A Novel Stochastic Framework Based on Cloud Theory and \theta -Modified Bat Algorithm to Solve the Distribution Feeder Reconfiguration
Distribution feeder reconfiguration (DFR) is a precious operation strategy that can improve the system from different aspects including total cost, reliability, and power quality. Nevertheless, the high complexity of the new smart grids has resulted in much uncertainty in the DFR problem that necess...
Saved in:
| Published in: | IEEE transactions on smart grid Vol. 7; no. 2; pp. 740 - 750 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.03.2016
|
| Subjects: | |
| ISSN: | 1949-3053, 1949-3061 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Distribution feeder reconfiguration (DFR) is a precious operation strategy that can improve the system from different aspects including total cost, reliability, and power quality. Nevertheless, the high complexity of the new smart grids has resulted in much uncertainty in the DFR problem that necessities the use of a sufficient stochastic framework to deal with them. In this way, this paper proposes a new stochastic framework based on cloud theory to account the uncertainties associated with multiobjective DFR problem from the reliability point of view. Cloud theory is constructed based on fuzzy theory and probability idea. In comparison with the Monte Carlo simulation method, cloud models can give more information on the uncertainties associated with the problem. This special aspect of cloud models makes it possible to integrate the fuzziness and randomness of qualitative concepts through the cloud drops and then transforms them to the quantitative model. In order to solve the proposed problem, a fast and powerful optimization technique is required. To deal with this issue, a new optimization algorithm designated as θ-bat algorithm is proposed in this paper. The feasibility and satisfying performance of the proposed method are examined on the 32-bus and 69-bus IEEE distribution test system. |
|---|---|
| AbstractList | Distribution feeder reconfiguration (DFR) is a precious operation strategy that can improve the system from different aspects including total cost, reliability, and power quality. Nevertheless, the high complexity of the new smart grids has resulted in much uncertainty in the DFR problem that necessities the use of a sufficient stochastic framework to deal with them. In this way, this paper proposes a new stochastic framework based on cloud theory to account the uncertainties associated with multiobjective DFR problem from the reliability point of view. Cloud theory is constructed based on fuzzy theory and probability idea. In comparison with the Monte Carlo simulation method, cloud models can give more information on the uncertainties associated with the problem. This special aspect of cloud models makes it possible to integrate the fuzziness and randomness of qualitative concepts through the cloud drops and then transforms them to the quantitative model. In order to solve the proposed problem, a fast and powerful optimization technique is required. To deal with this issue, a new optimization algorithm designated as ${\theta }$ -bat algorithm is proposed in this paper. The feasibility and satisfying performance of the proposed method are examined on the 32-bus and 69-bus IEEE distribution test system. Distribution feeder reconfiguration (DFR) is a precious operation strategy that can improve the system from different aspects including total cost, reliability, and power quality. Nevertheless, the high complexity of the new smart grids has resulted in much uncertainty in the DFR problem that necessities the use of a sufficient stochastic framework to deal with them. In this way, this paper proposes a new stochastic framework based on cloud theory to account the uncertainties associated with multiobjective DFR problem from the reliability point of view. Cloud theory is constructed based on fuzzy theory and probability idea. In comparison with the Monte Carlo simulation method, cloud models can give more information on the uncertainties associated with the problem. This special aspect of cloud models makes it possible to integrate the fuzziness and randomness of qualitative concepts through the cloud drops and then transforms them to the quantitative model. In order to solve the proposed problem, a fast and powerful optimization technique is required. To deal with this issue, a new optimization algorithm designated as θ-bat algorithm is proposed in this paper. The feasibility and satisfying performance of the proposed method are examined on the 32-bus and 69-bus IEEE distribution test system. |
| Author | Fotuhi-Firuzabad, Mahmud Niknam, Taher Kavousi-Fard, Abdollah |
| Author_xml | – sequence: 1 givenname: Abdollah surname: Kavousi-Fard fullname: Kavousi-Fard, Abdollah email: abdollah.kavousifard@gmail.com organization: Dept. of Electron. & Electr. Eng., Shiraz Univ. of Technol., Shiraz, Iran – sequence: 2 givenname: Taher surname: Niknam fullname: Niknam, Taher email: niknam@sutech.ac.ir organization: Dept. of Electron. & Electr. Eng., Shiraz Univ. of Technol., Shiraz, Iran – sequence: 3 givenname: Mahmud surname: Fotuhi-Firuzabad fullname: Fotuhi-Firuzabad, Mahmud email: fotuhi@sharif.edu organization: Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran |
| BookMark | eNp9kD1PwzAQhi0EEl_dkVg8sqTYcezaY1toQeJDomVDipzkTA1pDLZT1D_A7yaliIGBW-50et5Xd-8h2m1cAwidUNKnlKjz-WzaTwnl_TRjmcyyHXRAVaYSRgTd_Z0520e9EF5IV4wxkaoD9DnEd24FNZ5FVy50iLbEE6-X8OH8Kx7pABV2DR7Xrq3wfAHOr7FuKvwUFxA1Tm5dZY3toJGOeFg_O2_jYomjwzNXrwB3GL6wIXpbtNF2ThOACjx-gNI1xj63Xm_Wx2jP6DpA76cfocfJ5Xx8ldzcT6_Hw5ukTJWIiYFKKsVU96tWimjBS64FqQomzUBkhZCScCUpJ0IxzhmkmhdaFMQYYagCdoTOtr5v3r23EGK-tKGEutYNuDbkVKacE8nVoEPFFi29C8GDyUsbv4-NXts6pyTfZJ932eeb7POf7Dsh-SN883ap_fo_yelWYgHgFx_QlNGBZF-e2pFG |
| CODEN | ITSGBQ |
| CitedBy_id | crossref_primary_10_1109_JSYST_2017_2715199 crossref_primary_10_3233_IFS_151694 crossref_primary_10_1109_TPWRD_2022_3153552 crossref_primary_10_1016_j_ijepes_2016_01_033 crossref_primary_10_1016_j_energy_2015_10_055 crossref_primary_10_3389_fenrg_2024_1477645 crossref_primary_10_1587_transinf_2019EDP7059 crossref_primary_10_1016_j_energy_2016_04_067 crossref_primary_10_3233_IFS_151775 crossref_primary_10_1007_s11042_022_12904_1 |
| Cites_doi | 10.1111/j.1539-6924.1981.tb01415.x 10.1016/j.neucom.2012.08.033 10.1109/91.273116 10.1109/TPWRS.2005.851937 10.1016/j.epsr.2013.04.010 10.1108/02644401211235834 10.1016/S0142-0615(00)00044-2 10.1109/61.25637 10.1049/ip-gtd:19990694 10.1016/j.epsr.2005.03.002 10.1109/TPWRS.2008.2002169 10.1201/9781584889991 10.1109/GCIS.2009.194 10.1109/59.589664 10.1109/TPWRD.2013.2292951 10.1080/01969720903068500 10.1109/61.107279 10.1016/j.energy.2013.08.060 10.1016/j.ijepes.2013.10.028 10.1016/j.renene.2011.06.017 10.1109/TFUZZ.2012.2215875 10.1109/TFUZZ.2008.924210 10.1016/0951-8320(89)90013-6 10.1016/j.renene.2013.03.026 10.1016/j.camwa.2010.03.042 10.1109/61.141868 10.1016/0951-8320(93)90023-R 10.1016/j.enconman.2009.03.029 10.1049/iet-gtd.2011.0775 10.1016/j.jpowsour.2011.05.081 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1109/TSG.2015.2434844 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library (LUT) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1949-3061 |
| EndPage | 750 |
| ExternalDocumentID | 10_1109_TSG_2015_2434844 7123178 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c296t-fed89939201a990a65c5a60db38f764b6880598150693553e2a5ba6b0ff6f19e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372014900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1949-3053 |
| IngestDate | Thu Oct 02 10:41:54 EDT 2025 Sat Nov 29 03:45:47 EST 2025 Tue Nov 18 22:04:50 EST 2025 Tue Aug 26 16:42:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Cloud theory distribution feeder reconfiguration (DFR) uncertainty theta -modified bat algorithm ( theta -MBA) |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-fed89939201a990a65c5a60db38f764b6880598150693553e2a5ba6b0ff6f19e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1825508597 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSG_2015_2434844 crossref_primary_10_1109_TSG_2015_2434844 ieee_primary_7123178 proquest_miscellaneous_1825508597 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-03-01 |
| PublicationDateYYYYMMDD | 2016-03-01 |
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on smart grid |
| PublicationTitleAbbrev | TSG |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 schellenberg (ref9) 2004 ref34 ref12 ref15 ref14 ref31 kavousi-fard (ref8) 2015; 99 ref30 ref33 ref11 ref32 ref10 li (ref37) 2007 ref2 ref1 liu (ref35) 2000; 20 ref17 ref38 ref16 ref19 ref18 hahn (ref3) 1967 schellenberg (ref7) 2004 ref24 ref23 ref26 ref25 ref20 ref22 ref21 deyi (ref27) 1995; 32 ref28 ref29 ref4 ref6 ref5 bi (ref36) 2002; 26 |
| References_xml | – ident: ref4 doi: 10.1111/j.1539-6924.1981.tb01415.x – ident: ref24 doi: 10.1016/j.neucom.2012.08.033 – ident: ref13 doi: 10.1109/91.273116 – ident: ref33 doi: 10.1109/TPWRS.2005.851937 – ident: ref11 doi: 10.1016/j.epsr.2013.04.010 – ident: ref28 doi: 10.1108/02644401211235834 – ident: ref34 doi: 10.1016/S0142-0615(00)00044-2 – ident: ref17 doi: 10.1109/61.25637 – ident: ref22 doi: 10.1049/ip-gtd:19990694 – ident: ref18 doi: 10.1016/j.epsr.2005.03.002 – volume: 20 start-page: 66 year: 2000 ident: ref35 article-title: Reconfiguration of distribution networks based on fuzzy genetic algorithms publication-title: Proc CSEE – ident: ref19 doi: 10.1109/TPWRS.2008.2002169 – ident: ref26 doi: 10.1201/9781584889991 – ident: ref38 doi: 10.1109/GCIS.2009.194 – volume: 26 start-page: 57 year: 2002 ident: ref36 article-title: A refined genetic algorithm for power distribution network reconfiguration publication-title: Autom Elect Power Syst – start-page: 1 year: 2007 ident: ref37 article-title: A hybrid particle swarm optimization approach for distribution network reconfiguration problem publication-title: Proc IEEE Power Energy Soc Gen Meeting – ident: ref29 doi: 10.1109/59.589664 – ident: ref1 doi: 10.1109/TPWRD.2013.2292951 – ident: ref30 doi: 10.1080/01969720903068500 – ident: ref16 doi: 10.1109/61.107279 – volume: 99 start-page: 1 year: 2015 ident: ref8 article-title: A new fuzzy based combined prediction interval for wind power forecasting publication-title: IEEE Trans Power Syst – ident: ref25 doi: 10.1016/j.energy.2013.08.060 – ident: ref15 doi: 10.1016/j.ijepes.2013.10.028 – ident: ref23 doi: 10.1016/j.renene.2011.06.017 – volume: 32 start-page: 15 year: 1995 ident: ref27 article-title: Membership clouds and membership cloud generators publication-title: J Comput Res Develop – start-page: 506 year: 2004 ident: ref9 article-title: Cumulant based probabilistic optimal power flow (P-OPF) publication-title: 2004 International Conference on Probabilistic Methods Applied to Power Systems PMAPS – ident: ref12 doi: 10.1109/TFUZZ.2012.2215875 – ident: ref2 doi: 10.1109/TFUZZ.2008.924210 – ident: ref6 doi: 10.1016/0951-8320(89)90013-6 – ident: ref14 doi: 10.1016/j.renene.2013.03.026 – year: 1967 ident: ref3 publication-title: Statistical Models in Engineering – ident: ref31 doi: 10.1016/j.camwa.2010.03.042 – start-page: 506 year: 2004 ident: ref7 article-title: Cumulant based probabilistic optimal power flow (P-OPF) publication-title: 2004 International Conference on Probabilistic Methods Applied to Power Systems PMAPS – ident: ref32 doi: 10.1109/61.141868 – ident: ref5 doi: 10.1016/0951-8320(93)90023-R – ident: ref20 doi: 10.1016/j.enconman.2009.03.029 – ident: ref10 doi: 10.1049/iet-gtd.2011.0775 – ident: ref21 doi: 10.1016/j.jpowsour.2011.05.081 |
| SSID | ssj0000333629 |
| Score | 2.4200385 |
| Snippet | Distribution feeder reconfiguration (DFR) is a precious operation strategy that can improve the system from different aspects including total cost,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 740 |
| SubjectTerms | Algorithms Cloud theory Clouds Computer simulation distribution feeder reconfiguration (DFR) Entropy Feeders Optimization Probability density function Smart grid Sociology Stochastic processes Stochasticity Switches Uncertainty θ-modified bat algorithm (θ-MBA) |
| Title | A Novel Stochastic Framework Based on Cloud Theory and \theta -Modified Bat Algorithm to Solve the Distribution Feeder Reconfiguration |
| URI | https://ieeexplore.ieee.org/document/7123178 https://www.proquest.com/docview/1825508597 |
| Volume | 7 |
| WOSCitedRecordID | wos000372014900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library (LUT) customDbUrl: eissn: 1949-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333629 issn: 1949-3053 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXaqgc4tIWCui1Ug8QFiXSd9Vd8XNouvbBC2iL1gBQ5jt2uFGK0TfYn8LsZJ9kVCITELYexE-nZM36Z8RtC3pYYhAuhdSIUpwk33CSZEzSxVBUFkreU-b7ZhJrPs7s7_XmHvN_ehXHOdcVn7iI-drn8Mtg2_iobK3Szqcp2ya5Ssr-rtf2fQhlDX6y7JDKP6XzBNllJqse3i4-xjEtcTDjjGee_RaGurcofvrgLMLPD__u0I3IwHCRh2iP_jOy4-jl5-ou84DH5MYV5WLsKFk2wDyYqMsNsU4wFHzB-lRBquKxCW0J_SR9MXcJXPBQ2BpJPoVx6PKKiaQPT6j6sls3DN2gCLEK1doBmcBWFd4eeWTBzUZoCIqWt_fK-7VfXC_Jldn17eZMMfRcSO9GySbwrkYXhwYmmBoOVkcIKI2lZsMwryQuJe17oLGoTRnV25iZGFEYW1HvpU-3YS7JXh9qdENBe0dRRPUkt4wb9h2WeFkhRDE6B04zIeINDbgdR8tgbo8o7ckJ1jsjlEbl8QG5E3m1HfO8FOf5hexyR2toNII3Imw3UOW6mmCExtQvtY45kCxlbhiTr9O9Dz8gTfIHsi9Bekb1m1brXZN-um-Xj6rxbkT8BszvdDg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQcykeLWCgwSFyQSNeJ7SQ-bgtLEe0KaRepB6TISex2pRCjbbI_gd_NOMmuqEBI3HIYO5GePeOXGb8BeFNSEM6lUoFMBAuEFjpIjWRBwZI8J_IWcts3m0hms_TiQn3ZgXfbuzDGmK74zBz5xy6XX7qi9b_Kxgm52TBJb8FtKUTE-tta2z8qjHPyxqpLIwuf0Jd8k5dkaryYf_SFXPIoElykQtyIQ11jlT-8cRdipg_-7-Mewt5wlMRJj_0j2DH1Y7j_m8DgPvyc4MytTYXzxhVX2msy43RTjoXHFMFKdDWeVK4tsb-mj7ou8RsdCxuNwbkrl5YOqWTa4KS6dKtlc_UdG4dzV60Nkhm-99K7Q9csnBovToGe1NZ2edn26-sAvk4_LE5Og6HzQlBEKm4Ca0riYXR0YqGmcKVjWUgdszLnqU1ikce066VKvTqh12fnJtIy13HOrI1tqAx_Aru1q81TQGUTFhqmorDgQpMHKbhlOZEUTVPQNCMYb3DIikGW3HfHqLKOnjCVEXKZRy4bkBvB2-2IH70kxz9s9z1SW7sBpBG83kCd0XbyORJdG9deZ0S3iLOlRLOe_X3oK7h7ujg_y84-zT4_h3v0srgvSTuE3WbVmhdwp1g3y-vVy251_gJZZeBV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Stochastic+Framework+Based+on+Cloud+Theory+and+%CE%B8-Modified+Bat+Algorithm+to+Solve+the+Distribution+Feeder+Reconfiguration&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Kavousi-Fard%2C+Abdollah&rft.au=Niknam%2C+Taher&rft.au=Fotuhi-Firuzabad%2C+Mahmud&rft.date=2016-03-01&rft.issn=1949-3053&rft.eissn=1949-3061&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTSG.2015.2434844&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSG_2015_2434844 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |