A Novel Stochastic Framework Based on Cloud Theory and \theta -Modified Bat Algorithm to Solve the Distribution Feeder Reconfiguration

Distribution feeder reconfiguration (DFR) is a precious operation strategy that can improve the system from different aspects including total cost, reliability, and power quality. Nevertheless, the high complexity of the new smart grids has resulted in much uncertainty in the DFR problem that necess...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on smart grid Ročník 7; číslo 2; s. 740 - 750
Hlavní autoři: Kavousi-Fard, Abdollah, Niknam, Taher, Fotuhi-Firuzabad, Mahmud
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.03.2016
Témata:
ISSN:1949-3053, 1949-3061
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Distribution feeder reconfiguration (DFR) is a precious operation strategy that can improve the system from different aspects including total cost, reliability, and power quality. Nevertheless, the high complexity of the new smart grids has resulted in much uncertainty in the DFR problem that necessities the use of a sufficient stochastic framework to deal with them. In this way, this paper proposes a new stochastic framework based on cloud theory to account the uncertainties associated with multiobjective DFR problem from the reliability point of view. Cloud theory is constructed based on fuzzy theory and probability idea. In comparison with the Monte Carlo simulation method, cloud models can give more information on the uncertainties associated with the problem. This special aspect of cloud models makes it possible to integrate the fuzziness and randomness of qualitative concepts through the cloud drops and then transforms them to the quantitative model. In order to solve the proposed problem, a fast and powerful optimization technique is required. To deal with this issue, a new optimization algorithm designated as θ-bat algorithm is proposed in this paper. The feasibility and satisfying performance of the proposed method are examined on the 32-bus and 69-bus IEEE distribution test system.
AbstractList Distribution feeder reconfiguration (DFR) is a precious operation strategy that can improve the system from different aspects including total cost, reliability, and power quality. Nevertheless, the high complexity of the new smart grids has resulted in much uncertainty in the DFR problem that necessities the use of a sufficient stochastic framework to deal with them. In this way, this paper proposes a new stochastic framework based on cloud theory to account the uncertainties associated with multiobjective DFR problem from the reliability point of view. Cloud theory is constructed based on fuzzy theory and probability idea. In comparison with the Monte Carlo simulation method, cloud models can give more information on the uncertainties associated with the problem. This special aspect of cloud models makes it possible to integrate the fuzziness and randomness of qualitative concepts through the cloud drops and then transforms them to the quantitative model. In order to solve the proposed problem, a fast and powerful optimization technique is required. To deal with this issue, a new optimization algorithm designated as θ-bat algorithm is proposed in this paper. The feasibility and satisfying performance of the proposed method are examined on the 32-bus and 69-bus IEEE distribution test system.
Distribution feeder reconfiguration (DFR) is a precious operation strategy that can improve the system from different aspects including total cost, reliability, and power quality. Nevertheless, the high complexity of the new smart grids has resulted in much uncertainty in the DFR problem that necessities the use of a sufficient stochastic framework to deal with them. In this way, this paper proposes a new stochastic framework based on cloud theory to account the uncertainties associated with multiobjective DFR problem from the reliability point of view. Cloud theory is constructed based on fuzzy theory and probability idea. In comparison with the Monte Carlo simulation method, cloud models can give more information on the uncertainties associated with the problem. This special aspect of cloud models makes it possible to integrate the fuzziness and randomness of qualitative concepts through the cloud drops and then transforms them to the quantitative model. In order to solve the proposed problem, a fast and powerful optimization technique is required. To deal with this issue, a new optimization algorithm designated as ${\theta }$ -bat algorithm is proposed in this paper. The feasibility and satisfying performance of the proposed method are examined on the 32-bus and 69-bus IEEE distribution test system.
Author Fotuhi-Firuzabad, Mahmud
Niknam, Taher
Kavousi-Fard, Abdollah
Author_xml – sequence: 1
  givenname: Abdollah
  surname: Kavousi-Fard
  fullname: Kavousi-Fard, Abdollah
  email: abdollah.kavousifard@gmail.com
  organization: Dept. of Electron. & Electr. Eng., Shiraz Univ. of Technol., Shiraz, Iran
– sequence: 2
  givenname: Taher
  surname: Niknam
  fullname: Niknam, Taher
  email: niknam@sutech.ac.ir
  organization: Dept. of Electron. & Electr. Eng., Shiraz Univ. of Technol., Shiraz, Iran
– sequence: 3
  givenname: Mahmud
  surname: Fotuhi-Firuzabad
  fullname: Fotuhi-Firuzabad, Mahmud
  email: fotuhi@sharif.edu
  organization: Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran
BookMark eNp9kD1PwzAQhi0EEl_dkVg8sqTYcezaY1toQeJDomVDipzkTA1pDLZT1D_A7yaliIGBW-50et5Xd-8h2m1cAwidUNKnlKjz-WzaTwnl_TRjmcyyHXRAVaYSRgTd_Z0520e9EF5IV4wxkaoD9DnEd24FNZ5FVy50iLbEE6-X8OH8Kx7pABV2DR7Xrq3wfAHOr7FuKvwUFxA1Tm5dZY3toJGOeFg_O2_jYomjwzNXrwB3GL6wIXpbtNF2ThOACjx-gNI1xj63Xm_Wx2jP6DpA76cfocfJ5Xx8ldzcT6_Hw5ukTJWIiYFKKsVU96tWimjBS64FqQomzUBkhZCScCUpJ0IxzhmkmhdaFMQYYagCdoTOtr5v3r23EGK-tKGEutYNuDbkVKacE8nVoEPFFi29C8GDyUsbv4-NXts6pyTfZJ932eeb7POf7Dsh-SN883ap_fo_yelWYgHgFx_QlNGBZF-e2pFG
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1109_JSYST_2017_2715199
crossref_primary_10_3233_IFS_151694
crossref_primary_10_1109_TPWRD_2022_3153552
crossref_primary_10_1016_j_ijepes_2016_01_033
crossref_primary_10_1016_j_energy_2015_10_055
crossref_primary_10_3389_fenrg_2024_1477645
crossref_primary_10_1587_transinf_2019EDP7059
crossref_primary_10_1016_j_energy_2016_04_067
crossref_primary_10_3233_IFS_151775
crossref_primary_10_1007_s11042_022_12904_1
Cites_doi 10.1111/j.1539-6924.1981.tb01415.x
10.1016/j.neucom.2012.08.033
10.1109/91.273116
10.1109/TPWRS.2005.851937
10.1016/j.epsr.2013.04.010
10.1108/02644401211235834
10.1016/S0142-0615(00)00044-2
10.1109/61.25637
10.1049/ip-gtd:19990694
10.1016/j.epsr.2005.03.002
10.1109/TPWRS.2008.2002169
10.1201/9781584889991
10.1109/GCIS.2009.194
10.1109/59.589664
10.1109/TPWRD.2013.2292951
10.1080/01969720903068500
10.1109/61.107279
10.1016/j.energy.2013.08.060
10.1016/j.ijepes.2013.10.028
10.1016/j.renene.2011.06.017
10.1109/TFUZZ.2012.2215875
10.1109/TFUZZ.2008.924210
10.1016/0951-8320(89)90013-6
10.1016/j.renene.2013.03.026
10.1016/j.camwa.2010.03.042
10.1109/61.141868
10.1016/0951-8320(93)90023-R
10.1016/j.enconman.2009.03.029
10.1049/iet-gtd.2011.0775
10.1016/j.jpowsour.2011.05.081
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TSG.2015.2434844
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 750
ExternalDocumentID 10_1109_TSG_2015_2434844
7123178
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c296t-fed89939201a990a65c5a60db38f764b6880598150693553e2a5ba6b0ff6f19e3
IEDL.DBID RIE
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372014900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-3053
IngestDate Thu Oct 02 10:41:54 EDT 2025
Sat Nov 29 03:45:47 EST 2025
Tue Nov 18 22:04:50 EST 2025
Tue Aug 26 16:42:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cloud theory
distribution feeder reconfiguration (DFR)
uncertainty
theta -modified bat algorithm ( theta -MBA)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-fed89939201a990a65c5a60db38f764b6880598150693553e2a5ba6b0ff6f19e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825508597
PQPubID 23500
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TSG_2015_2434844
crossref_primary_10_1109_TSG_2015_2434844
ieee_primary_7123178
proquest_miscellaneous_1825508597
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
schellenberg (ref9) 2004
ref34
ref12
ref15
ref14
ref31
kavousi-fard (ref8) 2015; 99
ref30
ref33
ref11
ref32
ref10
li (ref37) 2007
ref2
ref1
liu (ref35) 2000; 20
ref17
ref38
ref16
ref19
ref18
hahn (ref3) 1967
schellenberg (ref7) 2004
ref24
ref23
ref26
ref25
ref20
ref22
ref21
deyi (ref27) 1995; 32
ref28
ref29
ref4
ref6
ref5
bi (ref36) 2002; 26
References_xml – ident: ref4
  doi: 10.1111/j.1539-6924.1981.tb01415.x
– ident: ref24
  doi: 10.1016/j.neucom.2012.08.033
– ident: ref13
  doi: 10.1109/91.273116
– ident: ref33
  doi: 10.1109/TPWRS.2005.851937
– ident: ref11
  doi: 10.1016/j.epsr.2013.04.010
– ident: ref28
  doi: 10.1108/02644401211235834
– ident: ref34
  doi: 10.1016/S0142-0615(00)00044-2
– ident: ref17
  doi: 10.1109/61.25637
– ident: ref22
  doi: 10.1049/ip-gtd:19990694
– ident: ref18
  doi: 10.1016/j.epsr.2005.03.002
– volume: 20
  start-page: 66
  year: 2000
  ident: ref35
  article-title: Reconfiguration of distribution networks based on fuzzy genetic algorithms
  publication-title: Proc CSEE
– ident: ref19
  doi: 10.1109/TPWRS.2008.2002169
– ident: ref26
  doi: 10.1201/9781584889991
– ident: ref38
  doi: 10.1109/GCIS.2009.194
– volume: 26
  start-page: 57
  year: 2002
  ident: ref36
  article-title: A refined genetic algorithm for power distribution network reconfiguration
  publication-title: Autom Elect Power Syst
– start-page: 1
  year: 2007
  ident: ref37
  article-title: A hybrid particle swarm optimization approach for distribution network reconfiguration problem
  publication-title: Proc IEEE Power Energy Soc Gen Meeting
– ident: ref29
  doi: 10.1109/59.589664
– ident: ref1
  doi: 10.1109/TPWRD.2013.2292951
– ident: ref30
  doi: 10.1080/01969720903068500
– ident: ref16
  doi: 10.1109/61.107279
– volume: 99
  start-page: 1
  year: 2015
  ident: ref8
  article-title: A new fuzzy based combined prediction interval for wind power forecasting
  publication-title: IEEE Trans Power Syst
– ident: ref25
  doi: 10.1016/j.energy.2013.08.060
– ident: ref15
  doi: 10.1016/j.ijepes.2013.10.028
– ident: ref23
  doi: 10.1016/j.renene.2011.06.017
– volume: 32
  start-page: 15
  year: 1995
  ident: ref27
  article-title: Membership clouds and membership cloud generators
  publication-title: J Comput Res Develop
– start-page: 506
  year: 2004
  ident: ref9
  article-title: Cumulant based probabilistic optimal power flow (P-OPF)
  publication-title: 2004 International Conference on Probabilistic Methods Applied to Power Systems PMAPS
– ident: ref12
  doi: 10.1109/TFUZZ.2012.2215875
– ident: ref2
  doi: 10.1109/TFUZZ.2008.924210
– ident: ref6
  doi: 10.1016/0951-8320(89)90013-6
– ident: ref14
  doi: 10.1016/j.renene.2013.03.026
– year: 1967
  ident: ref3
  publication-title: Statistical Models in Engineering
– ident: ref31
  doi: 10.1016/j.camwa.2010.03.042
– start-page: 506
  year: 2004
  ident: ref7
  article-title: Cumulant based probabilistic optimal power flow (P-OPF)
  publication-title: 2004 International Conference on Probabilistic Methods Applied to Power Systems PMAPS
– ident: ref32
  doi: 10.1109/61.141868
– ident: ref5
  doi: 10.1016/0951-8320(93)90023-R
– ident: ref20
  doi: 10.1016/j.enconman.2009.03.029
– ident: ref10
  doi: 10.1049/iet-gtd.2011.0775
– ident: ref21
  doi: 10.1016/j.jpowsour.2011.05.081
SSID ssj0000333629
Score 2.420121
Snippet Distribution feeder reconfiguration (DFR) is a precious operation strategy that can improve the system from different aspects including total cost,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 740
SubjectTerms Algorithms
Cloud theory
Clouds
Computer simulation
distribution feeder reconfiguration (DFR)
Entropy
Feeders
Optimization
Probability density function
Smart grid
Sociology
Stochastic processes
Stochasticity
Switches
Uncertainty
θ-modified bat algorithm (θ-MBA)
Title A Novel Stochastic Framework Based on Cloud Theory and \theta -Modified Bat Algorithm to Solve the Distribution Feeder Reconfiguration
URI https://ieeexplore.ieee.org/document/7123178
https://www.proquest.com/docview/1825508597
Volume 7
WOSCitedRecordID wos000372014900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333629
  issn: 1949-3053
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaigMcKFBQF0o1SFyQSNd52LGP28e2h7JC2oJ6QIocP9qVQoy2yf4EfnfHSXYFAlXqLYdxEunzYz7PzDeEfIyts4kpRcRxckS4EmWEDzpiTKE3omgsujru75f5bCaur-XXLfJ5Uwtjre2Sz-xReOxi-cbrNlyVjXPcZuNcbJPtPOd9rdbmPoWmKe7FsgsiZyGcz9J1VJLK8dX8PKRxsaMkSzORZX-dQl1blX_24u6Ame4-7tdekOeDIwmTHvmXZMvWr8izP-QF98jvCcz8ylYwb7y-VUGRGabrZCw4xvPLgK_hpPKtgb5IH1Rt4Ac6hY2C6Is3C4cuKpo2MKlu_HLR3P6ExsPcVysLaAanQXh36JkFUxukKSBQ2totbtp-dr0m36ZnVycX0dB3IdKJ5E3krEEWho4TjREwqjjTTHFqylS4nGdlgJVJEbQJgzp7ahPFSsVL6hx3sbTpG7JT-9ruE9AJFyU3qkwSnRnmFE2lFvi-UnLkpnJExmscCj2IkofeGFXRkRMqC0SuCMgVA3Ij8mkz4lcvyPGA7V5AamM3gDQiH9ZQF7iYQoRE1da3dwWSLWRsAknW2_8PfUee4gd4n4R2QHaaZWvfkyd61SzulofdjLwHOe7dbQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKQYIeyqOgbnkNEhck0nUS22sft4WliO0KaRfUA1Lk2E67UoirbbI_gd_NOMmuQCAkbjmMk0ifH_N5Zr4h5HXsCpfYXEYCJ0eEK1FF-GAizjV6I5rGsq3j_jodzWby4kJ93iFvt7Uwzrk2-cwdh8c2lm-9acJV2XCE22w8krfIbc5YQrtqre2NCk1T3I1VG0ZmIaDP001ckqrhYv4hJHLx44SlTDL22znUNlb5Yzduj5jJ_f_7uQdkv3clYdxh_5DsuOoR2ftFYPCA_BjDzK9dCfPamysdNJlhsknHghM8wSz4Ck5L31joyvRBVxa-oVtYa4jOvV0W6KSiaQ3j8tKvlvXVd6g9zH25doBm8C5I7_Zds2DigjgFBFJbFcvLpptfj8mXyfvF6VnUd16ITKJEHRXOIg9D14nGCBnVghuuBbV5KouRYHkAlisZ1AmDPnvqEs1zLXJaFKKIlUufkN3KV-6QgEmEzIXVeZIYZnmhaaqMxPflSiA7VQMy3OCQmV6WPHTHKLOWnlCVIXJZQC7rkRuQN9sR150kxz9sDwJSW7sepAF5tYE6w-UUYiS6cr65yZBuIWeTSLOO_j70Jbl7tjifZtOPs09PyT38mOhS0p6R3XrVuOfkjlnXy5vVi3Z2_gTjoeC0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Stochastic+Framework+Based+on+Cloud+Theory+and+%24%5Ctheta+%24+-Modified+Bat+Algorithm+to+Solve+the+Distribution+Feeder+Reconfiguration&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Kavousi-Fard%2C+Abdollah&rft.au=Niknam%2C+Taher&rft.au=Fotuhi-Firuzabad%2C+Mahmud&rft.date=2016-03-01&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=7&rft.issue=2&rft.spage=740&rft.epage=750&rft_id=info:doi/10.1109%2FTSG.2015.2434844&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon