Delayed Feedback MPC Algorithms of Vehicle Platoons Subject to Constraints on Measurement Range and Driving Behaviors

The control problem of vehicle platoons considering sensors with limited measurement range and actuator time delay is investigated in the face of constraints. A new delayed feedback model predictive control scheme is proposed to solve the problem while satisfying the constraints on measurement range...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of control Vol. 20; no. 6; pp. 2260 - 2270
Main Authors: Yu, Shi‐Ming, Wu, Sai‐Nan, Zhao, Yun‐Bo, He, De‐Feng
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.11.2018
Subjects:
ISSN:1561-8625, 1934-6093
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The control problem of vehicle platoons considering sensors with limited measurement range and actuator time delay is investigated in the face of constraints. A new delayed feedback model predictive control scheme is proposed to solve the problem while satisfying the constraints on measurement range and driving behaviors. A family of controllers is presented with free parameters which are then computed by online solving of a receding horizon optimal control problem. Terminal equality constraints are adopted to guarantee stability of the closed‐loop system. Some sufficient conditions with guaranteed string stability of the platoon and zero steady‐state error are established. The effectiveness and advantages of the presented method are demonstrated by simulating two classical road scenarios.
AbstractList The control problem of vehicle platoons considering sensors with limited measurement range and actuator time delay is investigated in the face of constraints. A new delayed feedback model predictive control scheme is proposed to solve the problem while satisfying the constraints on measurement range and driving behaviors. A family of controllers is presented with free parameters which are then computed by online solving of a receding horizon optimal control problem. Terminal equality constraints are adopted to guarantee stability of the closed‐loop system. Some sufficient conditions with guaranteed string stability of the platoon and zero steady‐state error are established. The effectiveness and advantages of the presented method are demonstrated by simulating two classical road scenarios.
Author Zhao, Yun‐Bo
Yu, Shi‐Ming
Wu, Sai‐Nan
He, De‐Feng
Author_xml – sequence: 1
  givenname: Shi‐Ming
  surname: Yu
  fullname: Yu, Shi‐Ming
  organization: Zhejiang University of Technology
– sequence: 2
  givenname: Sai‐Nan
  surname: Wu
  fullname: Wu, Sai‐Nan
  organization: Zhejiang University of Technology
– sequence: 3
  givenname: Yun‐Bo
  surname: Zhao
  fullname: Zhao, Yun‐Bo
  organization: Zhejiang University of Technology
– sequence: 4
  givenname: De‐Feng
  orcidid: 0000-0002-8183-2372
  surname: He
  fullname: He, De‐Feng
  email: hdfzj@zjut.edu.cn
  organization: Zhejiang University of Technology
BookMark eNp1kM1P4zAQxS0EEp8H_gNLnDik2PmwnWMJy7KoaBHsco0mzqR1SW2wHVD_-00pJ8SeZkb6vTd675DsWmeRkFPOJpyx9ALCUk-4FHyHHPAyyxPBymx33AvBEyXSYp8chrBkTPBMFQdkuMIe1tjSa8S2Af1M7-4rOu3nzpu4WAXqOvqEC6N7pPc9ROdsoI9Ds0QdaXS0Gu_owdg4opbeIYTB4wptpA9g50jBtvTKmzdj5_QSF_BmnA_HZK-DPuDJ5zwif69__Kluktnvn7-q6SzRaSl5UrCs4QqYRpVhp3LW6TIHzRrBsMw1K4VEIYtGgwQNXS7btEUp8q5RXCmlsyNytvV98e51wBDrpRu8HV_WKS94qiTL5UhdbCntXQgeu1qbCNE4u0nW15zVm27rTbf1pttRcf5F8eLNCvz6W_bT_d30uP4_WE8fb6sPxT-bf4yB
CitedBy_id crossref_primary_10_1002_asjc_2152
crossref_primary_10_1109_TITS_2020_2988401
crossref_primary_10_1002_asjc_2761
crossref_primary_10_1002_asjc_2235
crossref_primary_10_1109_TAC_2024_3468069
crossref_primary_10_1177_0020294019837997
crossref_primary_10_1177_09544062251344027
crossref_primary_10_3389_fnbot_2020_617293
crossref_primary_10_1016_j_trc_2020_102717
crossref_primary_10_1080_23335777_2023_2214584
crossref_primary_10_1016_j_ifacol_2020_12_2340
crossref_primary_10_1002_asjc_2567
crossref_primary_10_1002_asjc_2049
crossref_primary_10_3390_s20061775
crossref_primary_10_1177_09544070251328170
Cites_doi 10.1109/ITSC.2008.4732532
10.3182/20130904-4-JP-2042.00040
10.1109/TVT.2010.2076320
10.1016/j.automatica.2015.09.022
10.1109/TVT.2012.2203362
10.1109/TITS.2014.2328439
10.1016/j.trc.2014.04.014
10.1109/9.486636
10.1016/j.trc.2014.09.001
10.1109/TMECH.2004.839047
10.1115/DETC2011-47861
10.1109/TITS.2003.821284
10.1109/TAC.2010.2042318
10.1109/TITS.2004.825080
10.1109/TAC.2011.2159651
10.1109/TITS.2013.2291493
10.1016/j.automatica.2016.01.057
10.1007/s11431-016-0856-8
10.1016/j.robot.2007.05.014
10.1109/25.950330
10.1007/s12239-017-0028-2
10.1109/TCSI.2016.2564702
10.1109/TITS.2014.2354052
10.1109/TITS.2006.884615
10.1109/TITS.2014.2302816
10.1109/TITS.2011.2157145
10.1098/rsta.2010.0084
10.1109/TITS.2011.2143407
10.1016/j.automatica.2015.03.016
10.1109/TITS.2014.2316016
10.1109/TCSI.2015.2418871
ContentType Journal Article
Copyright 2018 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd
Copyright_xml – notice: 2018 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd
DBID AAYXX
CITATION
JQ2
DOI 10.1002/asjc.1761
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1934-6093
EndPage 2270
ExternalDocumentID 10_1002_asjc_1761
ASJC1761
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61773345
GroupedDBID .4S
.DC
05W
0R~
1L6
1OC
23N
31~
33P
3SF
4.4
52U
5DZ
5GY
8-0
8-1
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
I-F
J9A
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O9-
OIG
P2W
PQQKQ
ROL
SUPJJ
TUS
WBKPD
WIH
WIK
WOHZO
WXSBR
XV2
ZZTAW
~S-
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c2971-503b18a0ce83ef840fc94ac0b60e94c0967e675bca7acaf47d2de764fb81888c3
IEDL.DBID DRFUL
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452531600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1561-8625
IngestDate Fri Jul 25 12:12:06 EDT 2025
Sat Nov 29 04:00:02 EST 2025
Tue Nov 18 22:25:40 EST 2025
Sun Sep 21 06:16:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2971-503b18a0ce83ef840fc94ac0b60e94c0967e675bca7acaf47d2de764fb81888c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8183-2372
PQID 2151287047
PQPubID 866359
PageCount 11
ParticipantIDs proquest_journals_2151287047
crossref_citationtrail_10_1002_asjc_1761
crossref_primary_10_1002_asjc_1761
wiley_primary_10_1002_asjc_1761_ASJC1761
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Asian journal of control
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 61
2010; 55
2001; 50
2015; 16
2010; 59
2010; 368
2015; 55
2004; 9
2014; 48
2008
2008; 56
2014; 46
2004; 5
2011; 12
2012; 57
2016; 59
2012; 3
2001
2015; 62
2014; 15
2003; 4
1996; 41
2016; 63
2007; 7
2017; 18
2013
2016; 68
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 62
  start-page: 1599
  issue: 6
  year: 2015
  end-page: 1606
  article-title: Model predictive flocking control for second‐order multi‐agent systems with input constraints
  publication-title: IEEE Trans. Circuits Syst. I‐Regul. Pap.
– volume: 56
  start-page: 157
  issue: 2
  year: 2008
  end-page: 176
  article-title: Sensor fusion‐based visual target tracking for autonomous vehicles with the out‐of‐sequence measurement solution
  publication-title: Robot. Auton. Syst.
– volume: 15
  start-page: 854
  issue: 2
  year: 2014
  end-page: 865
  article-title: Controller synthesis for string stability of vehicle platoons
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 55
  start-page: 217
  year: 2015
  end-page: 225
  article-title: Constrained predictive control synthesis for quantized systems with Markovian data loss
  publication-title: Automatica
– volume: 68
  start-page: 148
  year: 2016
  end-page: 154
  article-title: Distributed receding horizon control of constrained nonlinear vehicle formation with guaranteed γ‐gain stability
  publication-title: Automatica
– year: 2001
– volume: 16
  start-page: 102
  issue: 1
  year: 2015
  end-page: 111
  article-title: Distributed consensus strategy for platooning of vehicles in the presence of time‐varying heterogeneous communication delays
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 368
  start-page: 4585
  year: 2010
  end-page: 4605
  article-title: Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity
  publication-title: Philos. T. R. Soc. A
– volume: 16
  start-page: 1199
  issue: 3
  year: 2015
  end-page: 1209
  article-title: Fast online computation of a model predictive controller and its application to fuel economy‐oriented adaptive cruise control
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 4
  start-page: 113
  year: 2003
  end-page: 114
  article-title: Guest editorial adaptive cruise control systems special issue
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 59
  start-page: 4268
  year: 2010
  end-page: 4279
  article-title: String‐stable CACC design and experimental validation: A frequency‐domain approach
  publication-title: IEEE Trans. Veh. Technol.
– volume: 12
  start-page: 1184
  year: 2011
  end-page: 1194
  article-title: Practical string stability of platoon of adaptive cruise control vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 48
  start-page: 285
  year: 2014
  end-page: 300
  article-title: Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data
  publication-title: Transport. Res. C‐Emer.
– volume: 15
  start-page: 2404
  year: 2014
  end-page: 2418
  article-title: Sampled‐data cooperative adaptive cruise control of vehicles with sensor failures
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 50
  start-page: 1289
  year: 2001
  end-page: 1297
  article-title: Longitudinal control of automated CHVs with significant actuator delays
  publication-title: IEEE Trans. Veh. Technol.
– volume: 55
  start-page: 1519
  issue: 7
  year: 2010
  end-page: 1530
  article-title: String instability in classes of linear time invariant formation control with limited communication range
  publication-title: IEEE Trans. Autom. Control
– volume: 62
  start-page: 208
  year: 2015
  end-page: 212
  article-title: Scalability of bidirectional vehicle strings with static and dynamic measurement errors
  publication-title: Automatica
– volume: 59
  start-page: 1953
  issue: 12
  year: 2016
  end-page: 1962
  article-title: Distributed receding horizon control for fuel‐efficient and safe vehicle platooning
  publication-title: Sci. China‐Technol. Sci.
– volume: 18
  start-page: 279
  issue: 2
  year: 2017
  end-page: 292
  article-title: Real‐time weighted multi‐objective model predictive controller for adaptive cruise control systems
  publication-title: Int. J. Automot. Technol.
– volume: 57
  start-page: 620
  issue: 3
  year: 2012
  end-page: 633
  article-title: Distributed receding horizon control of vehicle platoons: Stability and string stability
  publication-title: IEEE Trans. Autom. Control
– volume: 61
  start-page: 2901
  year: 2012
  end-page: 2912
  article-title: Autonomous platoon control allowing range‐limited sensors
  publication-title: IEEE Trans. Veh. Technol.
– volume: 15
  start-page: 1527
  issue: 4
  year: 2014
  end-page: 1537
  article-title: Cooperative adaptive cruise control: Network‐aware analysis of string stability
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 46
  start-page: 46
  year: 2014
  end-page: 64
  article-title: Dynamics of connected vehicle systems with delayed acceleration feedback
  publication-title: Transport. Res. C‐Emer.
– year: 2008
– volume: 63
  start-page: 1265
  issue: 8
  year: 2016
  end-page: 1275
  article-title: Model predictive flocking control of the Cucker‐Smale multi‐agent model with input constraints
  publication-title: IEEE Trans. Circuits Syst. I‐Regul. Pap.
– volume: 9
  start-page: 609
  year: 2004
  end-page: 618
  article-title: Modeling and control of steering system of heavy vehicles for automated highway systems
  publication-title: IEEE Trans. Mechatronics
– volume: 41
  start-page: 349
  issue: 3
  year: 1996
  end-page: 357
  article-title: String stability of interconnected systems
  publication-title: IEEE Trans. Autom. Control
– volume: 7
  start-page: 429
  year: 2007
  end-page: 436
  article-title: The impact of cooperative adaptive cruise control on traffic‐flow characteristics
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 3
  start-page: 829
  year: 2012
  end-page: 845
– volume: 5
  start-page: 20
  year: 2004
  end-page: 32
  article-title: Minimum sensor second‐order sliding mode longitudinal control of passenger vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 12
  start-page: 1248
  issue: 4
  year: 2011
  end-page: 1260
  article-title: Cooperative adaptive cruise control: A reinforcement learning approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2013
– ident: e_1_2_6_13_1
  doi: 10.1109/ITSC.2008.4732532
– ident: e_1_2_6_27_1
  doi: 10.3182/20130904-4-JP-2042.00040
– ident: e_1_2_6_14_1
  doi: 10.1109/TVT.2010.2076320
– ident: e_1_2_6_24_1
  doi: 10.1016/j.automatica.2015.09.022
– ident: e_1_2_6_20_1
  doi: 10.1109/TVT.2012.2203362
– ident: e_1_2_6_10_1
  doi: 10.1109/TITS.2014.2328439
– ident: e_1_2_6_11_1
  doi: 10.1016/j.trc.2014.04.014
– ident: e_1_2_6_31_1
  doi: 10.1109/9.486636
– ident: e_1_2_6_6_1
  doi: 10.1016/j.trc.2014.09.001
– ident: e_1_2_6_2_1
  doi: 10.1109/TMECH.2004.839047
– ident: e_1_2_6_4_1
  doi: 10.1115/DETC2011-47861
– ident: e_1_2_6_5_1
  doi: 10.1109/TITS.2003.821284
– ident: e_1_2_6_19_1
  doi: 10.1109/TAC.2010.2042318
– ident: e_1_2_6_23_1
  doi: 10.1109/TITS.2004.825080
– ident: e_1_2_6_29_1
  doi: 10.1109/TAC.2011.2159651
– ident: e_1_2_6_7_1
  doi: 10.1109/TITS.2013.2291493
– ident: e_1_2_6_28_1
  doi: 10.1016/j.automatica.2016.01.057
– ident: e_1_2_6_21_1
  doi: 10.1007/s11431-016-0856-8
– ident: e_1_2_6_18_1
  doi: 10.1016/j.robot.2007.05.014
– ident: e_1_2_6_16_1
  doi: 10.1109/25.950330
– ident: e_1_2_6_26_1
  doi: 10.1007/s12239-017-0028-2
– ident: e_1_2_6_33_1
  doi: 10.1109/TCSI.2016.2564702
– ident: e_1_2_6_25_1
  doi: 10.1109/TITS.2014.2354052
– ident: e_1_2_6_3_1
  doi: 10.1109/TITS.2006.884615
– ident: e_1_2_6_8_1
  doi: 10.1109/TITS.2014.2302816
– ident: e_1_2_6_17_1
  doi: 10.1109/TITS.2011.2157145
– ident: e_1_2_6_32_1
  doi: 10.1098/rsta.2010.0084
– ident: e_1_2_6_15_1
  doi: 10.1109/TITS.2011.2143407
– ident: e_1_2_6_9_1
  doi: 10.1016/j.automatica.2015.03.016
– ident: e_1_2_6_22_1
  doi: 10.1109/TITS.2014.2316016
– ident: e_1_2_6_30_1
  doi: 10.1109/TCSI.2015.2418871
– ident: e_1_2_6_12_1
SSID ssj0061385
Score 2.2558315
Snippet The control problem of vehicle platoons considering sensors with limited measurement range and actuator time delay is investigated in the face of constraints....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2260
SubjectTerms adaptive cruise control
Computer simulation
Constraint modelling
constraints
Control stability
Feedback
model predictive control
Optimal control
Platooning
Predictive control
Rangefinding
string stability
Time lag
Vehicle platoons
Title Delayed Feedback MPC Algorithms of Vehicle Platoons Subject to Constraints on Measurement Range and Driving Behaviors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasjc.1761
https://www.proquest.com/docview/2151287047
Volume 20
WOSCitedRecordID wos000452531600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1934-6093
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061385
  issn: 1561-8625
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6ketCDb_FRZREPXqJ5bLMJnkprEVEpvvAWdie7Wq2pJFHw3zubR1tBQfCWw-wm2Zmd-WZgviHkQHg-F4HWliu0sFjMwAocZVsSbQmkjKX0ZTFsgl9dBQ8PYX-GnNS9MCU_xLjgZm5G4a_NBRcyO56QhorsGY4cblKfWRftttUgs93r3t1F7YgxUBUTOTFDcSwE7q2aWMh2j8eLv4ejCcacRqpFqOkt_esjl8lihTBpuzSJFTKjklWyMMU7uEbeu2ooPlVMexi7pIAXetnv0PbwcZQO8qfXjI40vVdPZj3tDzEtR9Ok6GJMzYbmI2qmfBazJXIUTejlpM5Ir02zAhVJTLvpwBQraMXAmGbr5K53ets5s6r5Cxa4IXeslu1JJxA2qMBTGjNBDSETYEvfViEDTH64wnxDguAChGY8dmPFfaYlooAgAG-DNJJRojYJRaCnmad9gFgxBFUYA93QAd7S0vfjkG2Rw1oNEVTk5OY_hlFJq-xG5iQjc5JbZH8s-lYycvwk1Kx1GVWXMosKdIP-iXF8XaG13zeI2jfnHfOw_XfRHTKPcCooOxWbpJGn72qXzMFHPsjSvco6vwB9Ders
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcQTAIeYLAhYIxZiAdeMvLhxonES9WuKqOtqlIm3iL7YkOhS6ckTOK_55yPtkhDmsRbHs5O4jvf_e6k-x0hp8LzuQi0tlyhhcViBlbgKNuSaEsgZSylL4thE3wwCG5vw-EKuah7YUp-iHnBzdyMwl-bC24K0ucL1lCRPcB3h5vcZ42hGaF9r7VHnZte7YkxUhUjOTFFcSxE7o2aWch2z-eLX8ejBchchqpFrOlsv-8rP5KtCmPSZmkUO2RFJbtkc4l58BN5aqupeFYx7WD0kgIeaX_Yos3p3Syd5Pe_MzrT9Je6N-vpcIqJORonRSdjqjY0n1Ez57OYLpGjaEL7i0ojHZl2BSqSmLbTiSlX0IqDMc0-k5vOj3Gra1UTGCxwQ-5YDduTTiBsUIGnNOaCGkImwJa-rUIGmP5whRmHBMEFCM147MaK-0xLxAFBAN4eWU1midonFKGeZp72AWLFEFZhFHRDB3hDS9-PQ3ZAzmo9RFDRk5v_mEYlsbIbmZOMzEkekJO56J-Sk-NfQke1MqPqWmZRgW_QQzGOryvU9vYGUfP6Z8s8HP6_6Dey3h33e1HvcnD1hWwguArKvsUjspqnT-or-QB_80mWHlem-gKKbu7c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V2wrBAcqjolDAqnrgEpqHN04kLqtdohba1apQ1Ftkj226sGSrJEXqv-84j90igYTELYexk3jGM9-MNN8AHMgoFjKx1gullR7XHL0kML6nyJZQKa1UrJphE2I6TS4u0tkGvO97YVp-iFXBzd2Mxl-7C26utD1cs4bK6ju-C4TLfTa5GyIzgM3JWXZ-0ntiilTNSE5KUQKPkPuwZxbyw8PV4t_j0Rpk3oWqTazJHv3fV27Dww5jslFrFI9hwxRP4MEd5sGncD0xC3ljNMsoeimJP9jpbMxGi2_Lcl5f_qzY0rKv5tKtZ7MFJeZknIycjKvasHrJ3JzPZrpETaIFO11XGtmZa1dgstBsUs5duYJ1HIxl9QzOsw9fxkdeN4HBwzAVgTf0IxUk0keTRMZSLmgx5RJ9Ffsm5UjpjzCUcSiUQqK0XOhQGxFzqwgHJAlGOzAoloV5DoygnuWRjRG14QSrKAqGaYBiaFUc65TvwtteDzl29OTuPxZ5S6wc5u4kc3eSu7C_Er1qOTn-JLTXKzPvrmWVN_iGPBQX9LpGbX_fIB99_jh2Dy_-XfQN3JtNsvzkePrpJdwnbJW0bYt7MKjLa_MKtvBXPa_K152l3gIv-u5X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delayed+Feedback+MPC+Algorithms+of+Vehicle+Platoons+Subject+to+Constraints+on+Measurement+Range+and+Driving+Behaviors&rft.jtitle=Asian+journal+of+control&rft.au=Yu%2C+Shi%E2%80%90Ming&rft.au=Wu%2C+Sai%E2%80%90Nan&rft.au=Zhao%2C+Yun%E2%80%90Bo&rft.au=He%2C+De%E2%80%90Feng&rft.date=2018-11-01&rft.issn=1561-8625&rft.eissn=1934-6093&rft.volume=20&rft.issue=6&rft.spage=2260&rft.epage=2270&rft_id=info:doi/10.1002%2Fasjc.1761&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_asjc_1761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1561-8625&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1561-8625&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1561-8625&client=summon