
  publication-title: Phys Rev A
– volume: 123
  start-page: 8607
  year: 2019
  end-page: 8618
  article-title: Chiral self recognition: Interactions in propylene oxide complexes
  publication-title: J Phys Chem A
– volume: 136
  year: 2012
  article-title: Scattering resonances in slow NH ‐He collisions
  publication-title: J Chem Phys
– volume: 101
  start-page: 115503
  year: 2008
  article-title: Predicting structure of molecular crystals from first principles
  publication-title: Phys Rev Lett
– volume: 10
  start-page: 3745
  year: 2014
  end-page: 3756
  article-title: Simultaneous visualization of covalent and noncovalent interactions using regions of density overlap
  publication-title: J Chem Theory Comput
– volume: 103
  start-page: 263201
  year: 2009
  article-title: Dispersionless density functional theory
  publication-title: Phys Rev Lett
– volume: 116
  start-page: 5038
  year: 2016
  end-page: 5071
  article-title: Benchmark calculations of interaction energies in noncovalent complexes and their applications
  publication-title: Chem Rev
– volume: 119
  start-page: 123401
  year: 2017
  article-title: Pair potential with submillikelvin uncertainties and nonadiabatic treatment of the halo state of the helium dimer
  publication-title: Phys Rev Lett
– volume: 115
  start-page: 1137
  year: 2001
  end-page: 1152
  article-title: Convergence behavior of the symmetry‐adapted perturbation theory for states submerged in Pauli forbidden continuum
  publication-title: J Chem Phys
– volume: 84
  start-page: 4072
  year: 2000
  end-page: 4075
  article-title: Water pair and three‐body potential of spectroscopic quality from calculations
  publication-title: Phys Rev Lett
– volume: 115
  start-page: 11321
  year: 2011
  end-page: 11330
  article-title: Comparison of intermolecular interaction energies from SAPT and DFT including empirical dispersion contributions
  publication-title: J Phys Chem A
– volume: 12
  start-page: 2553
  year: 2016
  end-page: 2568
  article-title: Comparison of the effective fragment potential method with symmetry‐adapted perturbation theory in the calculation of intermolecular energies for ionic liquids
  publication-title: J Chem Theory Comput
– volume: 14
  start-page: 3440
  year: 2018
  end-page: 3450
  article-title: Comparison of the DFT‐SAPT and canonical EDA schemes for the energy decomposition of various types of noncovalent interactions
  publication-title: J Chem Theory Comput
– volume: 128
  year: 2008
  article-title: Systematic optimization of long‐range corrected hybrid density functionals
  publication-title: J Chem Phys
– volume: 110
  start-page: 6158
  year: 1999
  end-page: 6170
  article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model
  publication-title: J Chem Phys
– volume: 45
  start-page: 409
  year: 1993
  end-page: 431
  article-title: Møller‐Plesset expansion of the dispersion energy in the ring approximation
  publication-title: Int J Quantum Chem
– volume: 13
  start-page: 161
  year: 2017
  end-page: 179
  article-title: The monomer electron density force field (MEDFF): A physically inspired model for noncovalent interactions
  publication-title: J Chem Theory Comput
– volume: 14
  start-page: 739
  year: 2018
  end-page: 758
  article-title: New angles on standard force fields: Toward a general approach for treating atomic‐level anisotropy
  publication-title: J Chem Theory Comput
– volume: 103
  start-page: 8058
  year: 1995
  end-page: 8074
  article-title: Symmetry‐adapted perturbation‐theory of nonadditive 3‐body interactions in van‐der‐Waals molecules.1. General theory
  publication-title: J Chem Phys
– volume: 7
  year: 2017
  article-title: Molecular electrostatic potentials and noncovalent interactions
  publication-title: WIREs Comput Mol Sci
– volume: 118
  start-page: 6367
  year: 2014
  end-page: 6384
  article-title: Assessing the performance of dispersionless and dispersion‐accounting methods: Helium interaction with cluster models of the TiO (110) surface
  publication-title: J Phys Chem A
– volume: 100
  start-page: 2900
  year: 1994
  end-page: 2909
  article-title: Natural energy decomposition analysis: An energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor‐acceptor interactions
  publication-title: J Chem Phys
– volume: 11
  start-page: 528
  year: 2015
  end-page: 537
  article-title: Robust, basis‐set independent method for the evaluation of charge‐transfer energy in noncovalent complexes
  publication-title: J Chem Theory Comput
– volume: 90
  start-page: 1007
  year: 1989
  end-page: 1023
  article-title: Gaussian‐basis sets for use in correlated molecular calculations. 1. The atoms boron through neon and hydrogen
  publication-title: J Chem Phys
– volume: 139
  start-page: 184104
  year: 2013
  article-title: Linear‐scaling symmetry‐adapted perturbation theory with scaled dispersion
  publication-title: J Chem Phys
– volume: 150
  start-page: 154101
  year: 2019
  article-title: ZMP‐SAPT: DFT‐SAPT using densities
  publication-title: J Chem Phys
– volume: 122
  start-page: 204103
  year: 2005
  article-title: The calculation of excitation energies based on the relativistic two‐component zeroth‐order regular approximation and time‐dependent density‐functional with full use of symmetry
  publication-title: J Chem Phys
– volume: 97
  start-page: 7555
  year: 1992
  end-page: 7559
  article-title: On the convergence of the symmetrized Rayleigh‐Schrödinger perturbation theory for molecular interaction energies
  publication-title: J Chem Phys
– volume: 86
  start-page: 5652
  year: 1987
  end-page: 5659
  article-title: Intraatomic correlation effects for the He‐He dispersion and exchange dispersion energies using explicitly correlated Gaussian geminals
  publication-title: J Chem Phys
– volume: 5
  start-page: 849
  year: 2014
  end-page: 855
  article-title: Hard numbers for large molecules: Toward exact energetics for supramolecular systems
  publication-title: J Phys Chem Lett
– volume: 1
  start-page: 255
  year: 1964
  end-page: 374
  article-title: Recent developments in perturbation theory
  publication-title: Adv Quantum Chem
– volume: 130
  year: 2009
  article-title: Third‐order dispersion energy from response functions
  publication-title: J Chem Phys
– volume: 135
  start-page: 1306
  year: 2013
  end-page: 1316
  article-title: Quantum‐mechanical analysis of the energetic contributions to stacking in nucleic acids versus rise, twist, and slide
  publication-title: J Am Chem Soc
– volume: 33
  start-page: 3742
  year: 1986
  end-page: 3748
  article-title: Relativistic electronic‐structure calculations employing a 2‐component no‐pair formalism with external‐field projection operators
  publication-title: Phys Rev A
– volume: 112
  start-page: 5308
  year: 2000
  end-page: 5319
  article-title: Spectra of Ar–CO from potential energy surfaces
  publication-title: J Chem Phys
– volume: 7
  year: 2017
  article-title: First‐principles modeling of molecular crystals: Structures and stabilities, temperature and pressure
  publication-title: WIREs Comput Mol Sci
– volume: 11
  start-page: 267
  year: 2010
  end-page: 298
– volume: 149
  year: 2018
  article-title: A physically grounded damped dispersion model with particle mesh Ewald summation
  publication-title: J Chem Phys
– volume: 2
  start-page: 400
  year: 2006
  end-page: 412
  article-title: Density‐fitting method in symmetry‐adapted perturbation theory based on Kohn‐Sham description of monomers
  publication-title: J Chem Theory Comput
– volume: 132
  year: 2010
  article-title: Interactions of graphene sheets deduced from properties of polycyclic aromatic hydrocarbons
  publication-title: J Chem Phys
– volume: 121
  start-page: 8541
  year: 2017
  end-page: 8547
  article-title: Intercolumnar interactions control the local orientations within columnar stacks of sumanene and sumanene derivatives
  publication-title: J Phys Chem C
– volume: 113
  start-page: 8918
  year: 2000
  end-page: 8935
  article-title: Asymptotic correction approach to improving approximate exchange‐correlation potentials: Time‐dependent density‐functional theory calculations of molecular excitation spectra
  publication-title: J Chem Phys
– volume: 119
  start-page: 4620
  year: 2003
  end-page: 4628
  article-title: Distributed dispersion: A new approach
  publication-title: J Chem Phys
– volume: 140
  start-page: 121104
  year: 2014
  article-title: Communication: Resolving the three‐body contribution to the lattice energy of crystalline benzene: Benchmark results from coupled‐cluster theory
  publication-title: J Chem Phys
– volume: 116
  start-page: 14031
  year: 2012
  end-page: 14039
  article-title: Robust, transferable, and physically motivated force fields for gas adsorption in functionalized zeolitic imidazolate frameworks
  publication-title: J Phys Chem C
– volume: 49
  start-page: 2421
  year: 1994
  end-page: 2431
  article-title: Exchange‐correlation potential with correct asymptotic behavior
  publication-title: Phys Rev A
– volume: 131
  year: 2009
  article-title: How to tell when a model Kohn‐Sham potential is not a functional derivative
  publication-title: J Chem Phys
– volume: 100
  start-page: 4998
  year: 1994
  end-page: 5010
  article-title: Many‐body theory of intermolecular induction interactions
  publication-title: J Chem Phys
– volume: 101
  start-page: 282
  year: 1999
  end-page: 291
  article-title: Degenerate symmetry‐adapted perturbation theory of weak interactions between closed‐ and open‐shell monomers: Application to Rydberg states of helium hydride
  publication-title: Theor Chem Acc
– volume: 445
  start-page: 315
  year: 2007
  end-page: 320
  article-title: Electrostatic interaction energies with overlap effects from a localized approach
  publication-title: Chem Phys Lett
– volume: 130
  year: 2009
  article-title: A long‐range‐corrected density functional that performs well for both ground‐state properties and time‐dependent density functional theory excitation energies, including charge‐transfer excited states
  publication-title: J Chem Phys
– volume: 3
  start-page: 3241
  year: 2012
  end-page: 3248
  article-title: Accurate intermolecular interactions at dramatically reduced cost: XPol+SAPT with empirical dispersion
  publication-title: J Phys Chem Lett
– volume: 12
  start-page: 10476
  year: 2010
  end-page: 10493
  article-title: Large‐scale compensation of errors in pairwise‐additive empirical force fields: Comparison of AMBER intermolecular terms with rigorous DFT‐SAPT calculations
  publication-title: Phys Chem Chem Phys
– volume: 6
  start-page: 1931
  year: 2010
  end-page: 1934
  article-title: How different are electron‐rich and electron‐deficient interactions?
  publication-title: J Chem Theory Comput
– volume: 14
  start-page: 7846
  year: 2012
  end-page: 7853
  article-title: Adsorption of a water molecule on the MgO(100) surface as described by cluster and slab models
  publication-title: Phys Chem Chem Phys
– volume: 106
  start-page: 5109
  year: 1997
  end-page: 5122
  article-title: Helium dimer potential from symmetry‐adapted perturbation theory calculations using large Gaussian geminal and orbital basis sets
  publication-title: J Chem Phys
– volume: 94
  year: 2016
  article-title: Determination of the exchange interaction energy from the polarization expansion of the wave function
  publication-title: Phys Rev A
– volume: 450
  start-page: 203
  year: 2008
  end-page: 209
  article-title: Interaction potential for the quintet state of the O ‐O dimer from symmetry‐adapted perturbation theory based on DFT description of monomers
  publication-title: Chem Phys Lett
– volume: 122
  year: 2005
  article-title: Density‐functional theory‐symmetry‐adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies
  publication-title: J Chem Phys
– volume: 547
  start-page: 293
  year: 2001
  end-page: 307
  article-title: Symmetry‐adapted perturbation theory with regularized Coulomb potential
  publication-title: J Mol Struct
– volume: 119
  start-page: 10497
  year: 2003
  end-page: 10511
  article-title: Dispersion interaction of high‐spin open‐shell complexes in the random phase approximation
  publication-title: J Chem Phys
– volume: 147
  start-page: 174103
  year: 2017
  article-title: Benchmark CCSD‐SAPT study of rare gas dimers with comparison to MP‐SAPT and DFT‐SAPT
  publication-title: J Chem Phys
– volume: 83
  start-page: 233
  year: 1981
  end-page: 239
  article-title: Distributed multipole analysis, or how to describe a molecular charge‐distribution
  publication-title: Chem Phys Lett
– volume: 105
  start-page: 646
  year: 2001
  end-page: 659
  article-title: Using Kohn‐Sham orbitals in symmetry‐adapted perturbation theory to investigate intermolecular interactions
  publication-title: J Phys Chem A
– volume: 19
  start-page: 4651
  year: 2013
  end-page: 4659
  article-title: Halogen bond tunability II: The varying roles of electrostatic and dispersion contributions to attraction in halogen bonds
  publication-title: J Mol Model
– volume: 145
  start-page: 124105
  year: 2016
  article-title: Blind test of density‐functional‐based methods on intermolecular interaction energies
  publication-title: J Chem Phys
– volume: 414
  start-page: 111
  year: 2005
  end-page: 116
  article-title: Efficient calculations of coupled Kohn‐Sham dynamic susceptibility functions and dispersion energies with density fitting
  publication-title: Chem Phys Lett
– volume: 126
  start-page: 164102
  year: 2007
  article-title: General orbital invariant MP2‐F12 theory
  publication-title: J Chem Phys
– volume: 11
  start-page: 361
  year: 1990
  end-page: 373
  article-title: Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis
  publication-title: J Comput Chem
– volume: 52
  start-page: 997
  year: 1984
  end-page: 1000
  article-title: Density‐functional theory for time‐dependent systems
  publication-title: Phys Rev Lett
– volume: 1
  start-page: 550
  year: 2010
  end-page: 555
  article-title: Extension of the Hartree‐Fock plus dispersion method by first‐order correlation effects
  publication-title: J Phys Chem Lett
– volume: 134
  start-page: 124117
  year: 2011
  article-title: Long‐range interactions between an atom in its ground S state and an open‐shell linear molecule
  publication-title: J Chem Phys
– volume: 103
  start-page: 4586
  year: 1995
  end-page: 4599
  article-title: Dispersion energy in the coupled pair approximation with noniterative inclusion of single and triple excitations
  publication-title: J Chem Phys
– volume: 5
  start-page: 515
  year: 2009
  end-page: 529
  article-title: Comprehensive energy analysis for various types of ‐interaction
  publication-title: J Chem Theory Comput
– volume: 63
  start-page: 205
  year: 1988
  end-page: 224
  article-title: On the connection between the supermolecular Møller‐Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces
  publication-title: Mol Phys
– volume: 73
  start-page: 343
  year: 1980
  end-page: 359
  article-title: The ‘primitive’ wave function in the theory of intermolecular interactions
  publication-title: J Chem Phys
– volume: 151
  year: 2019
  article-title: Self‐consistent charge embedding at very low cost, with application to symmetry‐adapted perturbation theory
  publication-title: J Chem Phys
– start-page: 3
  year: 1997
  end-page: 44
– volume: 10
  start-page: 6509
  year: 2008
  end-page: 6519
  article-title: Second‐order exchange‐induction energy of intermolecular interactions from coupled cluster density matrices and their cumulants
  publication-title: Phys Chem Chem Phys
– volume: 143
  start-page: 224107
  year: 2015
  article-title: Intramolecular symmetry‐adapted perturbation theory with a single‐determinant wavefunction
  publication-title: J Chem Phys
– volume: 116
  start-page: 6397
  year: 2002
  end-page: 6410
  article-title: Explicitly correlated second‐order Møller‐Plesset methods with auxiliary basis sets
  publication-title: J Chem Phys
– volume: 127
  start-page: 164103
  year: 2007
  article-title: Frozen core and effective core potentials in symmetry‐adapted perturbation theory
  publication-title: J Chem Phys
– volume: 4
  start-page: 436
  year: 2014
  end-page: 467
  article-title: Dirac‐exact relativistic methods: The normalized elimination of the small component method
  publication-title: WIREs Comput Mol Sci
– volume: 143
  start-page: 084124
  year: 2015
  article-title: An energy decomposition analysis for second‐order Møller‐Plesset perturbation theory based on absolutely localized molecular orbitals
  publication-title: J Chem Phys
– volume: 32
  start-page: 1456
  year: 2011
  end-page: 1465
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J Comput Chem
– volume: 9
  start-page: 6004
  year: 2007
  end-page: 6011
  article-title: On the role of higher‐order correlation effects on the induction interactions between closed‐shell molecules
  publication-title: Phys Chem Chem Phys
– volume: 28
  start-page: 8181
  year: 2016
  end-page: 8189
  article-title: Nature of the binding interactions between conjugated polymer chains and fullerenes in bulk heterojunction organic solar cells
  publication-title: Chem Mater
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  article-title: Generalized gradient approximation made simple
  publication-title: Phys Rev Lett
– volume: 116
  start-page: 5155
  year: 2016
  end-page: 5187
  article-title: Computer modeling of halogen bonds and other ‐hole interactions
  publication-title: Chem Rev
– volume: 1116
  start-page: 174
  year: 2017
  end-page: 183
  article-title: A possible valence‐bond approach to symmetry‐adapted perturbation theory
  publication-title: Comp Theor Chem
– volume: 140
  start-page: 114304
  year: 2014
  article-title: Localized overlap algorithm for unexpanded dispersion energies
  publication-title: J Chem Phys
– volume: 357
  start-page: 464
  year: 2002
  end-page: 470
  article-title: First‐order intermolecular interaction energies from Kohn‐Sham orbitals
  publication-title: Chem Phys Lett
– volume: 135
  start-page: 7005
  year: 2013
  end-page: 7009
  article-title: Are halogen bonded structures electrostatically driven?
