Robust Sensor Fault Detection in Wireless Sensor Networks Using a Hybrid Conditional Generative Adversarial Networks and Convolutional Autoencoder

In the rapidly growing realm of the Internet of Things (IoT), reliance on sensor-generated data has become crucial for the operation of multiple services and systems. As essential components of these systems, wireless sensor networks (WSNs) are installed in a wide range of diverse and often harsh en...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE sensors journal Ročník 25; číslo 8; s. 13912 - 13926
Hlavní autori: Khan, Rehan, Saeed, Umer, Koo, Insoo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 15.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1530-437X, 1558-1748
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the rapidly growing realm of the Internet of Things (IoT), reliance on sensor-generated data has become crucial for the operation of multiple services and systems. As essential components of these systems, wireless sensor networks (WSNs) are installed in a wide range of diverse and often harsh environments. However, these networks are highly prone to a range of faults, including software bugs, communication failures, and hardware malfunctions. Such issues can lead data to data being transmitted incorrectly, endangering the security, reliability, and economic stability of the systems they support. Addressing the challenge of sensor fault detection, we propose a novel hybrid technique to enhance the classification of sensor fault data in WSNs. Our method leverages a publicly available dataset of temperature sensor readings to generate synthetic data by using conditional generative adversarial networks (GANs). These synthetic samples closely resemble common temperature sensor data despite the introduction of artificial sensor faults in WSNs, including hardover, drift, spike, erratic, and stuck faults. In order to capture the temporal dependencies in time-series data, we transform the sensor readings into Gramian angular field (GAF) images, retaining the temporal structure. These GAF images are then processed using a convolutional autoencoder (CAE) to extract rich feature representations, followed by a three-layer artificial neural network (ANN) for the multiclass classification of sensor faults. Our proposed method not only addresses the challenges of data scarcity and imbalance but also enhances accuracy in sensor fault detection. The proposed method demonstrates high accuracy, <inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula>-score, recall, and sensitivity, achieving 95.93%, 95.84%, 95.88%, and 95.88%, respectively.
AbstractList In the rapidly growing realm of the Internet of Things (IoT), reliance on sensor-generated data has become crucial for the operation of multiple services and systems. As essential components of these systems, wireless sensor networks (WSNs) are installed in a wide range of diverse and often harsh environments. However, these networks are highly prone to a range of faults, including software bugs, communication failures, and hardware malfunctions. Such issues can lead data to data being transmitted incorrectly, endangering the security, reliability, and economic stability of the systems they support. Addressing the challenge of sensor fault detection, we propose a novel hybrid technique to enhance the classification of sensor fault data in WSNs. Our method leverages a publicly available dataset of temperature sensor readings to generate synthetic data by using conditional generative adversarial networks (GANs). These synthetic samples closely resemble common temperature sensor data despite the introduction of artificial sensor faults in WSNs, including hardover, drift, spike, erratic, and stuck faults. In order to capture the temporal dependencies in time-series data, we transform the sensor readings into Gramian angular field (GAF) images, retaining the temporal structure. These GAF images are then processed using a convolutional autoencoder (CAE) to extract rich feature representations, followed by a three-layer artificial neural network (ANN) for the multiclass classification of sensor faults. Our proposed method not only addresses the challenges of data scarcity and imbalance but also enhances accuracy in sensor fault detection. The proposed method demonstrates high accuracy, [Formula Omitted]-score, recall, and sensitivity, achieving 95.93%, 95.84%, 95.88%, and 95.88%, respectively.
In the rapidly growing realm of the Internet of Things (IoT), reliance on sensor-generated data has become crucial for the operation of multiple services and systems. As essential components of these systems, wireless sensor networks (WSNs) are installed in a wide range of diverse and often harsh environments. However, these networks are highly prone to a range of faults, including software bugs, communication failures, and hardware malfunctions. Such issues can lead data to data being transmitted incorrectly, endangering the security, reliability, and economic stability of the systems they support. Addressing the challenge of sensor fault detection, we propose a novel hybrid technique to enhance the classification of sensor fault data in WSNs. Our method leverages a publicly available dataset of temperature sensor readings to generate synthetic data by using conditional generative adversarial networks (GANs). These synthetic samples closely resemble common temperature sensor data despite the introduction of artificial sensor faults in WSNs, including hardover, drift, spike, erratic, and stuck faults. In order to capture the temporal dependencies in time-series data, we transform the sensor readings into Gramian angular field (GAF) images, retaining the temporal structure. These GAF images are then processed using a convolutional autoencoder (CAE) to extract rich feature representations, followed by a three-layer artificial neural network (ANN) for the multiclass classification of sensor faults. Our proposed method not only addresses the challenges of data scarcity and imbalance but also enhances accuracy in sensor fault detection. The proposed method demonstrates high accuracy, <inline-formula> <tex-math notation="LaTeX">F1 </tex-math></inline-formula>-score, recall, and sensitivity, achieving 95.93%, 95.84%, 95.88%, and 95.88%, respectively.
Author Saeed, Umer
Khan, Rehan
Koo, Insoo
Author_xml – sequence: 1
  givenname: Rehan
  orcidid: 0009-0002-2429-1669
  surname: Khan
  fullname: Khan, Rehan
  email: rehan77@mail.ulsan.ac.kr
  organization: Department of Electrical Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea
– sequence: 2
  givenname: Umer
  surname: Saeed
  fullname: Saeed, Umer
  email: Umer.Saeed@beds.ac.uk
  organization: School of Computer Science and Technology, University of Bedfordshire, Luton, U.K
– sequence: 3
  givenname: Insoo
  orcidid: 0000-0001-7476-8782
  surname: Koo
  fullname: Koo, Insoo
  email: iskoo@ulsan.ac.kr
  organization: Department of Electrical Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea
BookMark eNp9kF1LwzAUhoMouKk_QPAi4HVnPtqluRzTbYpMUIfelbQ9lcyazCSd-Df8xbZuinjh1QmH90nePH20a6wBhI4pGVBK5NnV3cV8wAhLBjyJheDDHdSjSZJGVMTpbnfmJIq5eNxHfe-XhFApEtFDH7c2b3zAd2C8dXiimjrgcwhQBG0N1gY_aAc1eP8dmUN4s-7Z44XX5gkrPHvPnS7x2JpSd5Cq8RQMOBX0GvCoXIPzyul2_YMq85Vf27rZEqMmWDCFLcEdor1K1R6OtvMALSYX9-NZdH0zvRyPrqOCyWGIQDBRSEIJ8DwXhMtCqTRXIqEVGRImq7hMq5TkTDApKqCkYlwOSwqtHRAl4QfodHPvytnXBnzIlrZxbRmfcSqJZImkXYpuUoWz3juospXTL8q9Z5RknfqsU5916rOt-pYRf5hCB9X9NDil63_Jkw2pAeDXS7ItFMf8E1IdljE
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_TSIPN_2025_3606167
Cites_doi 10.1109/ACCESS.2022.3192415
10.1109/JIOT.2020.3018687
10.1109/TIM.2020.3003359
10.1109/ACCESS.2017.2705644
10.1109/ISSNIP.2010.5706782
10.3390/electronics13244907
10.1109/ACCESS.2024.3396497
10.1109/SURV.2013.030713.00062
10.1007/s12652-021-03302-w
10.1109/TIM.2021.3130675
10.1109/ACCESS.2020.3021007
10.1016/j.ress.2020.107284
10.1016/j.rser.2022.112395
10.3390/s22082824
10.1109/JSEN.2021.3069452
10.1109/JSEN.2017.2771226
10.1093/imamci/dnw053
10.1109/TSMCC.2012.2205680
10.1016/j.ress.2018.02.003
10.3233/ICA-210662
10.3390/s21020617
10.3390/s19071568
10.1016/j.jpha.2021.12.006
10.1109/JSEN.2023.3272908
10.1186/s40537-021-00414-0
10.1109/ICOCN53177.2021.9563630
10.1007/s42417-023-00959-9
10.1007/978-3-662-62004-5
10.1016/j.tele.2017.01.007
10.1007/978-3-030-66222-6_14
10.1016/j.ins.2020.08.068
10.1007/s11277-020-07108-5
10.1109/TCYB.2018.2804940
10.3390/bioengineering11070685
10.23919/CCC52363.2021.9550141
10.1016/j.sna.2022.113864
10.3390/en15197339
10.1109/JSEN.2017.2766364
10.1016/j.measurement.2019.107187
10.1109/TKDE.2023.3310909
10.1016/j.ress.2019.02.025
10.3390/electronics10182237
10.11591/eei.v10i4.3014
10.1109/JIOT.2022.3163606
10.3390/bioengineering11060586
10.1109/JSEN.2021.3110367
10.1007/978-981-15-0663-5_2
10.1109/JSEN.2023.3241947
10.1155/2020/5357146
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2025.3547736
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 13926
ExternalDocumentID 10_1109_JSEN_2025_3547736
10919044
Genre orig-research
GrantInformation_xml – fundername: 2025 Research Fund of the University of Ulsan
  funderid: 10.13039/501100002568
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c296t-e727c9010e3bb7039caa8ba751f06029f4d8f80b27297fe10f2396d1e773e7d03
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001469399500039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Tue Jul 22 18:41:15 EDT 2025
Sat Nov 29 08:02:22 EST 2025
Tue Nov 18 22:42:23 EST 2025
Wed Aug 27 02:03:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-e727c9010e3bb7039caa8ba751f06029f4d8f80b27297fe10f2396d1e773e7d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-2429-1669
0000-0001-7476-8782
PQID 3190925910
PQPubID 75733
PageCount 15
ParticipantIDs crossref_primary_10_1109_JSEN_2025_3547736
crossref_citationtrail_10_1109_JSEN_2025_3547736
ieee_primary_10919044
proquest_journals_3190925910
PublicationCentury 2000
PublicationDate 2025-04-15
PublicationDateYYYYMMDD 2025-04-15
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref11
ref10
ref17
ref16
ref19
ref18
Ballé (ref51) 2016
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Mirza (ref49) 2014
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Wang (ref50) 2015
ref2
ref1
ref39
ref38
Theis (ref52)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref21
  doi: 10.1109/ACCESS.2022.3192415
– ident: ref13
  doi: 10.1109/JIOT.2020.3018687
– year: 2016
  ident: ref51
  article-title: End-to-end optimized image compression
  publication-title: arXiv:1611.01704
– ident: ref14
  doi: 10.1109/TIM.2020.3003359
– ident: ref28
  doi: 10.1109/ACCESS.2017.2705644
– ident: ref48
  doi: 10.1109/ISSNIP.2010.5706782
– ident: ref47
  doi: 10.3390/electronics13244907
– ident: ref10
  doi: 10.1109/ACCESS.2024.3396497
– ident: ref26
  doi: 10.1109/SURV.2013.030713.00062
– ident: ref8
  doi: 10.1007/s12652-021-03302-w
– ident: ref20
  doi: 10.1109/TIM.2021.3130675
– ident: ref42
  doi: 10.1109/ACCESS.2020.3021007
– ident: ref33
  doi: 10.1016/j.ress.2020.107284
– ident: ref17
  doi: 10.1016/j.rser.2022.112395
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref52
  article-title: Lossy image compression with compressive autoencoders
– ident: ref3
  doi: 10.3390/s22082824
– year: 2014
  ident: ref49
  article-title: Conditional generative adversarial nets
  publication-title: arXiv:1411.1784
– ident: ref43
  doi: 10.1109/JSEN.2021.3069452
– ident: ref31
  doi: 10.1109/JSEN.2017.2771226
– ident: ref24
  doi: 10.1093/imamci/dnw053
– ident: ref27
  doi: 10.1109/TSMCC.2012.2205680
– ident: ref25
  doi: 10.1016/j.ress.2018.02.003
– ident: ref45
  doi: 10.3233/ICA-210662
– ident: ref34
  doi: 10.3390/s21020617
– ident: ref32
  doi: 10.3390/s19071568
– ident: ref7
  doi: 10.1016/j.jpha.2021.12.006
– ident: ref36
  doi: 10.1109/JSEN.2023.3272908
– ident: ref19
  doi: 10.1186/s40537-021-00414-0
– ident: ref41
  doi: 10.1109/ICOCN53177.2021.9563630
– ident: ref53
  doi: 10.1007/s42417-023-00959-9
– ident: ref15
  doi: 10.1007/978-3-662-62004-5
– ident: ref18
  doi: 10.1016/j.tele.2017.01.007
– ident: ref1
  doi: 10.1007/978-3-030-66222-6_14
– ident: ref46
  doi: 10.1016/j.ins.2020.08.068
– ident: ref2
  doi: 10.1007/s11277-020-07108-5
– ident: ref29
  doi: 10.1109/TCYB.2018.2804940
– ident: ref38
  doi: 10.3390/bioengineering11070685
– ident: ref35
  doi: 10.23919/CCC52363.2021.9550141
– ident: ref22
  doi: 10.1016/j.sna.2022.113864
– ident: ref23
  doi: 10.3390/en15197339
– ident: ref11
  doi: 10.1109/JSEN.2017.2766364
– ident: ref5
  doi: 10.1016/j.measurement.2019.107187
– ident: ref44
  doi: 10.1109/TKDE.2023.3310909
– ident: ref30
  doi: 10.1016/j.ress.2019.02.025
– ident: ref9
  doi: 10.3390/electronics10182237
– year: 2015
  ident: ref50
  article-title: Spatially encoding temporal correlations to classify temporal data using convolutional neural networks
  publication-title: arXiv:1509.07481
– ident: ref6
  doi: 10.11591/eei.v10i4.3014
– ident: ref16
  doi: 10.1109/JIOT.2022.3163606
– ident: ref37
  doi: 10.3390/bioengineering11060586
– ident: ref39
  doi: 10.1109/JSEN.2021.3110367
– ident: ref4
  doi: 10.1007/978-981-15-0663-5_2
– ident: ref12
  doi: 10.1109/JSEN.2023.3241947
– ident: ref40
  doi: 10.1155/2020/5357146
SSID ssj0019757
Score 2.4553795
Snippet In the rapidly growing realm of the Internet of Things (IoT), reliance on sensor-generated data has become crucial for the operation of multiple services and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13912
SubjectTerms Accuracy
Artificial neural networks
Classification
Conditional generative adversarial networks (Conditional GANs)
convolutional autoencoder (CAE)
Fault detection
Faults
Feature extraction
Generative adversarial networks
Gramian angular field (GAF)
Internet of Things
Monitoring
Network security
Reliability
sensor faults
Sensor systems
Sensors
Synthetic data
Temperature sensors
Wireless sensor networks
wireless sensor networks (WSNs)
Title Robust Sensor Fault Detection in Wireless Sensor Networks Using a Hybrid Conditional Generative Adversarial Networks and Convolutional Autoencoder
URI https://ieeexplore.ieee.org/document/10919044
https://www.proquest.com/docview/3190925910
Volume 25
WOSCitedRecordID wos001469399500039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PS-UwEB9UhNWDuv7Bt6uSw54WqmmbNM1RXB8i8pB1d3m3kiYpCo9WXlvBr-En3kyap4IoeCk9zITQmUxmOjO_AfghMmVKxUzkXH_mHrE7c1zzyGiWVNJqEftG2n9XYjLJp1N5HZrVfS-MtdYXn9ljfPW5fNPoHn-VnSCIpaSMLcOyEGJo1npOGUjhYT3dCaYRS8U0pDAdz8nlzfnEhYIJP045E8LDMb9cQn6qyhtT7O-X8eYnd7YFG8GRJKeD5L_Ckq23Yf0VvOA2fAkTzm8fd-Dpd1P2bUduXNjazMlY9bOO_LKdr8SqyV1NsA525uzegmQyFIi3xFcVEEUuHrG7i5w1mOX2fxDJAFqNFpP4yc6tQn1-YVW1p38I-o377bsGsTONne_C3_H5n7OLKMxjiHQisy6yztfRWM5h07J0lkJqpfJSCR5XNKOJrJjJq5yWiXPYRWVjWiWpzExs3Se3wtB0D1bqprb7QIyhbolccZYZxiXPKdMIzMOkdqtyPgK6EFChA1g5zsyYFT5oobJAmRYo0yLIdAQ_n1nuB6SOj4h3UYivCAf5jeBgoQZFOMxt4awUlS5MjOm3d9i-wxqujlmmmB_ASjfv7SGs6ofurp0feT39D5Da5sM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9QwDLbGhjR4YDCGuLFBHnhC6pa2SdM8TmOn2zgqxAa6typNUjHp1KJrO2l_g19MnOa2SQgkXqo-2GlUO44T258B3otMmUoxEznXn7lH7NYc1zwymiW1tFrEvpD2-1wURb5YyC-hWN3XwlhrffKZPcJXH8s3rR7wquwYQSwlZewRbHHGkngs17oLGkjhgT3dGqYRS8UiBDEd1_HF5VnhDoMJP0o5E8IDMt9vQ76vyh_G2O8w053_nNtzeBZcSXIyyv4FbNhmF54-ABjche3Q4_zH7Uv49bWthq4nl-7g2q7IVA3Lnny0vc_Fash1QzATduks35qkGFPEO-LzCogis1us7yKnLca5_R0iGWGr0WYS39u5U6jR96yq8fQ3QcNxvkPfInqmsas9-DY9uzqdRaEjQ6QTmfWRdd6OxoQOm1aVsxVSK5VXSvC4phlNZM1MXue0SpzLLmob0zpJZWZi6365FYamr2CzaRv7Gogx1A2RK84yw7jkOWUaoXmY1G5UzidA1wIqdYArx64Zy9IfW6gsUaYlyrQMMp3AhzuWnyNWx7-I91CIDwhH-U3gYK0GZVjOXensFJXuoBjT_b-wvYPt2dXneTk_Lz69gSf4JYw5xfwANvvVYA_hsb7pr7vVW6-zvwGzruoK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Sensor+Fault+Detection+in+Wireless+Sensor+Networks+Using+a+Hybrid+Conditional+Generative+Adversarial+Networks+and+Convolutional+Autoencoder&rft.jtitle=IEEE+sensors+journal&rft.au=Khan%2C+Rehan&rft.au=Saeed%2C+Umer&rft.au=Koo%2C+Insoo&rft.date=2025-04-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=8&rft.spage=13912&rft.epage=13926&rft_id=info:doi/10.1109%2FJSEN.2025.3547736&rft.externalDocID=10919044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon