Stochastic Heat Kernel Estimation on Sampled Manifolds

The heat kernel is a fundamental geometric object associated to every Riemannian manifold, used across applications in computer vision, graphics, and machine learning. In this article, we propose a novel computational approach to estimating the heat kernel of a statistically sampled manifold (e.g. m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 36; H. 5; S. 131 - 138
Hauptverfasser: Aumentado‐Armstrong, T., Siddiqi, K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.08.2017
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The heat kernel is a fundamental geometric object associated to every Riemannian manifold, used across applications in computer vision, graphics, and machine learning. In this article, we propose a novel computational approach to estimating the heat kernel of a statistically sampled manifold (e.g. meshes or point clouds), using its representation as the transition density function of Brownian motion on the manifold. Our approach first constructs a set of local approximations to the manifold via moving least squares. We then simulate Brownian motion on the manifold by stochastic numerical integration of the associated Ito diffusion system. By accumulating a number of these trajectories, a kernel density estimation method can then be used to approximate the transition density function of the diffusion process, which is equivalent to the heat kernel. We analyse our algorithm on the 2‐sphere, as well as on shapes in 3D. Our approach is readily parallelizable and can handle manifold samples of large size as well as surfaces of high co‐dimension, since all the computations are local. We relate our method to the standard approaches in diffusion geometry and discuss directions for future work.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.13251