  publication-title: J Am Chem Soc
– volume: 137
  start-page: 8775
  year: 2015
  end-page: 8782
  article-title: Rubrene: The interplay between intramolecular and intermolecular interactions determines the planarization of its tetracene core in the solid state
  publication-title: J Am Chem Soc
– volume: 120
  start-page: 7024
  year: 2016
  end-page: 7036
  article-title: Ab initio force fields for imidazolium‐based ionic liquids
  publication-title: J Phys Chem B
– volume: 115
  start-page: 2775
  year: 2017
  end-page: 2781
  article-title: Quasi‐relativistic two‐component computations of intermolecular dispersion energies
  publication-title: Mol Phys
– volume: 40
  start-page: 7
  year: 1965
  end-page: 18
  article-title: Spiers memorial lecture: Intermolecular forces
  publication-title: Disc Farad Soc
– volume: 10
  start-page: 281
  year: 1976
  end-page: 297
  article-title: First‐order perturbation treatment of the short‐range repulsion in a system of many closed‐shell atoms or molecules
  publication-title: Int J Quantum Chem
– volume: 50
  start-page: 3649
  year: 1969
  end-page: 3661
  article-title: Perturbed Hartree‐Fock theory. I. Diagrammatic double‐perturbation analysis
  publication-title: J Chem Phys
– volume: 103
  start-page: 7374
  year: 1995
  end-page: 7391
  article-title: On the effectiveness of monomer‐, dimer‐, and bond‐centered basis functions in calculations of intermolecular interaction energies
  publication-title: J Chem Phys
– volume: 18
  start-page: 828
  year: 2017
  end-page: 838
  article-title: Interplay among electrostatic, dispersion, and steric interactions: Spectroscopy and quantum chemical calculations of ‐hydrogen bonded complexes
  publication-title: ChemPhysChem
– volume: 139
  start-page: 174102
  year: 2013
  article-title: Tractability gains in symmetry‐adapted perturbation theory including coupled double excitations: CCD+ST(CCD) dispersion with natural orbital truncations
  publication-title: J Chem Phys
– volume: 129
  year: 2008
  article-title: Simultaneous benchmarking of ground‐ and excited‐state properties with long‐range‐corrected density functional theory
  publication-title: J Chem Phys
– volume: 39
  start-page: 93
  year: 2018
  end-page: 104
  article-title: Dissecting the concave‐convex − interaction in corannulene and sumanene dimers: SAPT(DFT) analysis and performance of DFT dispersion‐corrected methods
  publication-title: J Comput Chem
– volume: 125
  start-page: 154107
  year: 2006
  article-title: Third‐order interactions in symmetry‐adapted perturbation theory
  publication-title: J Chem Phys
– volume: 48
  start-page: 161
  year: 1993
  end-page: 183
  article-title: Explicitly connected expansion for the average value of an observable in the coupled‐cluster theory
  publication-title: Int J Quantum Chem
– volume: 10
  start-page: 325
  year: 1976
  end-page: 340
  article-title: A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation
  publication-title: Int J Quantum Chem
– volume: 130
  start-page: 10854
  year: 2008
  end-page: 10855
  article-title: Substituent effects in the benzene dimer are due to direct interactions of the substituents with the unsubstituted benzene
  publication-title: J Am Chem Soc
– volume: 15
  start-page: 14310
  year: 2013
  end-page: 14318
  article-title: Orthogonal interactions between nitryl derivatives and electron donors: Pnictogen bonds
  publication-title: Phys Chem Chem Phys
– volume: 54
  start-page: 1255
  year: 2015
  end-page: 1260
  article-title: Metal‐atom impact on the self‐assembly of cup‐and‐ball metalloporphyrin‐fullerene conjugates
  publication-title: Angew Chem Int Ed
– volume: 26
  start-page: 193
  year: 2007
  end-page: 222
  article-title: Atom‐atom potentials from calculations
  publication-title: Int Rev Phys Chem
– volume: 477
  start-page: 308
  year: 2011
  end-page: 311
  article-title: Overcoming lability of extremely long alkane carbon‐carbon bonds through dispersion forces
  publication-title: Nature
– volume: 14
  start-page: 7578
  year: 2012
  end-page: 7590
  article-title: Practical quantum mechanics‐based fragment methods for predicting molecular crystal properties
  publication-title: Phys Chem Chem Phys
– volume: 4
  start-page: 523
  year: 2014
  end-page: 540
  article-title: The many faces of halogen bonding: A review of theoretical models and methods
  publication-title: WIREs Comput Mol Sci
– volume: 55
  start-page: 1275
  year: 1985
  end-page: 1286
  article-title: Time‐dependent Hartree‐Fock calculations of dispersion energy
  publication-title: Mol Phys
– volume: 32
  start-page: 149
  year: 1987
  end-page: 164
  article-title: Direct calculation of the Hartree‐Fock interaction energy via exchange perturbation expansion—The He = He interaction
  publication-title: Int J Quantum Chem
– volume: 135
  start-page: 234306
  year: 2011
  article-title: First principles potential for the acetylene dimer and refinement by fitting to experiments
  publication-title: J Chem Phys
– volume: 114
  start-page: 652
  year: 2001
  end-page: 660
  article-title: Shape corrections to exchange‐correlation potentials by gradient‐regulated seamless connection of model potentials for inner and outer region
  publication-title: J Chem Phys
– volume: 116
  start-page: 3175
  year: 2002
  end-page: 3183
  article-title: Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
  publication-title: J Chem Phys
– volume: 18
  start-page: 9955
  year: 2012
  end-page: 9964
  article-title: Supramolecular binding thermodynamics by dispersion‐corrected density functional theory
  publication-title: Chem A Eur J
– volume: 2
  start-page: 41
  year: 1973
  end-page: 51
  article-title: Self‐consistent molecular Hartree‐Fock‐Slater calculations I. The computational procedure
  publication-title: Chem Phys
– volume: 143
  year: 2015
  article-title: Reliable prediction of three‐body intermolecular interactions using dispersion‐corrected second‐order Møller‐Plesset perturbation theory
  publication-title: J Chem Phys
– volume: 19
  start-page: 791
  year: 2017
  end-page: 803
  article-title: On the role of charge transfer in halogen bonding
  publication-title: Phys Chem Chem Phys
– volume: 8
  year: 2018
  article-title: Gas sensing and capturing based on two‐dimensional layered materials: Overview from theoretical perspective
  publication-title: WIREs Comput Mol Sci
– volume: 106
  start-page: 9618
  year: 1997
  end-page: 9626
  article-title: Interfacing relativistic and nonrelativistic methods. I. Normalized elimination of the small component in the modified Dirac equation
  publication-title: J Chem Phys
– volume: 12
  start-page: 5895
  year: 2016
  end-page: 5919
  article-title: Automatic generation of intermolecular potential energy surfaces
  publication-title: J Chem Theory Comput
– volume: 111
  start-page: 8753
  year: 2007
  end-page: 8765
  article-title: Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals
  publication-title: J Phys Chem A
– volume: 157
  start-page: 479
  year: 1989
  end-page: 483
  article-title: A 5th‐order perturbation comparison of electron correlation theories
  publication-title: Chem Phys Lett
– volume: 91
  start-page: 893
  year: 1991
  end-page: 928
  article-title: A quantum theory of molecular structure and its applications
  publication-title: Chem Rev
– volume: 7
  start-page: 2427
  year: 2011
  end-page: 2438
  article-title: S66: A well‐balanced database of benchmark interaction energies relevant to biomolecular structures
  publication-title: J Chem Theory Comput
– volume: 15
  start-page: 1016
  year: 2019
  end-page: 1027
  article-title: Second‐order dispersion energy based on multireference description of monomers
  publication-title: J Chem Theory Comput
– volume: 140
  start-page: 244302
  year: 2014
  article-title: Dynamics of gas phase Ne*+NH and Ne*+ND Penning ionisation at low temperatures
  publication-title: J Chem Phys
– volume: 130
  year: 2009
  article-title: Simplified CCSD(T)‐F12 methods: Theory and benchmarks
  publication-title: J Chem Phys
– volume: 147
  start-page: 161725
  year: 2017
  article-title: Improving the accuracy of Møller‐Plesset perturbation theory with neural networks
  publication-title: J Chem Phys
– volume: 116
  start-page: 43
  year: 2005
  end-page: 117
  article-title: Intermolecular interactions via perturbation theory: From diatoms to biomolecules
  publication-title: Struct Bonding
– volume: 229
  start-page: 175
  year: 1994
  end-page: 180
  article-title: Can (semi)local density functional theory account for the London dispersion forces?
  publication-title: Chem Phys Lett
– volume: 133
  start-page: 104107
  year: 2010
  article-title: Efficient evaluation of triple excitations in symmetry‐adapted perturbation theory via second‐order Moller‐Plesset perturbation theory natural orbitals
  publication-title: J Chem Phys
– volume: 140
  start-page: 094106
  year: 2014
  article-title: Levels of symmetry adapted perturbation theory (SAPT). I Efficiency and performance for interaction energies
  publication-title: J Chem Phys
– volume: 10
  start-page: 4417
  year: 2014
  end-page: 4431
  article-title: Chemical assignment of symmetry‐adapted perturbation theory interaction energy components: The functional‐group SAPT partition
  publication-title: J Chem Theory Comput
– volume: 100
  start-page: 4227
  year: 2000
  end-page: 4252
  article-title: State of the art and challenges of the theory of intermolecular interactions
  publication-title: Chem Rev
– volume: 367
  start-page: 778
  year: 2003
  end-page: 784
  article-title: Intermolecular dispersion energies from time‐dependent density functional theory
  publication-title: Chem Phys Lett
– volume: 102
  start-page: 6692
  year: 2005
  end-page: 6697
  article-title: Auxiliary basis expansions for large‐scale electronic structure calculations
  publication-title: Proc Natl Acad Sci USA
– volume: 100
  start-page: 1723
  year: 2002
  end-page: 1734
  article-title: Electrostatic interactions between molecules from relaxed one‐electron density matrices of the coupled cluster singles and doubles model
  publication-title: Mol Phys
– volume: 9
  start-page: 5313
  year: 2013
  end-page: 5326
  article-title: Charge transfer from regularized symmetry‐adapted perturbation theory
  publication-title: J Chem Theory Comput
– volume: 96
  start-page: 719
  year: 1999
  end-page: 733
  article-title: Integral‐direct electron correlation methods
  publication-title: Mol Phys
– volume: 1
  start-page: 211
  year: 2011
  end-page: 228
  article-title: Density functional theory with London dispersion corrections
  publication-title: WIREs Comput Mol Sci
– volume: 7
  start-page: 1791
  year: 2011
  end-page: 1803
  article-title: Accurate intermolecular potentials with physically grounded electrostatics
  publication-title: J Chem Theory Comput
– volume: 9
  start-page: 3479
  year: 2013
  end-page: 3490
  article-title: Broad transferability of substituent effects in ‐stacking interactions provides new insights into their origin
  publication-title: J Chem Theory Comput
– volume: 118
  start-page: 7411
  year: 2014
  end-page: 7417
  article-title: Sorption of H to open metal sites in a metal‐organic framework: A symmetry‐adapted perturbation theory analysis
  publication-title: J Phys Chem A
– volume: 107
  start-page: 432
  year: 1997
  end-page: 449
  article-title: Normal order and extended Wick theorem for a multiconfiguration reference wave function
  publication-title: J Chem Phys
– volume: 69
  start-page: 141
  year: 2004
  end-page: 176
  article-title: Convergence behavior of symmetry‐adapted perturbation expansions for excited states. A model study of interactions involving a triplet helium atom
  publication-title: Collect Czech Chem Commun
– volume: 11
  start-page: 3785
  year: 2015
  end-page: 3801
  article-title: Comprehensive benchmark of association (free) energies of realistic host‐guest complexes
  publication-title: J Chem Theory Comput
– volume: 38
  start-page: 191
  year: 1979
  end-page: 208
  article-title: Symmetry‐adapted double‐perturbation analysis of intramolecular correlation effects in weak intermolecular interactions: The He‐He interaction
  publication-title: Mol Phys
– volume: 3
  start-page: 9348
  year: 2018
  end-page: 9359
  article-title: On the nature of − , − , and − stacking in extended systems
  publication-title: ACS Omega
– volume: 116
  start-page: 5567
  year: 2016
  end-page: 5613
  article-title: Modeling polymorphic molecular crystals with electronic structure theory
  publication-title: Chem Rev
– volume: 117
  start-page: 5124
  year: 2002
  end-page: 5134
  article-title: Symmetry‐forcing procedure and convergence behavior of perturbation expansions for molecular interaction energies
  publication-title: J Chem Phys
– volume: 113
  start-page: 5496
  year: 2009
  end-page: 5505
  article-title: On the unusual properties of halogen bonds: A detailed ab initio study of X –(H O) clusters (X = Cl and Br)
  publication-title: J Phys Chem A
– volume: 21
  start-page: 14521
  year: 2019
  end-page: 14529
  article-title: Ultrahigh binding affinity of a hydrocarbon guest inside cucurbit[7]uril enhanced by strong host‐guest charge matching
  publication-title: Phys Chem Chem Phys
– volume: 128
  start-page: 144112
  year: 2008
  article-title: Improved supermolecular second order Møller‐Plesset intermolecular interaction energies using time‐dependent density functional response theory
  publication-title: J Chem Phys
– volume: 2
  start-page: 242
  year: 2012
  end-page: 253
  article-title: Molpro: A general‐purpose quantum chemistry program package
  publication-title: WIREs Comput Mol Sci
– volume: 6
  start-page: 117
  year: 1934
  article-title: Le orbite s degli elementi
  publication-title: Mem Accad Italia
– volume: 5
  start-page: 5010
  year: 2003
  end-page: 5014
  article-title: The helium dimer potential from a combined density functional theory and symmetry‐adapted perturbation theory approach using an exact exchange‐correlation potential
  publication-title: Phys Chem Chem Phys
– volume: 139
  year: 2013
  article-title: First‐principle interaction potentials for metastable He( S) and Ne( P) with closed‐shell molecules: Application to Penning‐ionizing systems
  publication-title: J Chem Phys
– volume: 133
  year: 2010
  article-title: Density fitting of intramonomer correlation effects in symmetry‐adapted perturbation theory
  publication-title: J Chem Phys
– volume: 11
  start-page: 2609
  year: 2015
  end-page: 2618
  article-title: General model for treating short‐range electrostatic penetration in a molecular mechanics force field
  publication-title: J Chem Theory Comput
– start-page: 919
  year: 2005
  end-page: 962
– volume: 38
  start-page: 2500
  year: 2017
  end-page: 2508
  article-title: Intramolecular interactions in sterically crowded hydrocarbon molecules
  publication-title: J Comput Chem
– volume: 10
  start-page: 5698
  year: 2008
  end-page: 5705
  article-title: Two‐particle density matrix cumulant of coupled cluster theory
  publication-title: Phys Chem Chem Phys
– volume: 60
  start-page: 491
  year: 1930
  end-page: 527
  article-title: Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften
  publication-title: Z Phys
– volume: 124
  start-page: 204105
  year: 2006
  article-title: An efficient self‐consistent field method for large systems of weakly interacting components
  publication-title: J Chem Phys
– volume: 108
  start-page: 236402
  year: 2012
  article-title: Accurate and efficient method for many‐body van der Waals interactions
  publication-title: Phys Rev Lett
– volume: 113
  start-page: 6687
  year: 2000
  end-page: 6701
  article-title: Water pair potential of near spectroscopic accuracy. I. Analysis of potential surface and virial coefficients
  publication-title: J Chem Phys
– volume: 5
  start-page: 2663
  year: 2009
  end-page: 2678
  article-title: Exchange‐dispersion energy: A formulation in terms of monomer properties and coupled cluster treatment of intramonomer correlation
  publication-title: J Chem Theory Comput
– volume: 118
  start-page: 6584
  year: 2014
  end-page: 6594
  article-title: Global ab initio potential energy surface for the O ( ) + N ( ) interaction. Applications to the collisional, spectroscopic, and thermodynamic properties of the complex
  publication-title: J Phys Chem A
– volume: 118
  start-page: 8149
  year: 2003
  end-page: 8160
  article-title: Fast linear scaling second‐order Møller‐Plesset perturbation theory (MP2) using local and density fitting approximations
  publication-title: J Chem Phys
– volume: 7
  start-page: 3027
  year: 2011
  end-page: 3034
  article-title: Perspectives on basis sets beautiful: Seasonal plantings of diffuse basis functions
  publication-title: J Chem Theory Comput
– volume: 15
  start-page: 5965
  year: 2019
  end-page: 5986
  article-title: Explicitly correlated dispersion and exchange dispersion energies in symmetry‐adapted perturbation theory
  publication-title: J Chem Theory Comput
– volume: 79
  start-page: 291
  year: 2007
  end-page: 352
  article-title: Coupled‐cluster theory in quantum chemistry
  publication-title: Rev Mod Phys
– ident: e_1_2_10_323_1
  doi: 10.1126/science.1254419
– ident: e_1_2_10_47_1
  doi: 10.1063/1.4929479
– ident: e_1_2_10_81_1
  doi: 10.1063/1.466661
– ident: e_1_2_10_152_1
  doi: 10.1039/c002653k
– ident: e_1_2_10_378_1
  doi: 10.1063/1.1594713
– ident: e_1_2_10_365_1
  doi: 10.1063/1.2712434
– ident: e_1_2_10_394_1
  doi: 10.1063/1.1564816
– ident: e_1_2_10_135_1
  doi: 10.1063/1.4811833
– ident: e_1_2_10_324_1
  doi: 10.1103/PhysRevLett.84.4072
– ident: e_1_2_10_116_1
  doi: 10.1016/0009-2614(94)01402-H
– ident: e_1_2_10_44_1
  doi: 10.1021/jp107557p
– ident: e_1_2_10_15_1
  doi: 10.1002/wcms.1361
– ident: e_1_2_10_340_1
  doi: 10.1039/b804513e
– ident: e_1_2_10_241_1
  doi: 10.1039/C3CP53035C
– ident: e_1_2_10_108_1
  doi: 10.1080/00268976.2013.827253
– ident: e_1_2_10_265_1
  doi: 10.1063/1.3567306
– ident: e_1_2_10_271_1
  doi: 10.1063/1.4812182
– ident: e_1_2_10_392_1
  doi: 10.1021/acs.jctc.7b01053
– ident: e_1_2_10_114_1
  doi: 10.1021/ct401111c
– ident: e_1_2_10_314_1
  doi: 10.1002/qua.560230203
– ident: e_1_2_10_168_1
  doi: 10.1063/1.5001028
– ident: e_1_2_10_284_1
  doi: 10.1016/j.cplett.2009.03.073
– ident: e_1_2_10_58_1
  doi: 10.1063/1.1499488
– ident: e_1_2_10_187_1
  doi: 10.1021/ct400481r
– ident: e_1_2_10_362_1
  doi: 10.1063/1.464179
– ident: e_1_2_10_27_1
  doi: 10.1021/acs.chemrev.6b00446
– ident: e_1_2_10_6_1
  doi: 10.1002/wcms.86
– ident: e_1_2_10_251_1
  doi: 10.1021/ja3063309
– ident: e_1_2_10_52_1
  doi: 10.1021/acs.jctc.8b00034
– ident: e_1_2_10_151_1
  doi: 10.1021/jp064095o
– ident: e_1_2_10_405_1
  doi: 10.1073/pnas.0408475102
– ident: e_1_2_10_128_1
  doi: 10.1063/1.1327260
– ident: e_1_2_10_103_1
  doi: 10.1063/1.470309
– ident: e_1_2_10_54_1
  doi: 10.1016/S0065-3276(08)60214-2
– ident: e_1_2_10_261_1
  doi: 10.1021/jp503182h
– ident: e_1_2_10_140_1
  doi: 10.1103/PhysRevA.53.1316
– ident: e_1_2_10_209_1
  doi: 10.1021/jp412765t
– ident: e_1_2_10_319_1
  doi: 10.1063/1.480567
– ident: e_1_2_10_46_1
  doi: 10.1021/jp073685z
– ident: e_1_2_10_285_1
  doi: 10.1021/acs.jpca.6b12930
– ident: e_1_2_10_310_1
  doi: 10.1002/jcc.24908
– ident: e_1_2_10_38_1
  doi: 10.1002/jcc.26003
– ident: e_1_2_10_414_1
  doi: 10.1002/jcc.540110311
– ident: e_1_2_10_95_1
  doi: 10.1063/1.456069
– ident: e_1_2_10_74_1
  doi: 10.1002/qua.560140306
– ident: e_1_2_10_260_1
  doi: 10.1016/j.cplett.2007.11.014
– ident: e_1_2_10_179_1
  doi: 10.1039/C9CP00422J
– ident: e_1_2_10_419_1
  doi: 10.1103/PhysRevLett.108.236402
– ident: e_1_2_10_91_1
  doi: 10.1021/ct800471b
– ident: e_1_2_10_134_1
  doi: 10.1063/1.3073302
– ident: e_1_2_10_317_1
  doi: 10.1063/1.473831
– ident: e_1_2_10_9_1
  doi: 10.1002/wcms.1168
– ident: e_1_2_10_305_1
  doi: 10.1021/acs.jpca.9b06028
– ident: e_1_2_10_159_1
  doi: 10.1021/acs.jctc.5b00002
– ident: e_1_2_10_255_1
  doi: 10.1063/1.463475
– ident: e_1_2_10_193_1
  doi: 10.1063/1.3300064
– ident: e_1_2_10_374_1
  doi: 10.1021/ct400057w
– ident: e_1_2_10_68_1
  doi: 10.1007/BF01341258
– ident: e_1_2_10_231_1
  doi: 10.1021/jz301015p
– ident: e_1_2_10_51_1
  doi: 10.1021/acs.jctc.6b00141
– ident: e_1_2_10_105_1
  doi: 10.1063/1.470646
– ident: e_1_2_10_210_1
  doi: 10.1021/jp412779q
– ident: e_1_2_10_416_1
  doi: 10.1021/ja304528m
– ident: e_1_2_10_254_1
  doi: 10.1002/qua.560180414
– ident: e_1_2_10_331_1
  doi: 10.1063/1.4986291
– ident: e_1_2_10_174_1
  doi: 10.1039/C3CP55188A
– ident: e_1_2_10_208_1
  doi: 10.1039/c2cp00015f
– ident: e_1_2_10_180_1
  doi: 10.1021/jp511101n
– ident: e_1_2_10_403_1
  doi: 10.1063/1.1445115
– ident: e_1_2_10_404_1
  doi: 10.1039/B415208E
– ident: e_1_2_10_401_1
  doi: 10.1021/ct300200m
– ident: e_1_2_10_345_1
  doi: 10.1080/00268976.2012.746478
– ident: e_1_2_10_166_1
  doi: 10.1021/ct400149j
– ident: e_1_2_10_311_1
  doi: 10.1063/1.4871116
– ident: e_1_2_10_364_1
  doi: 10.1063/1.1461814
– ident: e_1_2_10_42_1
  doi: 10.1063/1.466432
– ident: e_1_2_10_122_1
  doi: 10.1016/S0009-2614(02)01097-7
– ident: e_1_2_10_391_1
  doi: 10.1063/1.4827297
– ident: e_1_2_10_199_1
  doi: 10.1002/jcc.25084
– ident: e_1_2_10_232_1
  doi: 10.1063/1.4813523
– ident: e_1_2_10_37_1
  doi: 10.1063/1.4903765
– ident: e_1_2_10_198_1
  doi: 10.1021/acs.jpcc.7b02128
– ident: e_1_2_10_417_1
  doi: 10.1021/acs.jctc.8b00527
– volume: 6
  start-page: 117
  year: 1934
  ident: e_1_2_10_127_1
  article-title: Le orbite ∞ s degli elementi
  publication-title: Mem Accad Italia
– ident: e_1_2_10_218_1
  doi: 10.1021/ct200185h
– ident: e_1_2_10_219_1
  doi: 10.1021/jp303790r
– ident: e_1_2_10_338_1
  doi: 10.1063/1.2889006
– ident: e_1_2_10_87_1
  doi: 10.1002/qua.560320202
– ident: e_1_2_10_399_1
  doi: 10.1063/1.3656681
– ident: e_1_2_10_234_1
  doi: 10.1002/jcc.21759
– ident: e_1_2_10_110_1
  doi: 10.1063/1.462569
– ident: e_1_2_10_92_1
  doi: 10.1021/acs.jpclett.6b00780
– ident: e_1_2_10_153_1
  doi: 10.1021/acs.jctc.6b00913
– ident: e_1_2_10_300_1
  doi: 10.1021/ja5101245
– ident: e_1_2_10_276_1
  doi: 10.1021/ct500478t
– ident: e_1_2_10_325_1
  doi: 10.1063/1.1542871
– ident: e_1_2_10_262_1
  doi: 10.1063/1.3079541
– ident: e_1_2_10_360_1
  doi: 10.1063/1.5087208
– volume: 72
  start-page: 439
  year: 2016
  ident: e_1_2_10_238_1
  article-title: Report on the sixth blind test of organic crystal structure prediction methods
  publication-title: Acta Crystallogr
– ident: e_1_2_10_370_1
  doi: 10.1080/00268977900101601
– ident: e_1_2_10_132_1
  doi: 10.1063/1.2409292
– ident: e_1_2_10_86_1
  doi: 10.1063/1.1671609
– ident: e_1_2_10_258_1
  doi: 10.1063/1.4963385
– ident: e_1_2_10_169_1
  doi: 10.1021/acs.chemrev.5b00560
– ident: e_1_2_10_341_1
  doi: 10.1039/b807329e
– ident: e_1_2_10_55_1
  doi: 10.1007/s002140050442
– ident: e_1_2_10_396_1
  doi: 10.1063/1.3426316
– ident: e_1_2_10_79_1
  doi: 10.1063/1.465554
– ident: e_1_2_10_59_1
  doi: 10.1063/1.1676119
– ident: e_1_2_10_349_1
  doi: 10.1063/1.464913
– start-page: 3
  volume-title: Molecular interactions—From van der Waals to strongly bound complexes
  year: 1997
  ident: e_1_2_10_84_1
– ident: e_1_2_10_385_1
  doi: 10.1063/1.2784391
– ident: e_1_2_10_101_1
  doi: 10.1021/jp300109y
– ident: e_1_2_10_377_1
  doi: 10.1021/cr200204r
– ident: e_1_2_10_177_1
  doi: 10.1016/j.comptc.2012.05.012
– ident: e_1_2_10_56_1
  doi: 10.1135/cccc20040141
– ident: e_1_2_10_351_1
  doi: 10.1063/1.4997569
– ident: e_1_2_10_225_1
  doi: 10.1021/acs.jctc.6b00969
– ident: e_1_2_10_80_1
  doi: 10.1063/1.467225
– ident: e_1_2_10_348_1
  doi: 10.1103/PhysRevB.37.785
– ident: e_1_2_10_375_1
  doi: 10.1021/acs.jctc.9b00547
– ident: e_1_2_10_420_1
  doi: 10.1063/1.5111869
– ident: e_1_2_10_191_1
  doi: 10.1002/slct.201700671
– ident: e_1_2_10_23_1
  doi: 10.1021/acs.chemrev.5b00644
– ident: e_1_2_10_66_1
  doi: 10.1021/ja204294q
– ident: e_1_2_10_203_1
  doi: 10.1039/C4CP04354E
– ident: e_1_2_10_26_1
  doi: 10.1146/annurev-physchem-040215-112047
– ident: e_1_2_10_230_1
  doi: 10.1021/jp205031e
– ident: e_1_2_10_294_1
  doi: 10.1039/C6CP07475H
– ident: e_1_2_10_279_1
  doi: 10.1021/ar0402006
– ident: e_1_2_10_350_1
  doi: 10.1063/1.2126975
– ident: e_1_2_10_312_1
  doi: 10.1063/1.4936830
– ident: e_1_2_10_69_1
  doi: 10.1039/df9654000007
– ident: e_1_2_10_104_1
  doi: 10.1063/1.452542
– ident: e_1_2_10_274_1
  doi: 10.1016/j.comptc.2017.03.008
– ident: e_1_2_10_421_1
  doi: 10.1016/j.cplett.2007.07.065
– ident: e_1_2_10_352_1
  doi: 10.1002/wcms.82
– ident: e_1_2_10_102_1
  doi: 10.1021/ct5010593
– ident: e_1_2_10_270_1
  doi: 10.1039/C9DT00182D
– ident: e_1_2_10_299_1
  doi: 10.1021/ct500724p
– ident: e_1_2_10_2_1
  doi: 10.1103/PhysRevLett.119.123401
– ident: e_1_2_10_256_1
  doi: 10.1063/1.2968556
– ident: e_1_2_10_112_1
  doi: 10.1080/00268978800100171
– ident: e_1_2_10_196_1
  doi: 10.1021/jp305700k
– ident: e_1_2_10_275_1
  doi: 10.1021/acs.jctc.8b01058
– volume: 62
  start-page: 639
  year: 2006
  ident: e_1_2_10_212_1
  article-title: Interaction energies between glycopeptide antibiotics and substrates in complexes determined by X‐ray crystallography: Application of a theoretical databank of aspherical atoms and a symmetry‐adapted perturbation theory‐based set of interatomic potentials
  publication-title: Acta Crystallogr
– ident: e_1_2_10_407_1
  doi: 10.1063/1.1589749
– ident: e_1_2_10_353_1
  doi: 10.1063/1.4931809
– ident: e_1_2_10_21_1
  doi: 10.1021/acs.chemrev.5b00526
– ident: e_1_2_10_402_1
  doi: 10.1039/b204199p
– ident: e_1_2_10_70_1
  doi: 10.1080/00268978500102021
– ident: e_1_2_10_77_1
  doi: 10.1007/BF00533487
– ident: e_1_2_10_409_1
  doi: 10.1039/c2cp24060b
– ident: e_1_2_10_29_1
  doi: 10.1063/1.4978951
– ident: e_1_2_10_83_1
  doi: 10.1021/cr00031a008
– ident: e_1_2_10_347_1
  doi: 10.1063/1.478522
– start-page: 79
  volume-title: Methods and techniques in computational chemistry: METECC‐94
  year: 1993
  ident: e_1_2_10_82_1
– ident: e_1_2_10_34_1
  doi: 10.1021/cr990048z
– ident: e_1_2_10_280_1
  doi: 10.1063/1.447867
– ident: e_1_2_10_422_1
  doi: 10.1063/1.4867969
– ident: e_1_2_10_17_1
  doi: 10.1021/ar400303a
– ident: e_1_2_10_337_1
  doi: 10.1039/b708483h
– ident: e_1_2_10_388_1
  doi: 10.1016/0301-0104(73)80059-X
– ident: e_1_2_10_322_1
  doi: 10.1063/1.4869686
– ident: e_1_2_10_397_1
  doi: 10.1063/1.3451077
– ident: e_1_2_10_418_1
  doi: 10.1021/acs.jpclett.9b01156
– volume: 9
  start-page: e1442
  year: 2019
  ident: e_1_2_10_16_1
  article-title: Finding chemical concepts in the Hilbert space: Coupled cluster analyses of noncovalent interactions
  publication-title: WIREs Comput Mol Sci
– ident: e_1_2_10_266_1
  doi: 10.1039/C8CP05749D
– ident: e_1_2_10_119_1
  doi: 10.1063/1.1924593
– ident: e_1_2_10_142_1
  doi: 10.1016/S0009-2614(99)00515-1
– ident: e_1_2_10_223_1
  doi: 10.1063/1.5030434
– ident: e_1_2_10_246_1
  doi: 10.1002/anie.201409487
– ident: e_1_2_10_19_1
  doi: 10.1039/C4CS00375F
– ident: e_1_2_10_211_1
  doi: 10.1063/1.2173256
– ident: e_1_2_10_386_1
  doi: 10.1080/00268976.2017.1317861
– ident: e_1_2_10_252_1
  doi: 10.1021/acs.jctc.5b00588
– ident: e_1_2_10_13_1
  doi: 10.1002/wcms.1326
– ident: e_1_2_10_117_1
  doi: 10.1021/jp003883p
– ident: e_1_2_10_290_1
  doi: 10.1063/1.2834918
– ident: e_1_2_10_161_1
  doi: 10.1021/ct900108f
– ident: e_1_2_10_287_1
  doi: 10.1103/PhysRevA.70.062505
– ident: e_1_2_10_240_1
  doi: 10.1021/jp208150b
– ident: e_1_2_10_259_1
  doi: 10.1021/acs.jctc.8b00058
– ident: e_1_2_10_162_1
  doi: 10.1039/C0CP00968G
– ident: e_1_2_10_35_1
  doi: 10.1103/RevModPhys.79.291
– ident: e_1_2_10_316_1
  doi: 10.1063/1.470171
– ident: e_1_2_10_155_1
  doi: 10.1063/1.2905808
– ident: e_1_2_10_333_1
  doi: 10.1135/cccc20051109
– ident: e_1_2_10_237_1
  doi: 10.1103/PhysRevLett.101.115503
– ident: e_1_2_10_327_1
  doi: 10.1039/c2cp23949c
– ident: e_1_2_10_184_1
  doi: 10.1002/jcc.24226
– ident: e_1_2_10_207_1
  doi: 10.1002/jcc.23994
– ident: e_1_2_10_171_1
  doi: 10.1021/ja401420w
– ident: e_1_2_10_354_1
  doi: 10.1103/PhysRevA.94.042708
– ident: e_1_2_10_188_1
  doi: 10.1021/ct100182u
– ident: e_1_2_10_283_1
  doi: 10.1002/chem.201802385
– ident: e_1_2_10_109_1
  doi: 10.1063/1.456153
– ident: e_1_2_10_334_1
  doi: 10.1080/00268970110105424
– ident: e_1_2_10_424_1
  doi: 10.1007/s00214-019-2414-5
– ident: e_1_2_10_149_1
  doi: 10.1063/1.3668283
– ident: e_1_2_10_361_1
  doi: 10.1063/1.4907204
– ident: e_1_2_10_106_1
  doi: 10.1021/jp076412c
– ident: e_1_2_10_298_1
  doi: 10.1063/1.4889855
– ident: e_1_2_10_111_1
  doi: 10.1021/ct200106a
– ident: e_1_2_10_216_1
  doi: 10.1063/1.3276460
– ident: e_1_2_10_182_1
  doi: 10.1021/jp4016933
– ident: e_1_2_10_22_1
  doi: 10.1021/acs.chemrev.5b00652
– ident: e_1_2_10_148_1
  doi: 10.1063/1.1311289
– ident: e_1_2_10_301_1
  doi: 10.1039/C8CP04962A
– ident: e_1_2_10_50_1
  doi: 10.1021/ct200673a
– ident: e_1_2_10_257_1
  doi: 10.1063/1.4758455
– ident: e_1_2_10_73_1
  doi: 10.1007/430_004
– ident: e_1_2_10_224_1
  doi: 10.1021/acs.jctc.6b00209
– ident: e_1_2_10_376_1
  doi: 10.1021/cr200168z
– ident: e_1_2_10_194_1
  doi: 10.1021/ct400036b
– ident: e_1_2_10_368_1
  doi: 10.1063/1.4734597
– ident: e_1_2_10_97_1
  doi: 10.1063/1.467218
– start-page: 3
  volume-title: Annual reports in computational chemistry
  year: 2017
  ident: e_1_2_10_28_1
– ident: e_1_2_10_165_1
  doi: 10.1039/C6CP05030A
– ident: e_1_2_10_228_1
  doi: 10.1103/PhysRevLett.103.263201
– ident: e_1_2_10_4_1
  doi: 10.1002/wcms.8
– ident: e_1_2_10_39_1
  doi: 10.1002/qua.560100211
– ident: e_1_2_10_264_1
  doi: 10.1063/1.4900478
– ident: e_1_2_10_412_1
  doi: 10.1063/1.2936122
– ident: e_1_2_10_227_1
  doi: 10.1021/jz9002444
– ident: e_1_2_10_359_1
  doi: 10.1103/PhysRevA.50.2138
– ident: e_1_2_10_410_1
  doi: 10.1021/jp5098603
– ident: e_1_2_10_96_1
  doi: 10.1007/s00214-010-0748-0
– ident: e_1_2_10_76_1
  doi: 10.1021/acs.jctc.5b01241
– ident: e_1_2_10_126_1
  doi: 10.1063/1.1319649
– ident: e_1_2_10_32_1
  doi: 10.1063/1.5116151
– ident: e_1_2_10_156_1
  doi: 10.1021/ct9005882
– ident: e_1_2_10_120_1
  doi: 10.1063/1.2135288
– ident: e_1_2_10_25_1
  doi: 10.1021/acs.chemrev.5b00648
– ident: e_1_2_10_389_1
  doi: 10.1063/1.1679012
– ident: e_1_2_10_41_1
  doi: 10.1063/1.3159673
– ident: e_1_2_10_233_1
  doi: 10.1063/1.3382344
– ident: e_1_2_10_235_1
  doi: 10.1103/PhysRevLett.121.113402
– ident: e_1_2_10_181_1
  doi: 10.1039/c3cp52312h
– ident: e_1_2_10_335_1
  doi: 10.1080/00268970600673975
– ident: e_1_2_10_94_1
  doi: 10.1063/1.481120
– ident: e_1_2_10_30_1
  doi: 10.1021/jacs.8b07985
– ident: e_1_2_10_129_1
  doi: 10.1103/PhysRevA.49.2421
– ident: e_1_2_10_204_1
  doi: 10.1039/C7CC03116E
– ident: e_1_2_10_269_1
  doi: 10.1021/acs.jpcb.7b03714
– ident: e_1_2_10_293_1
  doi: 10.1021/ct501115m
– ident: e_1_2_10_346_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_10_400_1
  doi: 10.1063/1.4826520
– ident: e_1_2_10_60_1
  doi: 10.1016/S0065-3276(08)60381-0
– ident: e_1_2_10_62_1
  doi: 10.1063/1.439880
– ident: e_1_2_10_226_1
  doi: 10.1021/acs.jctc.7b00851
– ident: e_1_2_10_85_1
  doi: 10.1080/00268970600693395
– ident: e_1_2_10_64_1
  doi: 10.1007/BF00558020
– ident: e_1_2_10_131_1
  doi: 10.1063/1.1383587
– ident: e_1_2_10_282_1
  doi: 10.1063/1.5086079
– ident: e_1_2_10_5_1
  doi: 10.1002/wcms.30
– ident: e_1_2_10_313_1
  doi: 10.1063/1.4927575
– ident: e_1_2_10_296_1
  doi: 10.1021/ja100936w
– ident: e_1_2_10_366_1
  doi: 10.1063/1.2817618
– ident: e_1_2_10_398_1
  doi: 10.1063/1.3479400
– ident: e_1_2_10_202_1
  doi: 10.1021/ct3008809
– ident: e_1_2_10_267_1
  doi: 10.1021/ct200243s
– ident: e_1_2_10_308_1
  doi: 10.1021/jacs.7b02349
– ident: e_1_2_10_144_1
  doi: 10.1063/1.469994
– ident: e_1_2_10_242_1
  doi: 10.1021/acs.jpcb.5b05115
– ident: e_1_2_10_278_1
  doi: 10.1063/1.5021891
– ident: e_1_2_10_137_1
  doi: 10.1103/PhysRevLett.52.997
– ident: e_1_2_10_138_1
  doi: 10.1002/qua.560450502
– ident: e_1_2_10_221_1
  doi: 10.1021/acs.jctc.5b00267
– ident: e_1_2_10_143_1
  doi: 10.1063/1.1476007
– ident: e_1_2_10_146_1
  doi: 10.1016/j.cplett.2005.08.048
– ident: e_1_2_10_178_1
  doi: 10.1039/C4CP03376K
– ident: e_1_2_10_158_1
  doi: 10.1002/chem.201200497
– ident: e_1_2_10_113_1
  doi: 10.1021/cr00031a001
– ident: e_1_2_10_411_1
  doi: 10.1021/ct700167b
– ident: e_1_2_10_78_1
  doi: 10.1063/1.461528
– ident: e_1_2_10_289_1
  doi: 10.1007/s00214-002-0377-3
– ident: e_1_2_10_303_1
  doi: 10.1039/C5CP07281F
– ident: e_1_2_10_63_1
  doi: 10.1002/(SICI)1097-461X(1996)60:1<273::AID-QUA28>3.0.CO;2-E
– ident: e_1_2_10_133_1
  doi: 10.1063/1.2954017
– ident: e_1_2_10_123_1
  doi: 10.1016/S0009-2614(02)01796-7
– ident: e_1_2_10_243_1
  doi: 10.1021/acs.jpcb.6b09489
– ident: e_1_2_10_292_1
  doi: 10.1021/cr200148b
– ident: e_1_2_10_31_1
  doi: 10.1063/1.5075487
– ident: e_1_2_10_145_1
  doi: 10.1063/1.438313
– ident: e_1_2_10_192_1
  doi: 10.1039/b719725j
– ident: e_1_2_10_248_1
  doi: 10.1021/acs.chemmater.5b03266
– ident: e_1_2_10_183_1
  doi: 10.1002/anie.201807751
– ident: e_1_2_10_281_1
  doi: 10.1021/acs.jctc.7b00174
– ident: e_1_2_10_206_1
  doi: 10.1063/1.4867071
– ident: e_1_2_10_36_1
  doi: 10.1016/S0009-2614(89)87395-6
– ident: e_1_2_10_72_1
  doi: 10.1103/PhysRev.73.360
– ident: e_1_2_10_247_1
  doi: 10.1039/C9CP01762C
– ident: e_1_2_10_297_1
  doi: 10.1021/ct500490b
– ident: e_1_2_10_320_1
  doi: 10.1063/1.1723844
– ident: e_1_2_10_185_1
  doi: 10.1021/ja802849j
– volume: 17
  start-page: 629
  year: 1943
  ident: e_1_2_10_321_1
  article-title: Force between nonpolar molecules
  publication-title: Proc Phys Math Soc Jpn
– ident: e_1_2_10_215_1
  doi: 10.1039/c002656e
– ident: e_1_2_10_390_1
  doi: 10.1080/00268979909483008
– ident: e_1_2_10_408_1
  doi: 10.1063/1.3560026
– ident: e_1_2_10_263_1
  doi: 10.1039/C2CP42810E
– ident: e_1_2_10_253_1
  doi: 10.1016/j.jphotobiol.2018.11.007
– ident: e_1_2_10_124_1
  doi: 10.1063/1.1824898
– ident: e_1_2_10_175_1
  doi: 10.1021/acs.jctc.5b00687
– ident: e_1_2_10_363_1
  doi: 10.1080/01442350110071957
– ident: e_1_2_10_332_1
  doi: 10.1002/qua.560480303
– ident: e_1_2_10_272_1
  doi: 10.1063/1.4883517
– ident: e_1_2_10_315_1
  doi: 10.1016/B978-044451719-7/50076-7
– ident: e_1_2_10_220_1
  doi: 10.1021/jp3108182
– ident: e_1_2_10_387_1
  doi: 10.1063/1.1899143
– ident: e_1_2_10_118_1
  doi: 10.1016/S0009-2614(02)00533-X
– ident: e_1_2_10_383_1
  doi: 10.1002/wcms.1181
– ident: e_1_2_10_10_1
  doi: 10.1002/wcms.1189
– ident: e_1_2_10_413_1
  doi: 10.1063/1.2191500
– ident: e_1_2_10_393_1
  doi: 10.1016/0009-2614(93)87156-W
– ident: e_1_2_10_277_1
  doi: 10.1063/1.441359
– ident: e_1_2_10_130_1
  doi: 10.1016/j.cplett.2005.08.060
– ident: e_1_2_10_291_1
  doi: 10.1021/acs.jctc.6b00155
– ident: e_1_2_10_98_1
  doi: 10.1063/1.3058477
– ident: e_1_2_10_426_1
  doi: 10.1080/00268976.2014.952696
– ident: e_1_2_10_167_1
  doi: 10.1021/ct2002946
– ident: e_1_2_10_367_1
  doi: 10.1063/1.3054300
– ident: e_1_2_10_295_1
  doi: 10.1021/cr00005a013
– ident: e_1_2_10_330_1
  doi: 10.1021/acs.jpca.6b05248
– ident: e_1_2_10_372_1
  doi: 10.1103/RevModPhys.85.693
– ident: e_1_2_10_358_1
  doi: 10.1039/b310529f
– ident: e_1_2_10_371_1
  doi: 10.1063/1.2770721
– ident: e_1_2_10_176_1
  doi: 10.1021/acs.jpca.6b08945
– ident: e_1_2_10_65_1
  doi: 10.1093/acprof:oso/9780199672394.001.0001
– ident: e_1_2_10_205_1
  doi: 10.1002/qua.25379
– ident: e_1_2_10_309_1
  doi: 10.1002/cphc.201600942
– ident: e_1_2_10_201_1
  doi: 10.1021/jp110374b
– ident: e_1_2_10_250_1
  doi: 10.1039/C7CP03665E
– ident: e_1_2_10_160_1
  doi: 10.1021/jz402663k
– ident: e_1_2_10_12_1
  doi: 10.1002/wcms.1297
– ident: e_1_2_10_380_1
  doi: 10.1103/PhysRevA.33.3742
– ident: e_1_2_10_213_1
  doi: 10.1016/0009-2614(81)85452-8
– ident: e_1_2_10_75_1
  doi: 10.1080/01442350601081931
– ident: e_1_2_10_373_1
  doi: 10.1021/acs.jctc.8b00470
– ident: e_1_2_10_100_1
  doi: 10.1002/qua.560100208
– ident: e_1_2_10_99_1
  doi: 10.1063/1.2358353
– ident: e_1_2_10_40_1
  doi: 10.1021/jp960694r
– ident: e_1_2_10_11_1
  doi: 10.1002/wcms.1294
– ident: e_1_2_10_197_1
  doi: 10.1021/jacs.5b04066
– ident: e_1_2_10_141_1
  doi: 10.1007/BFb0016643
– ident: e_1_2_10_8_1
  doi: 10.1002/wcms.1164
– ident: e_1_2_10_395_1
  doi: 10.1021/ct400250u
– ident: e_1_2_10_339_1
  doi: 10.1063/1.2933312
– ident: e_1_2_10_236_1
  doi: 10.1063/1.4986081
– ident: e_1_2_10_344_1
  doi: 10.1063/1.474405
– ident: e_1_2_10_369_1
  doi: 10.1063/1.4800981
– ident: e_1_2_10_115_1
  doi: 10.1016/0009-2614(94)01027-7
– ident: e_1_2_10_268_1
  doi: 10.1063/1.4968529
– ident: e_1_2_10_89_1
  doi: 10.1016/0009-2614(75)80278-8
– ident: e_1_2_10_342_1
  doi: 10.1021/ct900232j
– ident: e_1_2_10_189_1
  doi: 10.1021/ct100686e
– ident: e_1_2_10_67_1
  doi: 10.1021/acs.jpclett.6b02585
– ident: e_1_2_10_150_1
  doi: 10.1063/1.5053802
– ident: e_1_2_10_164_1
  doi: 10.1021/ct200111a
– ident: e_1_2_10_121_1
  doi: 10.1016/S0009-2614(02)00538-9
– ident: e_1_2_10_172_1
  doi: 10.1007/s00894-012-1428-x
– ident: e_1_2_10_328_1
  doi: 10.1063/1.3672810
– ident: e_1_2_10_222_1
  doi: 10.1021/acs.jpcb.6b05328
– ident: e_1_2_10_154_1
  doi: 10.1039/b709192c
– ident: e_1_2_10_71_1
  doi: 10.1103/PhysRevLett.91.033201
– ident: e_1_2_10_43_1
  doi: 10.1021/ct0501093
– ident: e_1_2_10_170_1
  doi: 10.1021/jp900490p
– ident: e_1_2_10_14_1
  doi: 10.1002/wcms.1355
– ident: e_1_2_10_329_1
  doi: 10.1063/1.4927304
– ident: e_1_2_10_57_1
  doi: 10.1063/1.1379330
– ident: e_1_2_10_217_1
  doi: 10.1021/jp209335y
– ident: e_1_2_10_53_1
  doi: 10.1063/1.473556
– ident: e_1_2_10_139_1
  doi: 10.1063/1.1620496
– ident: e_1_2_10_249_1
  doi: 10.1021/acs.chemmater.6b02930
– ident: e_1_2_10_356_1
  doi: 10.1016/j.comptc.2018.02.019
– ident: e_1_2_10_33_1
  doi: 10.1039/C9CS00060G
– ident: e_1_2_10_186_1
  doi: 10.1002/anie.201102982
– ident: e_1_2_10_336_1
  doi: 10.1063/1.2364489
– ident: e_1_2_10_18_1
  doi: 10.1021/ar400326q
– ident: e_1_2_10_384_1
  doi: 10.1021/cr2001383
– ident: e_1_2_10_3_1
  doi: 10.1021/acs.jctc.5b00296
– ident: e_1_2_10_90_1
  doi: 10.1039/B600027D
– ident: e_1_2_10_244_1
  doi: 10.1002/anie.201508056
– ident: e_1_2_10_415_1
  doi: 10.1021/jp8105919
– ident: e_1_2_10_306_1
  doi: 10.1002/chem.200700602
– ident: e_1_2_10_307_1
  doi: 10.1038/nature10367
– ident: e_1_2_10_214_1
  doi: 10.1063/1.1594722
– ident: e_1_2_10_304_1
  doi: 10.1039/C8CP02029A
– ident: e_1_2_10_24_1
  doi: 10.1021/acs.chemrev.5b00577
– volume-title: SAPT2016: An ab initio program for many‐body symmetry‐adapted perturbation theory calculations of intermolecular interaction energies
  ident: e_1_2_10_425_1
– ident: e_1_2_10_288_1
  doi: 10.1016/S0166-1280(01)00478-X
– ident: e_1_2_10_318_1
  doi: 10.1063/1.480901
– ident: e_1_2_10_229_1
  doi: 10.1021/ct300778e
– ident: e_1_2_10_423_1
  doi: 10.1021/acs.jctc.6b01198
– ident: e_1_2_10_357_1
  doi: 10.1063/1.5007929
– ident: e_1_2_10_286_1
  doi: 10.1021/ct400704a
– ident: e_1_2_10_7_1
  doi: 10.1002/wcms.84
– ident: e_1_2_10_163_1
  doi: 10.1039/C9CP03015H
– ident: e_1_2_10_93_1
  doi: 10.1063/1.4867135
– ident: e_1_2_10_273_1
  doi: 10.1021/acs.jctc.7b00797
– ident: e_1_2_10_136_1
  doi: 10.1063/1.3176515
– ident: e_1_2_10_49_1
  doi: 10.1021/acs.jctc.6b00523
– ident: e_1_2_10_88_1
  doi: 10.1080/00268979650026262
– ident: e_1_2_10_45_1
  doi: 10.1021/cr200093j
– ident: e_1_2_10_326_1
  doi: 10.1063/1.2733648
– ident: e_1_2_10_200_1
  doi: 10.1021/acsomega.8b01339
– ident: e_1_2_10_239_1
  doi: 10.1063/1.4961095
– ident: e_1_2_10_382_1
  doi: 10.1063/1.2137315
– ident: e_1_2_10_157_1
  doi: 10.1063/1.4893990
– ident: e_1_2_10_190_1
  doi: 10.1002/cphc.201601405
– ident: e_1_2_10_245_1
  doi: 10.1021/jp400051b
– ident: e_1_2_10_355_1
  doi: 10.1021/acs.jctc.7b01233
– ident: e_1_2_10_125_1
  doi: 10.1063/1.477711
– ident: e_1_2_10_61_1
  doi: 10.1016/0009-2614(67)80007-1
– ident: e_1_2_10_48_1
  doi: 10.1039/C6CP03784D
– ident: e_1_2_10_381_1
  doi: 10.1063/1.473860
– start-page: 267
  volume-title: Recent progress in coupled cluster methods. Challenges and advances in computational chemistry and physics
  year: 2010
  ident: e_1_2_10_343_1
– ident: e_1_2_10_302_1
  doi: 10.1002/chem.201701031
– ident: e_1_2_10_406_1
  doi: 10.1063/1.3683219
– ident: e_1_2_10_107_1
  doi: 10.1007/s00214-012-1235-6
– ident: e_1_2_10_173_1
  doi: 10.1039/c3cp52768a
– ident: e_1_2_10_195_1
  doi: 10.1063/1.4979993
– ident: e_1_2_10_20_1
  doi: 10.1021/acs.chemrev.5b00533
– ident: e_1_2_10_147_1
  doi: 10.1021/ct050304h
– ident: e_1_2_10_379_1
  doi: 10.1016/0003-4916(74)90333-9
SSID ssj0000491231
Score 2.5993059
SecondaryResourceType review_article
Snippet Symmetry‐adapted perturbation theory (SAPT) is a well‐established method to compute accurate intermolecular interaction energies in terms of physical effects...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e1452
SubjectTerms Catalysis
Catalysts
Chemical synthesis
Density functional theory
Dispersion
Electronic structure
Electrostatic properties
Electrostatics
Exchanging
Graphics
Graphics processing units
induction
Mechanics
Molecular interactions
Molecular structure
noncovalent interactions
Perturbation theory
Potential energy
Scaling
Statistical mechanics
Symmetry
symmetry‐adapted perturbation theory
Theories
Workflow
Title Recent developments in symmetry‐adapted perturbation theory
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1452
https://www.proquest.com/docview/2390116320
Volume 10
WOSCitedRecordID wos000499677600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1759-0884
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491231
  issn: 1759-0876
  databaseCode: DRFUL
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KK-jFt1itEsSDl9Bk89gs4kGqxYMWUau9hc3uBgo2lqYqvfkT_I3-EmfzqoKC4G0Pkwez8_hm2PkW4NAl0lKS-GZEY990mavMQOGKME4cjp5JstbF_SXt9YLBgF3X4Lichcn5IaqGm_aMLF5rB-dR2p6Thr6KUYp-7mH8bRC0W7cOjbObbv-yarEg-MW4nJVc1GOmJl8ruYUs0q6e_56R5jDzK1jNsk135V__uQrLBcg0TnOrWIOaStZhsVPe7bYBJ4gWMdsYcn5kKDWGiZHORiOFEh9v71zyMaJRY6wmmJWibAONbOxxtgn97vld58IsLlIwBWEUi03KOZUO8yMP8YfwImorYrmcSVtSIgKfecqxRcz1gDlTwpJ6QlZEMrYdj8fE2YJ68pSobTC4kjKIKYuZ9F0b8YGyA4Y1nx6Yi3xfNeGoVGYoCpZxfdnFY5jzI5NQ6yPU-mjCQSU6zqk1fhJqlTsSFt6VhkQ3ahBIEgs_l-n-9xeED52rW73Y-bvoLiwRXVZn5xpbUJ9OntUeLIiX6TCd7Bdm9gluAteQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kFfTiW6xWDeLBSzDZPDYLepBqUYxFtFVvYbO7gYKtpalKb_4Ef6O_xNk8WgUFwdseJg9m5_HNsPMtwL5LpKUk8c2YJr7pMleZgcIVYZw4HD2TZK2Lu5C2WsHDA7uegaNyFibnh5g03LRnZPFaO7huSB9OWUNfRS9FR_cwAFddNCOvAtXTm2YnnPRYEP1iYM5qLuoxU7OvleRCFjmcPP89JU1x5le0mqWb5uL_fnQJFgqYaZzkdrEMM6q_AnON8na3VThGvIj5xpDTQ0Op0e0b6bjXUyjx8fbOJR8gHjUGaoh5Kc620MgGH8dr0GmetRvnZnGVgikIo1huUs6pdJgfe4hAhBdTWxHL5UzakhIR-MxTji0SrkfMmRKW1DOyIpaJ7Xg8Ic46VPpPfbUBBldSBgllCZO-ayNCUHbAsOrTI3Ox76saHJTajETBM66vu3iMcoZkEml9RFofNdibiA5yco2fhOrllkSFf6UR0a0ahJLEws9lyv_9BdF94-pWLzb_LroLc-ftqzAKL1qXWzBPdJGdnXKsQ2U0fFbbMCteRt10uFPY3CdXituA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KFfXiW6xWDeLBS2iyeWwW9CCtQbGWolZ7C5vdDRRsLE1VevMn-Bv9Jc7mVQUFwdseJg9md2a-GXa-QejIxsKQArt6SCJXt6ktdU_CClOGLQaWidPSxX2bdDpev0-7FXRS9MJk_BBlwU1ZRuqvlYHLkYgaM9bQVz5MwNAdcMBV26EumGW1deP32mWNBdAvOOY05yIO1RX7WkEuZOBG-fz3kDTDmV_Rahpu_JX__egqWs5hpnaWnYs1VJHxOlpsFtPdNtAp4EWIN5qYXRpKtEGsJdPhUILEx9s7E2wEeFQbyTHEpTDdQi1tfJxuop5_fte80PNRCjrHlEC6SRgjwqJu6AAC4U5ITIkNm1FhCoK551JHWiaPmGoxp5IbQvXI8lBEpuWwCFtbaC5-iuU20pgUwosIjahwbRMQgjQ9ClmfapkLXVfW0HGhzYDnPONq3MVjkDEk40DpI1D6qKHDUnSUkWv8JFQvtiTI7SsJsCrVAJTEBnwuVf7vLwgemte3arHzd9EDtNBt-UH7snO1i5awyrHTS451NDcZP8s9NM9fJoNkvJ8fuU8Zedr7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+developments+in+symmetry%E2%80%90adapted+perturbation+theory&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Patkowski%2C+Konrad&rft.date=2020-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=10&rft.issue=3&rft.spage=e1452&rft_id=info:doi/10.1002%2Fwcms.1452&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon