Ab initio nonadiabatic molecular dynamics investigations on the excited carriers in condensed matter systems

The ultrafast dynamics of photoexcited charge carriers in condensed matter systems play an important role in optoelectronics and solar energy conversion. Yet it is challenging to understand such multidimensional dynamics at the atomic scale. Combining the real‐time time‐dependent density functional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Computational molecular science Jg. 9; H. 6; S. e1411 - n/a
Hauptverfasser: Zheng, Qijing, Chu, Weibin, Zhao, Chuanyu, Zhang, Lili, Guo, Hongli, Wang, Yanan, Jiang, Xiang, Zhao, Jin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA Wiley Periodicals, Inc 01.11.2019
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1759-0876, 1759-0884
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The ultrafast dynamics of photoexcited charge carriers in condensed matter systems play an important role in optoelectronics and solar energy conversion. Yet it is challenging to understand such multidimensional dynamics at the atomic scale. Combining the real‐time time‐dependent density functional theory with fewest‐switches surface hopping scheme, we develop time‐dependent ab initio nonadiabatic molecular dynamics (NAMD) code Hefei‐NAMD to simulate the excited carrier dynamics in condensed matter systems. Using this method, we have investigated the interfacial charge transfer dynamics, the electron–hole recombination dynamics, and the excited spin‐polarized hole dynamics in different condensed matter systems. The time‐dependent dynamics of excited carriers are studied in energy, real and momentum spaces. In addition, the coupling of the excited carriers with phonons, defects and molecular adsorptions are investigated. The state‐of‐art NAMD studies provide unique insights to understand the ultrafast dynamics of the excited carriers in different condensed matter systems at the atomic scale. This article is categorized under: Structure and Mechanism > Computational Materials Science Molecular and Statistical Mechanics > Molecular Dynamics and Monte‐Carlo Methods Electronic Structure Theory > Ab Initio Electronic Structure Methods Software > Simulation Methods The non adiabatic molecular dynamics have been used to investigate the excited carrier dynamics and their couplings with complex environment in condensed matter systems.
AbstractList The ultrafast dynamics of photoexcited charge carriers in condensed matter systems play an important role in optoelectronics and solar energy conversion. Yet it is challenging to understand such multidimensional dynamics at the atomic scale. Combining the real‐time time‐dependent density functional theory with fewest‐switches surface hopping scheme, we develop time‐dependent ab initio nonadiabatic molecular dynamics (NAMD) code Hefei‐NAMD to simulate the excited carrier dynamics in condensed matter systems. Using this method, we have investigated the interfacial charge transfer dynamics, the electron–hole recombination dynamics, and the excited spin‐polarized hole dynamics in different condensed matter systems. The time‐dependent dynamics of excited carriers are studied in energy, real and momentum spaces. In addition, the coupling of the excited carriers with phonons, defects and molecular adsorptions are investigated. The state‐of‐art NAMD studies provide unique insights to understand the ultrafast dynamics of the excited carriers in different condensed matter systems at the atomic scale. This article is categorized under: Structure and Mechanism > Computational Materials Science Molecular and Statistical Mechanics > Molecular Dynamics and Monte‐Carlo Methods Electronic Structure Theory > Ab Initio Electronic Structure Methods Software > Simulation Methods The non adiabatic molecular dynamics have been used to investigate the excited carrier dynamics and their couplings with complex environment in condensed matter systems.
The ultrafast dynamics of photoexcited charge carriers in condensed matter systems play an important role in optoelectronics and solar energy conversion. Yet it is challenging to understand such multidimensional dynamics at the atomic scale. Combining the real‐time time‐dependent density functional theory with fewest‐switches surface hopping scheme, we develop time‐dependent ab initio nonadiabatic molecular dynamics (NAMD) code Hefei‐NAMD to simulate the excited carrier dynamics in condensed matter systems. Using this method, we have investigated the interfacial charge transfer dynamics, the electron–hole recombination dynamics, and the excited spin‐polarized hole dynamics in different condensed matter systems. The time‐dependent dynamics of excited carriers are studied in energy, real and momentum spaces. In addition, the coupling of the excited carriers with phonons, defects and molecular adsorptions are investigated. The state‐of‐art NAMD studies provide unique insights to understand the ultrafast dynamics of the excited carriers in different condensed matter systems at the atomic scale.This article is categorized under:Structure and Mechanism > Computational Materials ScienceMolecular and Statistical Mechanics > Molecular Dynamics and Monte‐Carlo MethodsElectronic Structure Theory > Ab Initio Electronic Structure MethodsSoftware > Simulation Methods
The ultrafast dynamics of photoexcited charge carriers in condensed matter systems play an important role in optoelectronics and solar energy conversion. Yet it is challenging to understand such multidimensional dynamics at the atomic scale. Combining the real‐time time‐dependent density functional theory with fewest‐switches surface hopping scheme, we develop time‐dependent ab initio nonadiabatic molecular dynamics (NAMD) code Hefei‐NAMD to simulate the excited carrier dynamics in condensed matter systems. Using this method, we have investigated the interfacial charge transfer dynamics, the electron–hole recombination dynamics, and the excited spin‐polarized hole dynamics in different condensed matter systems. The time‐dependent dynamics of excited carriers are studied in energy, real and momentum spaces. In addition, the coupling of the excited carriers with phonons, defects and molecular adsorptions are investigated. The state‐of‐art NAMD studies provide unique insights to understand the ultrafast dynamics of the excited carriers in different condensed matter systems at the atomic scale. This article is categorized under: Structure and Mechanism > Computational Materials Science Molecular and Statistical Mechanics > Molecular Dynamics and Monte‐Carlo Methods Electronic Structure Theory > Ab Initio Electronic Structure Methods Software > Simulation Methods
Author Zhang, Lili
Guo, Hongli
Zhao, Chuanyu
Wang, Yanan
Zhao, Jin
Chu, Weibin
Jiang, Xiang
Zheng, Qijing
Author_xml – sequence: 1
  givenname: Qijing
  surname: Zheng
  fullname: Zheng, Qijing
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Weibin
  surname: Chu
  fullname: Chu, Weibin
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Chuanyu
  surname: Zhao
  fullname: Zhao, Chuanyu
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Lili
  surname: Zhang
  fullname: Zhang, Lili
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Hongli
  surname: Guo
  fullname: Guo, Hongli
  organization: Wuhan University
– sequence: 6
  givenname: Yanan
  surname: Wang
  fullname: Wang, Yanan
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Xiang
  surname: Jiang
  fullname: Jiang, Xiang
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Jin
  surname: Zhao
  fullname: Zhao, Jin
  email: zhaojin@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNp1kEtPAyEUhYmpibV24T8gceViWpiBeSybxldS40KNywkwoDQzUIFa59_L1MaF0bvhBr5zLvecgpGxRgJwjtEMI5TOd6LzM0wwPgJjXNAqQWVJRj99kZ-AqfdrFItUOM3wGLQLDrXRQVsYzVijGWdBC9jZVoptyxxsesM6LXzEPqQP-jW-W-OhNTC8SSg_hQ6ygYI5p6UbMCisaaTx8bZjIUgHfe-D7PwZOFas9XJ6OCfg-frqaXmbrB5u7paLVSLSqsBJpThFqpSsKXKiaEZzxrISk4wLlnKhciq5UqTBlBYZL0ohFaUEqYYxjnDRZBNw8e27cfZ9Gz9dr-3WmTiyTjOUI4qrlERq_k0JZ713UtVxk_1ywTHd1hjVQ6r1kGo9pBoVl78UG6c75vo_2YP7Trey_x-sX5b3j3vFFzXMjHY
CitedBy_id crossref_primary_10_1002_ange_201915702
crossref_primary_10_1016_j_physe_2024_116166
crossref_primary_10_1016_j_cclet_2025_111490
crossref_primary_10_1209_0295_5075_add04f
crossref_primary_10_1038_s41524_023_01071_y
crossref_primary_10_1038_s41699_025_00545_5
crossref_primary_10_1103_PhysRevApplied_23_054062
crossref_primary_10_1016_j_mtphys_2025_101771
crossref_primary_10_1021_acs_jpclett_5c02350
crossref_primary_10_1021_jacs_5c08630
crossref_primary_10_1360_SSC_2024_0058
crossref_primary_10_1021_acs_jctc_5c00727
crossref_primary_10_1016_j_colsurfa_2024_135437
crossref_primary_10_1016_j_jcat_2024_115877
crossref_primary_10_1002_smll_202302760
crossref_primary_10_1016_j_surfin_2024_105661
crossref_primary_10_1016_j_ijhydene_2024_10_224
crossref_primary_10_1038_s41598_024_72757_6
crossref_primary_10_1021_jacs_2c08487
crossref_primary_10_1088_1361_6528_acccff
crossref_primary_10_1016_j_apsusc_2022_154243
crossref_primary_10_1063_5_0264049
crossref_primary_10_1016_j_newton_2025_100112
crossref_primary_10_1063_5_0210932
crossref_primary_10_1038_s41524_023_01086_5
crossref_primary_10_1088_1361_6463_adbb7a
crossref_primary_10_1016_j_mtphys_2020_100312
crossref_primary_10_1039_D5TC02212F
crossref_primary_10_1021_jacs_5c06155
crossref_primary_10_1021_jacs_4c07454
crossref_primary_10_1038_s41467_025_57328_1
crossref_primary_10_1002_adfm_202407991
crossref_primary_10_1021_jacs_4c12634
crossref_primary_10_1021_acs_jpclett_5c01928
crossref_primary_10_1021_jacs_4c14416
crossref_primary_10_1016_j_surfin_2024_104873
crossref_primary_10_1021_jacs_9b13280
crossref_primary_10_1039_D2NH00281G
crossref_primary_10_1021_acsnano_4c09000
crossref_primary_10_1063_5_0219326
crossref_primary_10_1039_D5MH00567A
crossref_primary_10_1016_j_jpowsour_2023_234045
crossref_primary_10_1038_s41524_021_00654_x
crossref_primary_10_1016_j_cej_2022_138198
crossref_primary_10_1088_1674_1056_acf91d
crossref_primary_10_1016_j_apsusc_2025_163790
crossref_primary_10_1002_adfm_202408353
crossref_primary_10_1021_acs_jpclett_5c01554
crossref_primary_10_1021_acsnano_5c05603
crossref_primary_10_1039_D3QI01105D
crossref_primary_10_1002_adma_202104695
crossref_primary_10_1002_smll_202504095
crossref_primary_10_1016_j_vacuum_2023_111906
crossref_primary_10_1209_0295_5075_ac6c49
crossref_primary_10_1002_wcms_1441
crossref_primary_10_1088_2516_1075_acc4a0
crossref_primary_10_1021_acs_nanolett_5c01721
crossref_primary_10_1021_acsaem_5c01469
crossref_primary_10_1016_j_apsusc_2024_161057
crossref_primary_10_1016_j_jcis_2025_138981
crossref_primary_10_1007_s11426_020_9766_5
crossref_primary_10_1007_s40843_023_2838_5
crossref_primary_10_1002_wcms_1435
crossref_primary_10_1063_5_0266915
crossref_primary_10_1021_acs_jpclett_5c01949
crossref_primary_10_1063_5_0070269
crossref_primary_10_1016_j_fuel_2024_134237
crossref_primary_10_1063_5_0222557
crossref_primary_10_1073_pnas_2307671120
crossref_primary_10_1038_s41524_025_01665_8
crossref_primary_10_3390_mi14020405
crossref_primary_10_1021_acs_chemmater_5c00898
crossref_primary_10_1002_qua_27078
crossref_primary_10_1038_s41467_024_52991_2
crossref_primary_10_1080_00268976_2022_2051761
crossref_primary_10_1021_acs_jpclett_5c02032
crossref_primary_10_1002_adfm_202422716
crossref_primary_10_1021_acs_jctc_5c00886
crossref_primary_10_1088_1361_648X_ad14c8
crossref_primary_10_1002_adma_202307591
crossref_primary_10_1016_j_ijhydene_2025_06_043
crossref_primary_10_1103_PhysRevResearch_1_033153
crossref_primary_10_1021_jacs_4c12042
crossref_primary_10_1021_acs_jctc_4c01642
crossref_primary_10_1103_jtnr_dhl1
crossref_primary_10_1016_j_cplett_2021_138594
crossref_primary_10_1016_j_nanoen_2024_109964
crossref_primary_10_1002_adfm_202503757
crossref_primary_10_1021_acs_nanolett_5c00628
crossref_primary_10_1038_s41524_024_01384_6
crossref_primary_10_1016_j_ijhydene_2025_05_225
crossref_primary_10_1038_s41524_024_01467_4
crossref_primary_10_1063_5_0270342
crossref_primary_10_1103_5x2q_qfd2
crossref_primary_10_1002_anie_201915702
crossref_primary_10_1016_j_mtphys_2024_101328
crossref_primary_10_1021_acs_jpclett_5c00910
crossref_primary_10_1016_j_physb_2024_416276
crossref_primary_10_1039_D5QM00259A
crossref_primary_10_1002_smll_202405201
crossref_primary_10_1016_j_apsusc_2025_162624
crossref_primary_10_1088_2516_1075_ac0c26
crossref_primary_10_3390_molecules30183840
crossref_primary_10_1016_j_physb_2025_416898
crossref_primary_10_1088_0256_307X_40_12_126301
crossref_primary_10_1002_adfm_202206952
crossref_primary_10_1103_qlnb_zx25
crossref_primary_10_1016_j_ijhydene_2025_04_141
crossref_primary_10_1016_j_jcat_2024_115429
crossref_primary_10_1002_adom_202403069
crossref_primary_10_1088_2051_672X_acfb9b
crossref_primary_10_1063_5_0080087
crossref_primary_10_1021_acs_jpclett_4c03643
crossref_primary_10_1360_SSPMA_2025_0053
crossref_primary_10_1515_corrrev_2024_0039
crossref_primary_10_1016_j_apsusc_2024_161524
crossref_primary_10_1016_j_matlet_2024_136925
crossref_primary_10_1016_j_mcat_2023_113805
crossref_primary_10_1007_s40843_023_2587_7
crossref_primary_10_1016_j_cplett_2025_142101
crossref_primary_10_1039_D5TA00296F
crossref_primary_10_1016_j_apsusc_2023_158509
crossref_primary_10_1038_s43588_023_00456_9
crossref_primary_10_1103_kt15_x472
crossref_primary_10_1039_D5CP02237A
crossref_primary_10_1088_2516_1075_ab3b28
crossref_primary_10_1016_j_apsusc_2022_152765
crossref_primary_10_1002_smtd_202402037
crossref_primary_10_1103_PhysRevApplied_17_064016
crossref_primary_10_1039_D0SC06132H
crossref_primary_10_1088_1361_6528_aca80d
crossref_primary_10_1073_pnas_2403497121
crossref_primary_10_1088_1361_648X_ab5246
crossref_primary_10_1039_D0NR02286A
crossref_primary_10_1021_acs_jpclett_5c02036
crossref_primary_10_1021_acs_jpclett_5c01467
crossref_primary_10_1360_SSPMA_2024_0622
crossref_primary_10_1016_j_physe_2023_115860
crossref_primary_10_1360_SSPMA_2024_0346
crossref_primary_10_1002_sstr_202500221
crossref_primary_10_1103_PhysRevB_105_085142
crossref_primary_10_1016_j_commt_2024_100004
Cites_doi 10.1021/ja211224s
10.1103/PhysRevB.51.13281
10.1038/312021a0
10.1103/PhysRevLett.106.138302
10.1021/acs.jpclett.5b00429
10.1021/ja0346330
10.1063/1.469915
10.1002/adma.201504631
10.1103/PhysRevLett.52.997
10.1103/PhysRevB.84.155413
10.1021/ja302846n
10.1038/nmat4091
10.1002/9783527808175.ch19
10.1021/acsenergylett.7b00862
10.1103/RevModPhys.74.601
10.1021/jp809596q
10.1088/0034-4885/61/3/002
10.1103/PhysRevLett.102.046802
10.1038/353737a0
10.1021/jacs.6b08725
10.1021/jp206594e
10.1021/ja711023z
10.1103/PhysRevB.96.195308
10.1103/PhysRevLett.95.163001
10.1021/ct501106d
10.1038/s41570-017-0109
10.1021/acs.nanolett.7b01304
10.1021/ja906599b
10.1063/1.4754831
10.1063/1.4928510
10.1021/ja903781h
10.1021/nn800674n
10.1103/PhysRevLett.80.4510
10.1103/PhysRevLett.76.1212
10.1021/jp984162h
10.1103/PhysRevLett.96.026103
10.1002/cphc.201200941
10.1021/cr1001595
10.1038/s41467-017-01360-3
10.1016/j.jphotochem.2006.12.008
10.1016/j.rser.2015.10.120
10.1021/acsenergylett.8b01226
10.1038/nnano.2014.150
10.1103/PhysRevLett.90.043005
10.1063/1.5035412
10.1021/ja055185u
10.1038/ncomms9242
10.1038/238037a0
10.1103/PhysRevLett.100.156404
10.1063/1.4766449
10.1103/PhysRevB.80.235416
10.1063/1.3526297
10.1063/1.4757100
10.1103/PhysRevB.97.205417
10.1002/anie.201108076
10.1021/ja8092373
10.1126/science.1109366
10.1038/ncomms9831
10.1103/PhysRevB.55.10278
10.1103/PhysRevB.96.115431
10.1021/ja809108y
10.1021/ja808790p
10.1063/1.331124
10.1063/1.1834562
10.1021/acs.nanolett.7b03933
10.1021/ct400934c
10.1039/C5CP00351B
10.1002/qua.24891
10.1021/jz500770c
10.1021/ct400641n
10.1063/1.459170
10.1103/PhysRevB.49.14251
10.1038/nnano.2014.167
10.1021/nn504760x
10.1021/acs.jctc.5b00969
10.1021/acs.chemmater.6b03727
10.1039/C2CS35246J
10.1021/ja064164c
10.1039/c3nr06906k
10.1103/PhysRevLett.103.226401
10.1021/jp0669052
10.1002/wcms.1305
10.1103/PhysRev.134.A471
10.1103/PhysRevLett.96.226402
10.1126/science.1155866
10.1038/ncomms11504
10.1021/cr900289f
10.1103/PhysRevB.42.8947
10.1103/PhysRevB.46.15574
10.1021/jacs.5b03141
10.1063/1.4838059
10.1063/1.4757762
10.1103/PhysRevB.73.195309
10.1088/1361-648X/aae864
10.1063/1.467455
10.1103/PhysRevB.97.245132
10.1103/PhysRevB.47.558
10.1080/00268971003720314
10.1103/PhysRevB.85.085201
10.1021/ja3012676
10.1021/nn303973r
10.1021/ct500087v
10.1063/1.3636402
10.1103/PhysRevLett.102.036402
10.1021/acs.jpclett.8b00938
10.1021/ja4036994
10.1002/wcms.64
10.1103/PhysRevLett.80.4514
10.1021/nl903868w
10.1002/jcc.24367
10.1021/ja072191c
10.1021/acsnano.7b04541
10.1021/cr050173c
10.1016/j.materresbull.2017.09.054
10.1103/PhysRevLett.81.2312
10.1016/S1386-9477(02)00374-0
10.1021/acs.jpcc.6b12921
10.1021/nn5034746
10.1126/science.1185509
10.1021/jp4029408
10.1126/science.1061051
10.1021/ja5044787
10.1146/annurev.physchem.52.1.193
10.1021/acs.jpclett.6b00710
10.1039/a801824c
10.1063/1.2960628
10.1103/PhysRevB.48.13115
10.1103/PhysRevB.89.125427
10.1103/PhysRevB.44.10945
10.1103/PhysRevLett.98.023001
10.1016/S1010-6030(00)00204-5
10.1021/nl401544y
10.1103/PhysRevLett.75.818
10.1021/acs.jpclett.7b00265
10.1021/ja200086g
10.1021/jz401955r
10.1021/ja312205c
10.1063/1.4964797
10.1126/science.1122190
10.1021/acs.nanolett.7b03429
10.1039/C6CS00078A
10.1021/ja105283s
10.1021/acs.jpclett.8b01302
10.1021/nn505736z
10.1039/C8CP03841D
10.1016/j.cplett.2016.12.069
10.1021/ja201269b
10.1021/jp412180t
10.1021/jp9639915
10.1002/anie.201713102
10.1146/annurev-matsci-062910-100445
10.1103/PhysRevB.96.134308
10.1021/nn1003937
10.1021/cr3004899
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7QH
7TN
7UA
C1K
F1W
H96
JQ2
L.G
DOI 10.1002/wcms.1411
DatabaseName CrossRef
Aqualine
Oceanic Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-0884
EndPage n/a
ExternalDocumentID 10_1002_wcms_1411
WCMS1411
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11704363; 11620101003; 21421063
– fundername: National Key Foundation of China
  funderid: 2016YFA0200604; 2017YFA0204904
– fundername: Fundamental Research Funds for the Central Universities of China
  funderid: WK3510000005
GroupedDBID 05W
0R~
1OC
1VH
31~
33P
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-A
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
WYJ
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
LH4
7QH
7TN
7UA
C1K
F1W
H96
JQ2
L.G
ID FETCH-LOGICAL-c2971-9fb50f8ead764f5356aa38143bca2bcf65ebff4d15573b78cef5540fdaab017d3
IEDL.DBID DRFUL
ISICitedReferencesCount 364
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000491351500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1759-0876
IngestDate Fri Jul 25 11:56:49 EDT 2025
Sat Nov 29 02:23:38 EST 2025
Tue Nov 18 22:43:35 EST 2025
Wed Jan 22 16:37:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2971-9fb50f8ead764f5356aa38143bca2bcf65ebff4d15573b78cef5540fdaab017d3
Notes Funding information
Fundamental Research Funds for the Central Universities of China, Grant/Award Number: WK3510000005; National Natural Science Foundation of China, Grant/Award Numbers: 11704363, 11620101003, 21421063; National Key Foundation of China, Grant/Award Numbers: 2016YFA0200604, 2017YFA0204904
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2306051924
PQPubID 2034594
PageCount 27
ParticipantIDs proquest_journals_2306051924
crossref_citationtrail_10_1002_wcms_1411
crossref_primary_10_1002_wcms_1411
wiley_primary_10_1002_wcms_1411_WCMS1411
PublicationCentury 2000
PublicationDate November/December 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November/December 2019
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Wiley interdisciplinary reviews. Computational molecular science
PublicationYear 2019
Publisher Wiley Periodicals, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Periodicals, Inc
– name: Wiley Subscription Services, Inc
References 2011; 115
2002; 14
2010; 10
2013; 4
1991; 353
2010; 108
2009; 80
1982; 53
2015; 143
1964; 134
2009; 113
1998; 81
2007; 190
1998; 80
2000; 132
2017; 670
2013; 7
2008; 100
2016; 37
1996; 76
2014; 136
2013; 9
1984; 52
2018; 9
1990; 42
2018; 3
2018; 2
2012; 134
1997; 55
1984; 312
2015; 137
2013; 117
2010; 110
2013; 113
2014; 13
1992; 46
2018; 30
2002; 90
2012; 137
2010; 4
2001; 52
2016; 45
2014; 10
1995; 51
2012; 101
2011; 1
2002; 74
2010; 328
2011; 84
2008; 129
1999; 103
1998; 61
2007; 98
2018; 20
2011; 134
2011; 133
2016; 12
2018; 18
2016; 7
2015; 115
2005; 122
2005; 127
2005; 95
2009; 102
2016; 28
2018; 97
2006; 106
2008; 130
2009; 103
1995; 75
2017; 7
2017; 8
2017; 2
2006; 73
2011; 99
1998; 110
1993a; 47
2012; 51
1994; 101
2014; 5
2013; 14
2001; 293
2003; 91
2013; 13
1991; 44
1997; 101
2005; 308
2017; 121
2014; 9
2014; 8
2003; 125
2006; 128
2014; 6
1990; 93
2014; 118
2015; 6
2006; 96
2015; 17
2007; 129
2018; 148
2015; 11
2013; 42
1994; 49
2017; 29
2009; 131
2008; 320
1972; 238
2014; 89
2016; 120
2014; 115
2016; 55
2006; 311
2017; 96
2011; 106
2017; 17
2017; 11
2007; 111
1993b; 48
2010; 132
2011; 41
2018
2013; 135
1995; 103
2016; 138
2009; 3
2012; 85
2018; 57
e_1_2_12_6_1
e_1_2_12_130_1
e_1_2_12_2_1
e_1_2_12_111_1
e_1_2_12_157_1
e_1_2_12_138_1
e_1_2_12_115_1
e_1_2_12_153_1
e_1_2_12_134_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_146_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_142_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_139_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_152_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_137_1
e_1_2_12_114_1
e_1_2_12_133_1
e_1_2_12_156_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_141_1
e_1_2_12_122_1
e_1_2_12_29_1
e_1_2_12_149_1
e_1_2_12_126_1
e_1_2_12_103_1
e_1_2_12_145_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_151_1
e_1_2_12_19_1
e_1_2_12_38_1
e_1_2_12_136_1
Rohlfing M (e_1_2_12_17_1) 2003; 91
e_1_2_12_132_1
e_1_2_12_113_1
e_1_2_12_155_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_140_1
e_1_2_12_49_1
e_1_2_12_121_1
e_1_2_12_148_1
e_1_2_12_102_1
e_1_2_12_125_1
e_1_2_12_144_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_150_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_158_1
e_1_2_12_39_1
e_1_2_12_116_1
e_1_2_12_131_1
e_1_2_12_154_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_147_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_143_1
e_1_2_12_124_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – volume: 238
  start-page: 37
  issue: 5358
  year: 1972
  end-page: 38
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
– volume: 101
  start-page: 133907
  issue: 13
  year: 2012
  article-title: Determination of electron and hole lifetimes of rutile and anatase TiO single crystals
  publication-title: Appl Phys Lett
– volume: 3
  start-page: 2159
  issue: 9
  year: 2018
  end-page: 2166
  article-title: Spin–orbit interactions greatly accelerate nonradiative dynamics in lead halide perovskites
  publication-title: ACS Energy Lett
– volume: 46
  start-page: 15574
  year: 1992
  end-page: 15577
  article-title: Electron relaxation in quantum dots by means of Auger processes
  publication-title: Phys Rev B
– volume: 45
  start-page: 3641
  issue: 13
  year: 2016
  end-page: 3657
  article-title: Electronically non‐adiabatic influences in surface chemistry and dynamics
  publication-title: Chem Soc Rev
– volume: 7
  start-page: 1072
  issue: 2
  year: 2013
  end-page: 1080
  article-title: Exciton dynamics in suspended monolayer and few‐layer MoS 2D crystals
  publication-title: ACS Nano
– volume: 20
  start-page: 25275
  issue: 39
  year: 2018
  end-page: 25294
  article-title: Charge transfer dynamics at the boron subphthalocyanine chloride/ 0 interface: Non‐adiabatic dynamics study with Libra‐X
  publication-title: Phys Chem Chem Phys
– volume: 9
  start-page: 3049
  issue: 11
  year: 2018
  end-page: 3056
  article-title: Tuning solvated electrons by polar‐nonpolar oxide heterostructure
  publication-title: J Phys Chem Lett
– volume: 113
  start-page: 4496
  issue: 6
  year: 2013
  end-page: 4565
  article-title: Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces
  publication-title: Chem Rev
– volume: 30
  start-page: 484002
  issue: 48
  year: 2018
  article-title: Non‐adiabatic molecular dynamics with ΔSCF excited states
  publication-title: J Phys Condens Matter
– volume: 131
  start-page: 12290
  issue: 34
  year: 2009
  end-page: 12297
  article-title: Origin of photocatalytic activity of nitrogen‐doped TiO nanobelts
  publication-title: J Am Chem Soc
– volume: 100
  start-page: 156404
  issue: 15
  year: 2008
  article-title: Proposal for a new class of materials: Spin gapless semiconductors
  publication-title: Phys Rev Lett
– volume: 4
  start-page: 3735
  issue: 21
  year: 2013
  end-page: 3740
  article-title: Adiabatic energy loss in hyperthermal H atom collisions with Cu and Au: A basis for testing the importance of nonadiabatic energy loss
  publication-title: J Phys Chem Lett
– volume: 128
  start-page: 15666
  issue: 49
  year: 2006
  end-page: 15671
  article-title: Origin of photoactivity of nitrogen‐doped titanium dioxide under visible light
  publication-title: J Am Chem Soc
– volume: 134
  start-page: A471
  issue: 2A
  year: 1964
  end-page: A480
  article-title: Phonon scattering in semiconductors from thermal conductivity studies
  publication-title: Phys Rev
– volume: 76
  start-page: 1212
  issue: 8
  year: 1996
  end-page: 1215
  article-title: Excitation energies from time‐dependent density‐functional theory
  publication-title: Phys Rev Lett
– volume: 101
  start-page: 4657
  issue: 6
  year: 1994
  end-page: 4667
  article-title: Proton transfer in solution: Molecular dynamics with quantum transitions
  publication-title: J Chem Phys
– volume: 320
  start-page: 359
  issue: 5874
  year: 2008
  end-page: 362
  article-title: Atomlike, hollow‐core‐bound molecular orbitals of C
  publication-title: Science
– volume: 106
  start-page: 4402
  issue: 10
  year: 2006
  end-page: 4427
  article-title: Solvated electrons on metal oxide surfaces
  publication-title: Chem Rev
– volume: 18
  start-page: 1592
  issue: 3
  year: 2018
  end-page: 1599
  article-title: Delocalized impurity phonon induced electron–hole recombination in doped semiconductors
  publication-title: Nano Lett
– volume: 96
  start-page: 026103
  year: 2006
  article-title: Influence of nitrogen doping on the defect formation and surface properties of TiO rutile and anatase
  publication-title: Phys Rev Lett
– volume: 134
  start-page: 6575
  issue: 15
  year: 2012
  end-page: 6578
  article-title: Synergetic effect of MoS and graphene as cocatalysts for enhanced photocatalytic H production activity of TiO nanoparticles
  publication-title: J Am Chem Soc
– volume: 137
  start-page: 22A549
  issue: 22
  year: 2012
  article-title: Ring polymer molecular dynamics with surface hopping
  publication-title: J Chem Phys
– volume: 7
  start-page: 11504
  year: 2016
  article-title: The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures
  publication-title: Nat Commun
– volume: 8
  start-page: 10931
  issue: 10
  year: 2014
  end-page: 10940
  article-title: Ultrafast carrier thermalization and cooling dynamics in few‐layer MoS
  publication-title: ACS Nano
– volume: 2
  start-page: 2647
  issue: 12
  year: 2017
  end-page: 2652
  article-title: Slow cooling of hot polarons in halide perovskite solar cells
  publication-title: ACS Energy Lett
– volume: 17
  start-page: 5229
  issue: 9
  year: 2017
  end-page: 5237
  article-title: Long‐lived direct and indirect interlayer excitons in van der Waals heterostructures
  publication-title: Nano Lett
– volume: 135
  start-page: 1607
  issue: 4
  year: 2013
  end-page: 1616
  article-title: Understanding the high photocatalytic activity of (B, Ag)‐Codoped TiO under solar‐light irradiation with XPS, solid‐state NMR, and DFT calculations
  publication-title: J Am Chem Soc
– volume: 113
  start-page: 7236
  issue: 17
  year: 2009
  end-page: 7245
  article-title: First‐principle calculations of solvated electrons at protic solvent–TiO interfaces with oxygen vacancies
  publication-title: J Phys Chem C
– volume: 6
  start-page: 5394
  year: 2014
  end-page: 5401
  article-title: First‐principles Raman spectra of MoS , WS and their heterostructures
  publication-title: Nanoscale
– volume: 670
  start-page: 64
  year: 2017
  end-page: 70
  article-title: Nuclear quantum effects on adsorption of H and isotopologues on metal ions
  publication-title: Chem Phys Lett
– volume: 110
  start-page: 7082
  issue: 12
  year: 2010
  end-page: 7099
  article-title: Ultrafast interfacial proton‐coupled electron transfer
  publication-title: Chem Rev
– volume: 41
  start-page: 399
  issue: 1
  year: 2011
  end-page: 431
  article-title: Recent developments in semiconductor thermoelectric physics and materials
  publication-title: Ann Rev Mater Res
– volume: 135
  start-page: 11429
  issue: 31
  year: 2013
  end-page: 11432
  article-title: Level alignment of a prototypical photocatalytic system: Methanol on TiO (110)
  publication-title: J Am Chem Soc
– volume: 308
  start-page: 1154
  issue: 5725
  year: 2005
  end-page: 1158
  article-title: Wet electrons at the H O/TiO (110) surface
  publication-title: Science
– volume: 110
  start-page: 407
  year: 1998
  end-page: 419
  article-title: Mixed quantum‐classical dynamics
  publication-title: Faraday Discuss
– volume: 49
  start-page: 14251
  issue: 20
  year: 1994
  end-page: 14269
  article-title: molecular‐dynamics simulation of the liquid‐metalamorphous‐semiconductor transition in germanium
  publication-title: Phys Rev B
– volume: 14
  start-page: 115
  issue: 1–2
  year: 2002
  end-page: 120
  article-title: Quantum dot solar cells
  publication-title: Physica E
– volume: 10
  start-page: 789
  issue: 2
  year: 2014
  end-page: 804
  article-title: Advanced capabilities of the PYXAID program: Integration schemes, decoherence effects, multiexcitonic states, and field‐matter interaction
  publication-title: J Chem Theory Comput
– volume: 48
  start-page: 13115
  issue: 17
  year: 1993b
  end-page: 13118
  article-title: molecular dynamics for open‐shell transition metals
  publication-title: Phys Rev B
– volume: 96
  start-page: 195308
  year: 2017
  article-title: Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions
  publication-title: Phys Rev B
– volume: 96
  start-page: 134308
  issue: 13
  year: 2017
  article-title: nonadiabatic molecular dynamics investigation on the dynamics of photogenerated spin hole current in Cu‐doped MoS
  publication-title: Phys Rev B
– volume: 353
  start-page: 737
  issue: 6346
  year: 1991
  end-page: 740
  article-title: A low‐cost, high‐efficiency solar cell based on dye‐sensitized colloidal TiO films
  publication-title: Nature
– volume: 190
  start-page: 228
  issue: 2–3
  year: 2007
  end-page: 240
  article-title: The on‐the‐fly surface‐hopping program system Newton‐X: Application to simulation of the nonadiabatic photodynamics of benchmark systems
  publication-title: J Photochem Photobiol A Chem
– volume: 115
  start-page: 012012
  issue: 1
  year: 2014
  article-title: Phonons and defects in semiconductors and nanostructures: Phonon trapping, phonon scattering and heat flow at heterojunctions
  publication-title: J Appl Phys
– volume: 103
  start-page: 226401
  issue: 22
  year: 2009
  article-title: Band gap narrowing of titanium oxide semiconductors by noncompensated anion‐Cation codoping for enhanced visible‐Light photoactivity
  publication-title: Phys Rev Lett
– volume: 132
  start-page: 99
  issue: 1–2
  year: 2000
  end-page: 104
  article-title: Time‐resolved photoluminescence of particulate TiO photocatalysts suspended in aqueous solutions
  publication-title: J Photochem Photobiol A Chem
– volume: 137
  start-page: 22A301
  issue: 22
  year: 2012
  article-title: Perspective: Nonadiabatic dynamics theory
  publication-title: J Chem Phys
– volume: 129
  start-page: 054110
  issue: 5
  year: 2008
  article-title: Real‐time, local basis‐set implementation of time‐dependent density functional theory for excited state dynamics simulations
  publication-title: J Chem Phys
– volume: 80
  start-page: 235416
  issue: 23
  year: 2009
  article-title: Theoretical study of the molecular and electronic structure of methanol on a TiO (110) surface
  publication-title: Phys Rev B
– volume: 148
  start-page: 230901
  issue: 23
  year: 2018
  article-title: Perspective: How to understand electronic friction
  publication-title: J Chem Phys
– volume: 7
  start-page: 2100
  issue: 11
  year: 2016
  end-page: 2112
  article-title: Recent progress in surface hopping: 2011–2015
  publication-title: J Phys Chem Lett
– volume: 108
  start-page: 1471
  issue: 11
  year: 2010
  end-page: 1479
  article-title: Nonadiabatic dynamics by mean‐field and surface‐hopping approaches: Energy conservation considerations
  publication-title: Mol Phys
– volume: 42
  start-page: 8947
  year: 1990
  end-page: 8951
  article-title: Phonon scattering and energy relaxation in two‐, one‐, and zero‐dimensional electron gases
  publication-title: Phys Rev B
– volume: 9
  start-page: 4959
  issue: 11
  year: 2013
  end-page: 4972
  article-title: The PYXAID program for non‐adiabatic molecular dynamics in condensed matter systems
  publication-title: J Chem Theory Comput
– volume: 133
  start-page: 7296
  issue: 19
  year: 2011
  end-page: 7299
  article-title: MoS nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction
  publication-title: J Am Chem Soc
– volume: 13
  start-page: 3664
  issue: 8
  year: 2013
  end-page: 3670
  article-title: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two‐dimensional monolayer materials
  publication-title: Nano Lett
– volume: 134
  start-page: 7600
  issue: 18
  year: 2012
  end-page: 7603
  article-title: Effect of nature and location of defects on bandgap narrowing in black TiO nanoparticles
  publication-title: J Am Chem Soc
– volume: 93
  start-page: 1061
  issue: 2
  year: 1990
  end-page: 1071
  article-title: Molecular dynamics with electronic transitions
  publication-title: J Chem Phys
– volume: 13
  start-page: 1135
  issue: 12
  year: 2014
  end-page: 1142
  article-title: Vertical and in‐plane heterostructures from WS /MoS monolayers
  publication-title: Nat Mater
– volume: 9
  start-page: 676
  issue: 9
  year: 2014
  end-page: 681
  article-title: Atomically thin p–n junctions with van der Waals heterointerfaces
  publication-title: Nat Nanotechnol
– volume: 6
  start-page: 8831
  issue: 1
  year: 2015
  article-title: Ultrafast response of monolayer molybdenum disulfide photodetectors
  publication-title: Nat Commun
– volume: 84
  start-page: 155413
  issue: 15
  year: 2011
  article-title: Phonons in single‐layer and few‐layer MoS and WS
  publication-title: Phys Rev B
– volume: 137
  start-page: 22A545
  issue: 22
  year: 2012
  article-title: Decoherence‐induced surface hopping
  publication-title: J Chem Phys
– volume: 125
  start-page: 7989
  issue: 26
  year: 2003
  end-page: 7997
  article-title: Quantum dynamics simulations of interfacial electron transfer in sensitized TiO semiconductors
  publication-title: J Am Chem Soc
– volume: 17
  start-page: 6435
  issue: 10
  year: 2017
  end-page: 6442
  article-title: Phonon‐assisted ultrafast charge transfer at van der Waals heterostructure interface
  publication-title: Nano Lett
– volume: 312
  start-page: 21
  issue: 5989
  year: 1984
  end-page: 27
  article-title: Solid‐state perspectives of the photoelectrochemistry of semiconductor electrolyte junctions
  publication-title: Nature
– volume: 80
  start-page: 4514
  issue: 20
  year: 1998
  end-page: 4517
  article-title: Optical absorption of insulators and the electron–hole interaction: An calculation
  publication-title: Phys Rev Lett
– volume: 96
  start-page: 115431
  year: 2017
  article-title: Improvements in the GW and Bethe–Salpeter‐equation calculations on phosphorene
  publication-title: Phys Rev B
– volume: 121
  start-page: 3797
  issue: 7
  year: 2017
  end-page: 3806
  article-title: Strong interaction at the perovskite/TiO interface facilitates ultrafast photoinduced charge separation: A nonadiabatic molecular dynamics study
  publication-title: J Phys Chem C
– volume: 73
  start-page: 195309
  issue: 19
  year: 2006
  article-title: Interplay between hydrogen bonding and electron solvation on hydrated TiO (110)
  publication-title: Phys Rev B
– volume: 90
  start-page: 043005
  issue: 4
  year: 2002
  article-title: Excitations in time‐dependent density‐functional theory
  publication-title: Phys Rev Lett
– volume: 8
  start-page: 11147
  issue: 11
  year: 2014
  end-page: 11153
  article-title: Ultrafast transient terahertz conductivity of monolayer MoS and WSe grown by chemical vapor deposition
  publication-title: ACS Nano
– volume: 311
  start-page: 1436
  issue: 5766
  year: 2006
  end-page: 1440
  article-title: Ultrafast interfacial proton‐coupled electron transfer
  publication-title: Science
– volume: 131
  start-page: 926
  issue: 3
  year: 2009
  end-page: 927
  article-title: Photoassisted overall water splitting in a visible light‐absorbing dye‐sensitized photoelectrochemical cell
  publication-title: J Am Chem Soc
– volume: 1
  start-page: 620
  issue: 4
  year: 2011
  end-page: 633
  article-title: Nonadiabatic dynamics with trajectory surface hopping method
  publication-title: WIREs Comput Mol Sci
– volume: 52
  start-page: 193
  issue: 1
  year: 2001
  end-page: 231
  article-title: Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots
  publication-title: Annu Rev Phys Chem
– volume: 47
  start-page: 558
  issue: 1
  year: 1993a
  end-page: 561
  article-title: molecular dynamics for liquid metals
  publication-title: Phys Rev B
– volume: 42
  start-page: 2357
  issue: 6
  year: 2013
  end-page: 2387
  article-title: Design and development of photoanodes for water‐splitting dye‐sensitized photoelectrochemical cells
  publication-title: Chem Soc Rev
– volume: 6
  start-page: 1624
  issue: 9
  year: 2015
  end-page: 1627
  article-title: Anatomy of the photochemical reaction: Excited‐state dynamics reveals the C–H acidity mechanism of methoxy photo‐oxidation on titania
  publication-title: J Phys Chem Lett
– volume: 53
  start-page: 3813
  issue: 5
  year: 1982
  end-page: 3818
  article-title: Efficiency of hot‐carrier solar energy converters
  publication-title: J Appl Phys
– volume: 55
  start-page: 10278
  issue: 16
  year: 1997
  end-page: 10281
  article-title: calculation of the quasiparticle spectrum and excitonic effects in Li O
  publication-title: Phys Rev B
– volume: 8
  start-page: 12717
  issue: 12
  year: 2014
  end-page: 12724
  article-title: Ultrafast charge separation and indirect exciton formation in a MoS –MoSe van der Waals heterostructure
  publication-title: ACS Nano
– volume: 132
  start-page: 11914
  issue: 34
  year: 2010
  end-page: 11916
  article-title: Tunable photocatalytic selectivity of hollow TiO microspheres composed of anatase polyhedra with exposed {001} facets
  publication-title: J Am Chem Soc
– volume: 115
  start-page: 1215
  issue: 18
  year: 2015
  end-page: 1231
  article-title: A general method to describe intersystem crossing dynamics in trajectory surface hopping
  publication-title: Int J Quant Chem
– volume: 7
  start-page: e1305
  issue: 3
  year: 2017
  article-title: Nonadiabatic charge dynamics in novel solar cell materials
  publication-title: WIREs Comput Mol Sci
– volume: 12
  start-page: 466
  issue: 2
  year: 2016
  end-page: 476
  article-title: Real‐time TD‐DFT with classical ion dynamics: Methodology and applications
  publication-title: J Chem Theory Comput
– volume: 5
  start-page: 1953
  issue: 11
  year: 2014
  end-page: 1957
  article-title: Electron–hole recombination time at TiO single‐crystal surfaces: Influence of surface band bending
  publication-title: J Phys Chem Lett
– volume: 96
  start-page: 226402
  issue: 22
  year: 2006
  article-title: Quasiparticle self‐consistent theory
  publication-title: Phys Rev Lett
– volume: 129
  start-page: 8406
  issue: 27
  year: 2007
  end-page: 8407
  article-title: Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity
  publication-title: J Am Chem Soc
– volume: 44
  start-page: 10945
  year: 1991
  end-page: 10948
  article-title: Intrinsic mechanism for the poor luminescence properties of quantum‐box systems
  publication-title: Phys Rev B
– volume: 81
  start-page: 2312
  issue: 11
  year: 1998
  end-page: 2315
  article-title: Electron–hole excitations in semiconductors and insulators
  publication-title: Phys Rev Lett
– volume: 37
  start-page: 1626
  issue: 17
  year: 2016
  end-page: 1649
  article-title: Libra: An open‐source “methodology discovery” library for quantum and classical dynamics simulations
  publication-title: J Comput Chem
– volume: 9
  start-page: 3485
  issue: 12
  year: 2018
  end-page: 3490
  article-title: Superatom molecular orbital as an interfacial charge separation state
  publication-title: J Phys Chem Lett
– volume: 103
  start-page: 3120
  issue: 16
  year: 1999
  end-page: 3127
  article-title: Charge carrier dynamics of standard TiO catalysts revealed by femtosecond diffuse reflectance spectroscopy
  publication-title: J Phys Chem B
– volume: 55
  start-page: 17
  year: 2016
  end-page: 24
  article-title: A comprehensive review on ZnS: From synthesis to an approach on solar cell
  publication-title: Renew Sustain Energy Rev
– volume: 131
  start-page: 3152
  issue: 9
  year: 2009
  end-page: 3153
  article-title: Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties
  publication-title: J Am Chem Soc
– volume: 131
  start-page: 4078
  issue: 11
  year: 2009
  end-page: 4083
  article-title: Solvothermal synthesis and photoreactivity of anatase TiO nanosheets with dominant {001} facets
  publication-title: J Am Chem Soc
– volume: 127
  start-page: 18234
  issue: 51
  year: 2005
  end-page: 18242
  article-title: Influence of thermal fluctuations on interfacial electron transfer in functionalized TiO semiconductors
  publication-title: J Am Chem Soc
– volume: 117
  start-page: 10974
  issue: 21
  year: 2013
  end-page: 10979
  article-title: Optical probe of charge separation at organic/inorganic semiconductor interfaces
  publication-title: J Phys Chem C
– volume: 102
  start-page: 036402
  issue: 3
  year: 2009
  article-title: Design of narrow‐gap TiO : A passivated codoping approach for enhanced photoelectrochemical activity
  publication-title: Phys Rev Lett
– volume: 51
  start-page: 2727
  issue: 11
  year: 2012
  end-page: 2730
  article-title: Rapid charge transport in dye‐sensitized solar cells made from vertically aligned single‐crystal rutile TiO nanowires
  publication-title: Angew Chem Int Ed
– volume: 143
  start-page: 064110
  issue: 6
  year: 2015
  article-title: Subspace formulation of time‐dependent density functional theory for large‐scale calculations
  publication-title: J Chem Phys
– volume: 57
  start-page: 5320
  issue: 19
  year: 2018
  end-page: 5324
  article-title: Experimental identification of ultrafast reverse hole transfer at the interface of the photoexcited methanol/graphitic carbon nitride system
  publication-title: Angew Chem Int Ed
– volume: 61
  start-page: 237
  issue: 3
  year: 1998
  end-page: 312
  article-title: The GW method
  publication-title: Rep Prog Phys
– volume: 99
  start-page: 102109
  issue: 10
  year: 2011
  article-title: Low‐temperature photocarrier dynamics in monolayer MoS
  publication-title: Appl Phys Lett
– volume: 3
  start-page: 93
  issue: 1
  year: 2009
  end-page: 99
  article-title: Breaking the phonon bottleneck in PbSe and CdSe quantum dots: Time‐domain density functional theory of charge carrier relaxation
  publication-title: ACS Nano
– volume: 10
  start-page: 1271
  issue: 4
  year: 2010
  end-page: 1275
  article-title: Emerging photoluminescence in monolayer MoS
  publication-title: Nano Lett
– volume: 8
  start-page: 1300
  issue: 1
  year: 2017
  article-title: Hot carrier cooling mechanisms in halide perovskites
  publication-title: Nat Commun
– volume: 11
  start-page: 12020
  issue: 12
  year: 2017
  end-page: 12026
  article-title: Robust stacking‐independent ultrafast charge transfer in MoS /WS bilayers
  publication-title: ACS Nano
– volume: 115
  start-page: 21641
  issue: 44
  year: 2011
  end-page: 21651
  article-title: Theoretical study of electron–phonon relaxation in PbSe and CdSe quantum dots: Evidence for phonon memory
  publication-title: J Phys Chem C
– volume: 134
  start-page: 024102
  issue: 2
  year: 2011
  article-title: Regarding the validity of the time‐dependent Kohn–Sham approach for electron‐nuclear dynamics via trajectory surface hopping
  publication-title: J Chem Phys
– volume: 106
  start-page: 138302
  issue: 13
  year: 2011
  article-title: Photocatalytic activity of bulk TiO anatase and rutile single crystals using infrared absorption spectroscopy
  publication-title: Phys Rev Lett
– volume: 95
  issue: 16
  year: 2005
  article-title: Trajectory surface hopping in the time‐dependent Kohn–Sham approach for electron‐nuclear dynamics
  publication-title: Phys Rev Lett
– volume: 122
  start-page: 034105
  issue: 3
  year: 2005
  article-title: Calculation of nonadiabatic couplings in density‐functional theory
  publication-title: J Chem Phys
– volume: 97
  start-page: 245132
  year: 2018
  article-title: Revisiting the approach to ‐ and ‐electron oxides
  publication-title: Phys Rev B
– volume: 6
  start-page: 8242
  year: 2015
  article-title: Molecular helices as electron acceptors in high‐performance bulk heterojunction solar cells
  publication-title: Nat Commun
– volume: 97
  start-page: 205417
  issue: 20
  year: 2018
  article-title: Phonon‐coupled ultrafast interlayer charge oscillation at van der Waals heterostructure interfaces
  publication-title: Phys Rev B
– volume: 10
  start-page: 2103
  issue: 5
  year: 2014
  end-page: 2113
  article-title: Quasiparticle level alignment for photocatalytic interfaces
  publication-title: J Chem Theory Comput
– volume: 131
  start-page: 15483
  issue: 42
  year: 2009
  end-page: 15491
  article-title: nonadiabatic molecular dynamics of wet‐electrons on the TiO surface
  publication-title: J Am Chem Soc
– volume: 328
  start-page: 1543
  issue: 5985
  year: 2010
  end-page: 1548
  article-title: Hot electron transfer from semiconductor nanocrystals
  publication-title: Science
– volume: 89
  start-page: 125427
  issue: 12
  year: 2014
  article-title: Exciton–exciton annihilation in MoSe monolayers
  publication-title: Phys Rev B
– volume: 137
  start-page: 8313
  issue: 26
  year: 2015
  end-page: 8320
  article-title: Charge transfer excitons at van der Waals interfaces
  publication-title: J Am Chem Soc
– volume: 102
  start-page: 046802
  year: 2009
  article-title: Renormalization of molecular quasiparticle levels at metal–molecule interfaces: Trends across binding regimes
  publication-title: Phys Rev Lett
– volume: 9
  start-page: 682
  issue: 9
  year: 2014
  end-page: 686
  article-title: Ultrafast charge transfer in atomically thin MoS /WS heterostructures
  publication-title: Nat Nanotechnol
– volume: 75
  start-page: 818
  issue: 5
  year: 1995
  end-page: 821
  article-title: calculations of the quasiparticle and absorption spectra of clusters: The sodium tetramer
  publication-title: Phys Rev Lett
– volume: 14
  start-page: 1314
  issue: 7
  year: 2013
  end-page: 1340
  article-title: Trajectory‐based nonadiabatic dynamics with time‐dependent density functional theory
  publication-title: Chemphyschem
– volume: 130
  start-page: 5018
  issue: 15
  year: 2008
  end-page: 5019
  article-title: The electronic origin of the visible‐light absorption properties of C‐, N‐ and S‐doped TiO nanomaterials
  publication-title: J Am Chem Soc
– volume: 80
  start-page: 4510
  issue: 20
  year: 1998
  end-page: 4513
  article-title: calculation of excitonic effects in the optical spectra of semiconductors
  publication-title: Phys Rev Lett
– volume: 136
  start-page: 8839
  issue: 25
  year: 2014
  end-page: 8842
  article-title: Enhanced photocatalytic CO ‐reduction activity of anatase TiO by coexposed {001} and {101} facets
  publication-title: J Am Chem Soc
– volume: 51
  start-page: 13281
  year: 1995
  end-page: 13293
  article-title: Reduced electron–phonon relaxation rates in quantum‐box systems: Theoretical analysis
  publication-title: Phys Rev B
– volume: 52
  start-page: 997
  issue: 12
  year: 1984
  end-page: 1000
  article-title: Density‐functional theory for time‐dependent systems
  publication-title: Phys Rev Lett
– volume: 134
  start-page: 2508
  issue: 5
  year: 2012
  end-page: 2511
  article-title: Mn‐doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%
  publication-title: J Am Chem Soc
– volume: 91
  start-page: 802
  issue: 256
  year: 2003
  article-title: Image states and excitons at insulator surfaces with negative electron affinity
  publication-title: Phys Rev Lett
– volume: 85
  start-page: 085201
  year: 2012
  article-title: Extracting versus effective band structure from supercell calculations on alloys and impurities
  publication-title: Phys Rev B
– volume: 101
  start-page: 4265
  issue: 21
  year: 1997
  end-page: 4275
  article-title: Charge carrier dynamics at TiO particles: Reactivity of free and trapped holes
  publication-title: J Phys Chem B
– volume: 110
  start-page: 6873
  issue: 11
  year: 2010
  end-page: 6890
  article-title: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third‐generation photovoltaic solar cells
  publication-title: Chem Rev
– volume: 74
  start-page: 601
  year: 2002
  end-page: 659
  article-title: Electronic excitations: Density‐functional versus many‐body Green's‐function approaches
  publication-title: Rev Mod Phys
– volume: 97
  start-page: 572
  year: 2018
  end-page: 577
  article-title: New class of lead free perovskite material for low‐cost solar cell application
  publication-title: Mater Res Bull
– volume: 8
  start-page: 1657
  issue: 7
  year: 2017
  end-page: 1663
  article-title: Evidence for electron–hole pair excitation in the associative desorption of H and D from Au(111)
  publication-title: J Phys Chem Lett
– volume: 98
  start-page: 023001
  issue: 2
  year: 2007
  article-title: Trajectory surface hopping within linear response time‐dependent density‐functional theory
  publication-title: Phys Rev Lett
– volume: 293
  start-page: 269
  issue: 5528
  year: 2001
  end-page: 271
  article-title: Visible‐light photocatalysis in nitrogen‐doped titanium oxides
  publication-title: Science
– start-page: 527
  year: 2018
  end-page: 566
– volume: 133
  start-page: 5202
  issue: 14
  year: 2011
  end-page: 5205
  article-title: Water splitting on composite plasmonic‐metal/semiconductor photoelectrodes: Evidence for selective plasmon‐induced formation of charge carriers near the semiconductor surface
  publication-title: J Am Chem Soc
– volume: 111
  start-page: 4871
  issue: 12
  year: 2007
  end-page: 4878
  article-title: time‐domain study of phonon‐assisted relaxation of charge carriers in a PbSe quantum dot time‐domain study of phonon‐assisted relaxation of charge carriers in a PbSe quantum dot
  publication-title: J Phys Chem C
– volume: 2
  start-page: 0109
  issue: 3
  year: 2018
  article-title: Nuclear quantum effects enter the mainstream
  publication-title: Nat Rev Chem
– volume: 103
  start-page: 10137
  issue: 23
  year: 1995
  end-page: 10145
  article-title: Molecular dynamics with electronic frictions
  publication-title: J Chem Phys
– volume: 118
  start-page: 2987
  issue: 6
  year: 2014
  end-page: 2991
  article-title: Charge transport and separation dynamics at the C /GaAs(001) interface
  publication-title: J Phys Chem C
– volume: 11
  start-page: 1360
  issue: 4
  year: 2015
  end-page: 1374
  article-title: An on‐the‐fly surface‐hopping program JADE for nonadiabatic molecular dynamics of polyatomic systems: Implementation and applications
  publication-title: J Chem Theory Comput
– volume: 120
  start-page: 144305
  issue: 14
  year: 2016
  article-title: Magnetism in molybdenum disulphide monolayer with sulfur substituted by 3 transition metals
  publication-title: J Appl Phys
– volume: 29
  start-page: 2466
  issue: 6
  year: 2017
  end-page: 2473
  article-title: Charge separation and recombination in two‐dimensional MoS /WS : Time‐domain modeling
  publication-title: Chem Mater
– volume: 4
  start-page: 2695
  issue: 5
  year: 2010
  end-page: 2700
  article-title: Anomalous lattice vibrations of single‐ and few‐layer MoS
  publication-title: ACS Nano
– volume: 138
  start-page: 13740
  issue: 41
  year: 2016
  end-page: 13749
  article-title: Ultrafast dynamics of photongenerated holes at a CH OH/TiO rutile interface
  publication-title: J Am Chem Soc
– volume: 17
  start-page: 31371
  issue: 47
  year: 2015
  end-page: 31396
  article-title: Real‐space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems
  publication-title: Phys Chem Chem Phys
– volume: 28
  start-page: 1950
  issue: 10
  year: 2016
  end-page: 1956
  article-title: Observation of strong interlayer coupling in MoS /WS heterostructures
  publication-title: Adv Mater
– ident: e_1_2_12_76_1
  doi: 10.1021/ja211224s
– ident: e_1_2_12_119_1
  doi: 10.1103/PhysRevB.51.13281
– ident: e_1_2_12_100_1
  doi: 10.1038/312021a0
– ident: e_1_2_12_145_1
  doi: 10.1103/PhysRevLett.106.138302
– ident: e_1_2_12_86_1
  doi: 10.1021/acs.jpclett.5b00429
– ident: e_1_2_12_110_1
  doi: 10.1021/ja0346330
– ident: e_1_2_12_33_1
  doi: 10.1063/1.469915
– ident: e_1_2_12_133_1
  doi: 10.1002/adma.201504631
– ident: e_1_2_12_61_1
  doi: 10.1103/PhysRevLett.52.997
– ident: e_1_2_12_153_1
  doi: 10.1103/PhysRevB.84.155413
– ident: e_1_2_12_79_1
  doi: 10.1021/ja302846n
– ident: e_1_2_12_130_1
  doi: 10.1038/nmat4091
– ident: e_1_2_12_35_1
  doi: 10.1002/9783527808175.ch19
– ident: e_1_2_12_115_1
  doi: 10.1021/acsenergylett.7b00862
– ident: e_1_2_12_16_1
  doi: 10.1103/RevModPhys.74.601
– ident: e_1_2_12_89_1
  doi: 10.1021/jp809596q
– ident: e_1_2_12_15_1
  doi: 10.1088/0034-4885/61/3/002
– ident: e_1_2_12_18_1
  doi: 10.1103/PhysRevLett.102.046802
– ident: e_1_2_12_5_1
  doi: 10.1038/353737a0
– ident: e_1_2_12_83_1
  doi: 10.1021/jacs.6b08725
– ident: e_1_2_12_105_1
  doi: 10.1021/jp206594e
– ident: e_1_2_12_68_1
  doi: 10.1021/ja711023z
– ident: e_1_2_12_114_1
  doi: 10.1103/PhysRevB.96.195308
– ident: e_1_2_12_54_1
  doi: 10.1103/PhysRevLett.95.163001
– ident: e_1_2_12_51_1
  doi: 10.1021/ct501106d
– ident: e_1_2_12_34_1
  doi: 10.1038/s41570-017-0109
– ident: e_1_2_12_131_1
  doi: 10.1021/acs.nanolett.7b01304
– ident: e_1_2_12_84_1
  doi: 10.1021/ja906599b
– ident: e_1_2_12_146_1
  doi: 10.1063/1.4754831
– ident: e_1_2_12_156_1
  doi: 10.1063/1.4928510
– ident: e_1_2_12_78_1
  doi: 10.1021/ja903781h
– ident: e_1_2_12_104_1
  doi: 10.1021/nn800674n
– ident: e_1_2_12_21_1
  doi: 10.1103/PhysRevLett.80.4510
– ident: e_1_2_12_67_1
– ident: e_1_2_12_28_1
  doi: 10.1103/PhysRevLett.76.1212
– ident: e_1_2_12_143_1
  doi: 10.1021/jp984162h
– ident: e_1_2_12_137_1
  doi: 10.1103/PhysRevLett.96.026103
– ident: e_1_2_12_38_1
  doi: 10.1002/cphc.201200941
– ident: e_1_2_12_90_1
  doi: 10.1021/cr1001595
– ident: e_1_2_12_116_1
  doi: 10.1038/s41467-017-01360-3
– ident: e_1_2_12_50_1
  doi: 10.1016/j.jphotochem.2006.12.008
– ident: e_1_2_12_6_1
  doi: 10.1016/j.rser.2015.10.120
– ident: e_1_2_12_157_1
  doi: 10.1021/acsenergylett.8b01226
– ident: e_1_2_12_127_1
  doi: 10.1038/nnano.2014.150
– ident: e_1_2_12_27_1
  doi: 10.1103/PhysRevLett.90.043005
– ident: e_1_2_12_32_1
  doi: 10.1063/1.5035412
– ident: e_1_2_12_101_1
  doi: 10.1021/ja055185u
– ident: e_1_2_12_111_1
  doi: 10.1038/ncomms9242
– ident: e_1_2_12_3_1
  doi: 10.1038/238037a0
– ident: e_1_2_12_152_1
  doi: 10.1103/PhysRevLett.100.156404
– ident: e_1_2_12_154_1
  doi: 10.1063/1.4766449
– ident: e_1_2_12_95_1
  doi: 10.1103/PhysRevB.80.235416
– ident: e_1_2_12_55_1
  doi: 10.1063/1.3526297
– ident: e_1_2_12_64_1
  doi: 10.1063/1.4757100
– ident: e_1_2_12_129_1
  doi: 10.1103/PhysRevB.97.205417
– ident: e_1_2_12_69_1
  doi: 10.1002/anie.201108076
– ident: e_1_2_12_70_1
  doi: 10.1021/ja8092373
– ident: e_1_2_12_87_1
  doi: 10.1126/science.1109366
– ident: e_1_2_12_13_1
  doi: 10.1038/ncomms9831
– ident: e_1_2_12_20_1
  doi: 10.1103/PhysRevB.55.10278
– ident: e_1_2_12_23_1
  doi: 10.1103/PhysRevB.96.115431
– ident: e_1_2_12_81_1
  doi: 10.1021/ja809108y
– ident: e_1_2_12_80_1
  doi: 10.1021/ja808790p
– ident: e_1_2_12_98_1
  doi: 10.1063/1.331124
– ident: e_1_2_12_62_1
  doi: 10.1063/1.1834562
– ident: e_1_2_12_135_1
  doi: 10.1021/acs.nanolett.7b03933
– ident: e_1_2_12_49_1
  doi: 10.1021/ct400934c
– ident: e_1_2_12_44_1
  doi: 10.1039/C5CP00351B
– ident: e_1_2_12_155_1
  doi: 10.1002/qua.24891
– ident: e_1_2_12_144_1
  doi: 10.1021/jz500770c
– ident: e_1_2_12_48_1
  doi: 10.1021/ct400641n
– ident: e_1_2_12_42_1
  doi: 10.1063/1.459170
– ident: e_1_2_12_60_1
  doi: 10.1103/PhysRevB.49.14251
– ident: e_1_2_12_4_1
  doi: 10.1038/nnano.2014.167
– ident: e_1_2_12_12_1
  doi: 10.1021/nn504760x
– ident: e_1_2_12_45_1
  doi: 10.1021/acs.jctc.5b00969
– ident: e_1_2_12_107_1
  doi: 10.1021/acs.chemmater.6b03727
– ident: e_1_2_12_77_1
  doi: 10.1039/C2CS35246J
– ident: e_1_2_12_74_1
  doi: 10.1021/ja064164c
– ident: e_1_2_12_132_1
  doi: 10.1039/c3nr06906k
– ident: e_1_2_12_140_1
  doi: 10.1103/PhysRevLett.103.226401
– ident: e_1_2_12_103_1
  doi: 10.1021/jp0669052
– ident: e_1_2_12_56_1
  doi: 10.1002/wcms.1305
– ident: e_1_2_12_148_1
  doi: 10.1103/PhysRev.134.A471
– ident: e_1_2_12_19_1
  doi: 10.1103/PhysRevLett.96.226402
– ident: e_1_2_12_113_1
  doi: 10.1126/science.1155866
– ident: e_1_2_12_134_1
  doi: 10.1038/ncomms11504
– ident: e_1_2_12_118_1
  doi: 10.1021/cr900289f
– ident: e_1_2_12_121_1
  doi: 10.1103/PhysRevB.42.8947
– ident: e_1_2_12_122_1
  doi: 10.1103/PhysRevB.46.15574
– ident: e_1_2_12_128_1
  doi: 10.1021/jacs.5b03141
– ident: e_1_2_12_147_1
  doi: 10.1063/1.4838059
– ident: e_1_2_12_37_1
  doi: 10.1063/1.4757762
– ident: e_1_2_12_91_1
  doi: 10.1103/PhysRevB.73.195309
– ident: e_1_2_12_158_1
  doi: 10.1088/1361-648X/aae864
– ident: e_1_2_12_63_1
  doi: 10.1063/1.467455
– ident: e_1_2_12_57_1
– ident: e_1_2_12_24_1
  doi: 10.1103/PhysRevB.97.245132
– ident: e_1_2_12_58_1
  doi: 10.1103/PhysRevB.47.558
– ident: e_1_2_12_43_1
  doi: 10.1080/00268971003720314
– ident: e_1_2_12_66_1
  doi: 10.1103/PhysRevB.85.085201
– ident: e_1_2_12_75_1
  doi: 10.1021/ja3012676
– ident: e_1_2_12_11_1
  doi: 10.1021/nn303973r
– ident: e_1_2_12_94_1
  doi: 10.1021/ct500087v
– ident: e_1_2_12_9_1
  doi: 10.1063/1.3636402
– ident: e_1_2_12_139_1
  doi: 10.1103/PhysRevLett.102.036402
– ident: e_1_2_12_96_1
  doi: 10.1021/acs.jpclett.8b00938
– ident: e_1_2_12_93_1
  doi: 10.1021/ja4036994
– ident: e_1_2_12_41_1
  doi: 10.1002/wcms.64
– ident: e_1_2_12_22_1
  doi: 10.1103/PhysRevLett.80.4514
– ident: e_1_2_12_125_1
  doi: 10.1021/nl903868w
– ident: e_1_2_12_47_1
  doi: 10.1002/jcc.24367
– ident: e_1_2_12_72_1
  doi: 10.1021/ja072191c
– ident: e_1_2_12_126_1
  doi: 10.1021/acsnano.7b04541
– ident: e_1_2_12_88_1
  doi: 10.1021/cr050173c
– ident: e_1_2_12_7_1
  doi: 10.1016/j.materresbull.2017.09.054
– ident: e_1_2_12_26_1
  doi: 10.1103/PhysRevLett.81.2312
– ident: e_1_2_12_97_1
  doi: 10.1016/S1386-9477(02)00374-0
– ident: e_1_2_12_108_1
  doi: 10.1021/acs.jpcc.6b12921
– ident: e_1_2_12_8_1
  doi: 10.1021/nn5034746
– volume: 91
  start-page: 802
  issue: 256
  year: 2003
  ident: e_1_2_12_17_1
  article-title: Image states and excitons at insulator surfaces with negative electron affinity
  publication-title: Phys Rev Lett
– ident: e_1_2_12_99_1
  doi: 10.1126/science.1185509
– ident: e_1_2_12_109_1
  doi: 10.1021/jp4029408
– ident: e_1_2_12_136_1
  doi: 10.1126/science.1061051
– ident: e_1_2_12_82_1
  doi: 10.1021/ja5044787
– ident: e_1_2_12_117_1
  doi: 10.1146/annurev.physchem.52.1.193
– ident: e_1_2_12_40_1
  doi: 10.1021/acs.jpclett.6b00710
– ident: e_1_2_12_39_1
  doi: 10.1039/a801824c
– ident: e_1_2_12_46_1
  doi: 10.1063/1.2960628
– ident: e_1_2_12_59_1
  doi: 10.1103/PhysRevB.48.13115
– ident: e_1_2_12_10_1
  doi: 10.1103/PhysRevB.89.125427
– ident: e_1_2_12_120_1
  doi: 10.1103/PhysRevB.44.10945
– ident: e_1_2_12_53_1
  doi: 10.1103/PhysRevLett.98.023001
– ident: e_1_2_12_142_1
  doi: 10.1016/S1010-6030(00)00204-5
– ident: e_1_2_12_2_1
  doi: 10.1021/nl401544y
– ident: e_1_2_12_25_1
  doi: 10.1103/PhysRevLett.75.818
– ident: e_1_2_12_30_1
  doi: 10.1021/acs.jpclett.7b00265
– ident: e_1_2_12_71_1
  doi: 10.1021/ja200086g
– ident: e_1_2_12_29_1
  doi: 10.1021/jz401955r
– ident: e_1_2_12_138_1
  doi: 10.1021/ja312205c
– ident: e_1_2_12_151_1
  doi: 10.1063/1.4964797
– ident: e_1_2_12_92_1
  doi: 10.1126/science.1122190
– ident: e_1_2_12_65_1
  doi: 10.1021/acs.nanolett.7b03429
– ident: e_1_2_12_31_1
  doi: 10.1039/C6CS00078A
– ident: e_1_2_12_73_1
  doi: 10.1021/ja105283s
– ident: e_1_2_12_112_1
  doi: 10.1021/acs.jpclett.8b01302
– ident: e_1_2_12_14_1
  doi: 10.1021/nn505736z
– ident: e_1_2_12_52_1
  doi: 10.1039/C8CP03841D
– ident: e_1_2_12_36_1
  doi: 10.1016/j.cplett.2016.12.069
– ident: e_1_2_12_124_1
  doi: 10.1021/ja201269b
– ident: e_1_2_12_106_1
  doi: 10.1021/jp412180t
– ident: e_1_2_12_141_1
  doi: 10.1021/jp9639915
– ident: e_1_2_12_85_1
  doi: 10.1002/anie.201713102
– ident: e_1_2_12_149_1
  doi: 10.1146/annurev-matsci-062910-100445
– ident: e_1_2_12_150_1
  doi: 10.1103/PhysRevB.96.134308
– ident: e_1_2_12_123_1
  doi: 10.1021/nn1003937
– ident: e_1_2_12_102_1
  doi: 10.1021/cr3004899
SSID ssj0000491231
Score 2.6419778
SecondaryResourceType review_article
Snippet The ultrafast dynamics of photoexcited charge carriers in condensed matter systems play an important role in optoelectronics and solar energy conversion. Yet...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e1411
SubjectTerms Charge transfer
Computer applications
Computer simulation
Condensed matter physics
Coupling (molecular)
Current carriers
Defects
Density functional theory
Dynamics
Electronic structure
Energy conversion
excited carrier dynamics
Hefei‐NAMD
Investigations
Materials science
Materials technology
Mechanics
Methods
Molecular dynamics
Molecular structure
Momentum
nonadiabatic molecular dynamics
Optoelectronics
real‐time time‐dependent density functional theory
Recombination
Solar energy
Solar energy conversion
Spin dynamics
Statistical mechanics
Switches
Time dependence
Title Ab initio nonadiabatic molecular dynamics investigations on the excited carriers in condensed matter systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1411
https://www.proquest.com/docview/2306051924
Volume 9
WOSCitedRecordID wos000491351500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1759-0884
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491231
  issn: 1759-0876
  databaseCode: DRFUL
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KK-jFt1itsogHL0trsslm8VSqxYMWUYu9hewLhD6kqY-f70xeVVAQvIUwSZbZmdlvluz3EXKKqu3G-pIpE1nGQ2uYShKfGS903BfcWu0ysQkxGESjkbyrkYvyLEzOD1FtuGFmZPUaEzxRaXtJGvquJynkOZ7rbXgQt7xOGpf3_eFNtcUC4BfqctZyiUAyJF8ruYU6Xrt6_vuKtISZX8Fqttr0N_41zk2yXoBM2s2jYovU7HSbrPZKbbcdMu4q-oy_Dc0otP9IT6CQuZVOSrFcanKl-hTMKiIOCFA6m1KAjNR-aMSqVCdzlLxDMwqdNRSxFO5OMtJOmrNEp7tk2L967F2zQneBaU-KcyadCjoughgTIXeBH4QwexEAK6UTT2kXBlY5xw1AEeErEWnrAJR0nEkSBQlu_D1Sh8HbfUKdCTXX0rfaILFXKK2SnEM7zpUJdCSa5Kz0fawLUnLUxhjHOZ2yF6P7YnRfk5xUpi85E8dPRq1yAuMiGdMYuyxEqh6Hz2VT9fsL4qfe7QNeHPzd9JCsAYyS-QnFFqkv5q_2iKzot8VzOj8uovITTLLqkA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB6kFfTFW6xWXcQHX4I12RwLvpRqUaxFPNC3kL2g0EOaevx8Z3KpoCD4FsIkWXZndr8ZMt8HcEiq7dp4wpE6Mg4PjHZkkniOdgPLvZAbo2wmNhH2-9HTk7iZg9OyFybnh6gKbhQZ2X5NAU4F6eNP1tA3NUox0Kmxt87Rjfwa1M9uuw-9qsaC6Bc35iznCn3hEPtaSS7Uco-r578fSZ848ytazY6b7vL_BroCSwXMZO3cL1ZhzozXYKFTqrutw7At2YB-HJqw8SQjKJDE3cpGpVwu07lWfYpmFRUHuiibjBmCRmbeFaFVppIpid6RGcPcGrexFO-OMtpOlvNEpxvw0D2_71w4hfKCo1wRnjjCSr9lI_SyMODW9_wA1y9CaCVV4kplA99Ia7lGMBJ6MoyUsQhLWlYnicQQ194m1HDwZguY1YHiSnhGaaL2CoSRgnNMyLnUvorCBhyVkx-rgpac1DGGcU6o7MY0fTFNXwMOKtPnnIvjJ6NmuYJxEY5pTHkWYVWX4-eytfr9BfFj5_qOLrb_broPCxf31724d9m_2oFFBFUi71dsQm02fTG7MK9eZ4N0ule46AdMXe6A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEF6KFfXFW6xWXcQHX0JrsjkWfCmtRbGWohb7FrIXFHrR1OPnO5OrCgqCbyFMkmV2ZvabJft9hFygarvSDreECrTFPK0sEUWOpWzPMMdnWkuTiE343W4wGPBeiVznZ2FSfohiww0zI6nXmOB6pkxtyRr6LscxJDoe7C0zl3uQluXWY7vfKfZYAP1CYU56Lt_lFrKv5eRCdbtWPP99SVrizK9oNVlu2lv_G-g22cxgJm2kcbFDSnqyS9abubrbHhk1BB3ij0NTOpkmBAUCuVvpOJfLpSrVqo_BrKDigBCl0wkF0Ej1h0S0SmU0R9E7NKPQW0MZi-HuOKHtpClPdLxP-u2b5-atlSkvWNLm_pXFjXDrJoAo8z1mXMf1YP4CgFZCRraQxnO1MIYpACO-I_xAagOwpG5UFAlIceUckBUYvD4k1ChPMskdLRVSe3lcC84YNORMKFcGfoVc5s4PZUZLjuoYozAlVLZDdF-I7quQ88J0lnJx_GRUzWcwzNIxDrHPQqxqM_hcMle_vyB8aT484cXR303PyFqv1Q47d937Y7IBmIqnxxWrZGUxf9UnZFW-LYbx_DSL0E_zu-37
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ab+initio+nonadiabatic+molecular+dynamics+investigations+on+the+excited+carriers+in+condensed+matter+systems&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Zheng%2C+Qijing&rft.au=Chu%2C+Weibin&rft.au=Zhao%2C+Chuanyu&rft.au=Zhang%2C+Lili&rft.date=2019-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=9&rft.issue=6&rft.spage=e1411&rft_id=info:doi/10.1002%2Fwcms.1411&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon