Robust Sensor Fault Detection in Wireless Sensor Networks Using a Hybrid Conditional Generative Adversarial Networks and Convolutional Autoencoder
In the rapidly growing realm of the Internet of Things (IoT), reliance on sensor-generated data has become crucial for the operation of multiple services and systems. As essential components of these systems, wireless sensor networks (WSNs) are installed in a wide range of diverse and often harsh en...
Uložené v:
| Vydané v: | IEEE sensors journal Ročník 25; číslo 8; s. 13912 - 13926 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
15.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the rapidly growing realm of the Internet of Things (IoT), reliance on sensor-generated data has become crucial for the operation of multiple services and systems. As essential components of these systems, wireless sensor networks (WSNs) are installed in a wide range of diverse and often harsh environments. However, these networks are highly prone to a range of faults, including software bugs, communication failures, and hardware malfunctions. Such issues can lead data to data being transmitted incorrectly, endangering the security, reliability, and economic stability of the systems they support. Addressing the challenge of sensor fault detection, we propose a novel hybrid technique to enhance the classification of sensor fault data in WSNs. Our method leverages a publicly available dataset of temperature sensor readings to generate synthetic data by using conditional generative adversarial networks (GANs). These synthetic samples closely resemble common temperature sensor data despite the introduction of artificial sensor faults in WSNs, including hardover, drift, spike, erratic, and stuck faults. In order to capture the temporal dependencies in time-series data, we transform the sensor readings into Gramian angular field (GAF) images, retaining the temporal structure. These GAF images are then processed using a convolutional autoencoder (CAE) to extract rich feature representations, followed by a three-layer artificial neural network (ANN) for the multiclass classification of sensor faults. Our proposed method not only addresses the challenges of data scarcity and imbalance but also enhances accuracy in sensor fault detection. The proposed method demonstrates high accuracy, <inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula>-score, recall, and sensitivity, achieving 95.93%, 95.84%, 95.88%, and 95.88%, respectively. |
|---|---|
| AbstractList | In the rapidly growing realm of the Internet of Things (IoT), reliance on sensor-generated data has become crucial for the operation of multiple services and systems. As essential components of these systems, wireless sensor networks (WSNs) are installed in a wide range of diverse and often harsh environments. However, these networks are highly prone to a range of faults, including software bugs, communication failures, and hardware malfunctions. Such issues can lead data to data being transmitted incorrectly, endangering the security, reliability, and economic stability of the systems they support. Addressing the challenge of sensor fault detection, we propose a novel hybrid technique to enhance the classification of sensor fault data in WSNs. Our method leverages a publicly available dataset of temperature sensor readings to generate synthetic data by using conditional generative adversarial networks (GANs). These synthetic samples closely resemble common temperature sensor data despite the introduction of artificial sensor faults in WSNs, including hardover, drift, spike, erratic, and stuck faults. In order to capture the temporal dependencies in time-series data, we transform the sensor readings into Gramian angular field (GAF) images, retaining the temporal structure. These GAF images are then processed using a convolutional autoencoder (CAE) to extract rich feature representations, followed by a three-layer artificial neural network (ANN) for the multiclass classification of sensor faults. Our proposed method not only addresses the challenges of data scarcity and imbalance but also enhances accuracy in sensor fault detection. The proposed method demonstrates high accuracy, [Formula Omitted]-score, recall, and sensitivity, achieving 95.93%, 95.84%, 95.88%, and 95.88%, respectively. In the rapidly growing realm of the Internet of Things (IoT), reliance on sensor-generated data has become crucial for the operation of multiple services and systems. As essential components of these systems, wireless sensor networks (WSNs) are installed in a wide range of diverse and often harsh environments. However, these networks are highly prone to a range of faults, including software bugs, communication failures, and hardware malfunctions. Such issues can lead data to data being transmitted incorrectly, endangering the security, reliability, and economic stability of the systems they support. Addressing the challenge of sensor fault detection, we propose a novel hybrid technique to enhance the classification of sensor fault data in WSNs. Our method leverages a publicly available dataset of temperature sensor readings to generate synthetic data by using conditional generative adversarial networks (GANs). These synthetic samples closely resemble common temperature sensor data despite the introduction of artificial sensor faults in WSNs, including hardover, drift, spike, erratic, and stuck faults. In order to capture the temporal dependencies in time-series data, we transform the sensor readings into Gramian angular field (GAF) images, retaining the temporal structure. These GAF images are then processed using a convolutional autoencoder (CAE) to extract rich feature representations, followed by a three-layer artificial neural network (ANN) for the multiclass classification of sensor faults. Our proposed method not only addresses the challenges of data scarcity and imbalance but also enhances accuracy in sensor fault detection. The proposed method demonstrates high accuracy, <inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula>-score, recall, and sensitivity, achieving 95.93%, 95.84%, 95.88%, and 95.88%, respectively. |
| Author | Saeed, Umer Khan, Rehan Koo, Insoo |
| Author_xml | – sequence: 1 givenname: Rehan orcidid: 0009-0002-2429-1669 surname: Khan fullname: Khan, Rehan email: rehan77@mail.ulsan.ac.kr organization: Department of Electrical Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea – sequence: 2 givenname: Umer surname: Saeed fullname: Saeed, Umer email: Umer.Saeed@beds.ac.uk organization: School of Computer Science and Technology, University of Bedfordshire, Luton, U.K – sequence: 3 givenname: Insoo orcidid: 0000-0001-7476-8782 surname: Koo fullname: Koo, Insoo email: iskoo@ulsan.ac.kr organization: Department of Electrical Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea |
| BookMark | eNp9kF1LwzAUhoMouKk_QPAi4HVnPtqluRzTbYpMUIfelbQ9lcyazCSd-Df8xbZuinjh1QmH90nePH20a6wBhI4pGVBK5NnV3cV8wAhLBjyJheDDHdSjSZJGVMTpbnfmJIq5eNxHfe-XhFApEtFDH7c2b3zAd2C8dXiimjrgcwhQBG0N1gY_aAc1eP8dmUN4s-7Z44XX5gkrPHvPnS7x2JpSd5Cq8RQMOBX0GvCoXIPzyul2_YMq85Vf27rZEqMmWDCFLcEdor1K1R6OtvMALSYX9-NZdH0zvRyPrqOCyWGIQDBRSEIJ8DwXhMtCqTRXIqEVGRImq7hMq5TkTDApKqCkYlwOSwqtHRAl4QfodHPvytnXBnzIlrZxbRmfcSqJZImkXYpuUoWz3juospXTL8q9Z5RknfqsU5916rOt-pYRf5hCB9X9NDil63_Jkw2pAeDXS7ItFMf8E1IdljE |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_TSIPN_2025_3606167 |
| Cites_doi | 10.1109/ACCESS.2022.3192415 10.1109/JIOT.2020.3018687 10.1109/TIM.2020.3003359 10.1109/ACCESS.2017.2705644 10.1109/ISSNIP.2010.5706782 10.3390/electronics13244907 10.1109/ACCESS.2024.3396497 10.1109/SURV.2013.030713.00062 10.1007/s12652-021-03302-w 10.1109/TIM.2021.3130675 10.1109/ACCESS.2020.3021007 10.1016/j.ress.2020.107284 10.1016/j.rser.2022.112395 10.3390/s22082824 10.1109/JSEN.2021.3069452 10.1109/JSEN.2017.2771226 10.1093/imamci/dnw053 10.1109/TSMCC.2012.2205680 10.1016/j.ress.2018.02.003 10.3233/ICA-210662 10.3390/s21020617 10.3390/s19071568 10.1016/j.jpha.2021.12.006 10.1109/JSEN.2023.3272908 10.1186/s40537-021-00414-0 10.1109/ICOCN53177.2021.9563630 10.1007/s42417-023-00959-9 10.1007/978-3-662-62004-5 10.1016/j.tele.2017.01.007 10.1007/978-3-030-66222-6_14 10.1016/j.ins.2020.08.068 10.1007/s11277-020-07108-5 10.1109/TCYB.2018.2804940 10.3390/bioengineering11070685 10.23919/CCC52363.2021.9550141 10.1016/j.sna.2022.113864 10.3390/en15197339 10.1109/JSEN.2017.2766364 10.1016/j.measurement.2019.107187 10.1109/TKDE.2023.3310909 10.1016/j.ress.2019.02.025 10.3390/electronics10182237 10.11591/eei.v10i4.3014 10.1109/JIOT.2022.3163606 10.3390/bioengineering11060586 10.1109/JSEN.2021.3110367 10.1007/978-981-15-0663-5_2 10.1109/JSEN.2023.3241947 10.1155/2020/5357146 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2025.3547736 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 13926 |
| ExternalDocumentID | 10_1109_JSEN_2025_3547736 10919044 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: 2025 Research Fund of the University of Ulsan funderid: 10.13039/501100002568 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c296t-e727c9010e3bb7039caa8ba751f06029f4d8f80b27297fe10f2396d1e773e7d03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001469399500039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Tue Jul 22 18:41:15 EDT 2025 Sat Nov 29 08:02:22 EST 2025 Tue Nov 18 22:42:23 EST 2025 Wed Aug 27 02:03:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-e727c9010e3bb7039caa8ba751f06029f4d8f80b27297fe10f2396d1e773e7d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0002-2429-1669 0000-0001-7476-8782 |
| PQID | 3190925910 |
| PQPubID | 75733 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_JSEN_2025_3547736 crossref_citationtrail_10_1109_JSEN_2025_3547736 ieee_primary_10919044 proquest_journals_3190925910 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-15 |
| PublicationDateYYYYMMDD | 2025-04-15 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref11 ref10 ref17 ref16 ref19 ref18 Ballé (ref51) 2016 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Mirza (ref49) 2014 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 Wang (ref50) 2015 ref2 ref1 ref39 ref38 Theis (ref52) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref21 doi: 10.1109/ACCESS.2022.3192415 – ident: ref13 doi: 10.1109/JIOT.2020.3018687 – year: 2016 ident: ref51 article-title: End-to-end optimized image compression publication-title: arXiv:1611.01704 – ident: ref14 doi: 10.1109/TIM.2020.3003359 – ident: ref28 doi: 10.1109/ACCESS.2017.2705644 – ident: ref48 doi: 10.1109/ISSNIP.2010.5706782 – ident: ref47 doi: 10.3390/electronics13244907 – ident: ref10 doi: 10.1109/ACCESS.2024.3396497 – ident: ref26 doi: 10.1109/SURV.2013.030713.00062 – ident: ref8 doi: 10.1007/s12652-021-03302-w – ident: ref20 doi: 10.1109/TIM.2021.3130675 – ident: ref42 doi: 10.1109/ACCESS.2020.3021007 – ident: ref33 doi: 10.1016/j.ress.2020.107284 – ident: ref17 doi: 10.1016/j.rser.2022.112395 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref52 article-title: Lossy image compression with compressive autoencoders – ident: ref3 doi: 10.3390/s22082824 – year: 2014 ident: ref49 article-title: Conditional generative adversarial nets publication-title: arXiv:1411.1784 – ident: ref43 doi: 10.1109/JSEN.2021.3069452 – ident: ref31 doi: 10.1109/JSEN.2017.2771226 – ident: ref24 doi: 10.1093/imamci/dnw053 – ident: ref27 doi: 10.1109/TSMCC.2012.2205680 – ident: ref25 doi: 10.1016/j.ress.2018.02.003 – ident: ref45 doi: 10.3233/ICA-210662 – ident: ref34 doi: 10.3390/s21020617 – ident: ref32 doi: 10.3390/s19071568 – ident: ref7 doi: 10.1016/j.jpha.2021.12.006 – ident: ref36 doi: 10.1109/JSEN.2023.3272908 – ident: ref19 doi: 10.1186/s40537-021-00414-0 – ident: ref41 doi: 10.1109/ICOCN53177.2021.9563630 – ident: ref53 doi: 10.1007/s42417-023-00959-9 – ident: ref15 doi: 10.1007/978-3-662-62004-5 – ident: ref18 doi: 10.1016/j.tele.2017.01.007 – ident: ref1 doi: 10.1007/978-3-030-66222-6_14 – ident: ref46 doi: 10.1016/j.ins.2020.08.068 – ident: ref2 doi: 10.1007/s11277-020-07108-5 – ident: ref29 doi: 10.1109/TCYB.2018.2804940 – ident: ref38 doi: 10.3390/bioengineering11070685 – ident: ref35 doi: 10.23919/CCC52363.2021.9550141 – ident: ref22 doi: 10.1016/j.sna.2022.113864 – ident: ref23 doi: 10.3390/en15197339 – ident: ref11 doi: 10.1109/JSEN.2017.2766364 – ident: ref5 doi: 10.1016/j.measurement.2019.107187 – ident: ref44 doi: 10.1109/TKDE.2023.3310909 – ident: ref30 doi: 10.1016/j.ress.2019.02.025 – ident: ref9 doi: 10.3390/electronics10182237 – year: 2015 ident: ref50 article-title: Spatially encoding temporal correlations to classify temporal data using convolutional neural networks publication-title: arXiv:1509.07481 – ident: ref6 doi: 10.11591/eei.v10i4.3014 – ident: ref16 doi: 10.1109/JIOT.2022.3163606 – ident: ref37 doi: 10.3390/bioengineering11060586 – ident: ref39 doi: 10.1109/JSEN.2021.3110367 – ident: ref4 doi: 10.1007/978-981-15-0663-5_2 – ident: ref12 doi: 10.1109/JSEN.2023.3241947 – ident: ref40 doi: 10.1155/2020/5357146 |
| SSID | ssj0019757 |
| Score | 2.4553795 |
| Snippet | In the rapidly growing realm of the Internet of Things (IoT), reliance on sensor-generated data has become crucial for the operation of multiple services and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13912 |
| SubjectTerms | Accuracy Artificial neural networks Classification Conditional generative adversarial networks (Conditional GANs) convolutional autoencoder (CAE) Fault detection Faults Feature extraction Generative adversarial networks Gramian angular field (GAF) Internet of Things Monitoring Network security Reliability sensor faults Sensor systems Sensors Synthetic data Temperature sensors Wireless sensor networks wireless sensor networks (WSNs) |
| Title | Robust Sensor Fault Detection in Wireless Sensor Networks Using a Hybrid Conditional Generative Adversarial Networks and Convolutional Autoencoder |
| URI | https://ieeexplore.ieee.org/document/10919044 https://www.proquest.com/docview/3190925910 |
| Volume | 25 |
| WOSCitedRecordID | wos001469399500039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PS-UwEB9UhNWDuv7Bt6uSw54WqmmbNM1RXB8i8pB1d3m3kiYpCo9WXlvBr-En3kyap4IoeCk9zITQmUxmOjO_AfghMmVKxUzkXH_mHrE7c1zzyGiWVNJqEftG2n9XYjLJp1N5HZrVfS-MtdYXn9ljfPW5fNPoHn-VnSCIpaSMLcOyEGJo1npOGUjhYT3dCaYRS8U0pDAdz8nlzfnEhYIJP045E8LDMb9cQn6qyhtT7O-X8eYnd7YFG8GRJKeD5L_Ckq23Yf0VvOA2fAkTzm8fd-Dpd1P2bUduXNjazMlY9bOO_LKdr8SqyV1NsA525uzegmQyFIi3xFcVEEUuHrG7i5w1mOX2fxDJAFqNFpP4yc6tQn1-YVW1p38I-o377bsGsTONne_C3_H5n7OLKMxjiHQisy6yztfRWM5h07J0lkJqpfJSCR5XNKOJrJjJq5yWiXPYRWVjWiWpzExs3Se3wtB0D1bqprb7QIyhbolccZYZxiXPKdMIzMOkdqtyPgK6EFChA1g5zsyYFT5oobJAmRYo0yLIdAQ_n1nuB6SOj4h3UYivCAf5jeBgoQZFOMxt4awUlS5MjOm3d9i-wxqujlmmmB_ASjfv7SGs6ofurp0feT39D5Da5sM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9QwDLbGhjR4YDCGuLFBHnhC6pa2SdM8TmOn2zgqxAa6typNUjHp1KJrO2l_g19MnOa2SQgkXqo-2GlUO44T258B3otMmUoxEznXn7lH7NYc1zwymiW1tFrEvpD2-1wURb5YyC-hWN3XwlhrffKZPcJXH8s3rR7wquwYQSwlZewRbHHGkngs17oLGkjhgT3dGqYRS8UiBDEd1_HF5VnhDoMJP0o5E8IDMt9vQ76vyh_G2O8w053_nNtzeBZcSXIyyv4FbNhmF54-ABjche3Q4_zH7Uv49bWthq4nl-7g2q7IVA3Lnny0vc_Fash1QzATduks35qkGFPEO-LzCogis1us7yKnLca5_R0iGWGr0WYS39u5U6jR96yq8fQ3QcNxvkPfInqmsas9-DY9uzqdRaEjQ6QTmfWRdd6OxoQOm1aVsxVSK5VXSvC4phlNZM1MXue0SpzLLmob0zpJZWZi6365FYamr2CzaRv7Gogx1A2RK84yw7jkOWUaoXmY1G5UzidA1wIqdYArx64Zy9IfW6gsUaYlyrQMMp3AhzuWnyNWx7-I91CIDwhH-U3gYK0GZVjOXensFJXuoBjT_b-wvYPt2dXneTk_Lz69gSf4JYw5xfwANvvVYA_hsb7pr7vVW6-zvwGzruoK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Sensor+Fault+Detection+in+Wireless+Sensor+Networks+Using+a+Hybrid+Conditional+Generative+Adversarial+Networks+and+Convolutional+Autoencoder&rft.jtitle=IEEE+sensors+journal&rft.au=Khan%2C+Rehan&rft.au=Saeed%2C+Umer&rft.au=Koo%2C+Insoo&rft.date=2025-04-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=8&rft.spage=13912&rft.epage=13926&rft_id=info:doi/10.1109%2FJSEN.2025.3547736&rft.externalDocID=10919044 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |