Robust WMMSE Precoder With Deep Learning Design for Massive MIMO

In this paper, we investigate the downlink robust precoding with imperfect channel state information (CSI) for massive multiple-input-multiple-output (MIMO) communications. With the estimated channel and channel error statistics, the general design of the robust precoder is to maximize the ergodic s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications Jg. 71; H. 7; S. 3963 - 3976
Hauptverfasser: Shi, Junchao, Lu, An-An, Zhong, Wen, Gao, Xiqi, Li, Geoffrey Ye
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0090-6778, 1558-0857
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the downlink robust precoding with imperfect channel state information (CSI) for massive multiple-input-multiple-output (MIMO) communications. With the estimated channel and channel error statistics, the general design of the robust precoder is to maximize the ergodic sum rate subject to the total transmit power constraint. To make the problem more tractable, we find a lower bound of the ergodic sum rate and propose the robust weighted minimum mean-squared-error (WMMSE) precoder to maximize the bound. We characterize the structure of the precoding vectors by low-dimensional parameters, which are learned directly from the available CSI through a neural network. As such, the precoding vectors can be immediately computed without iterations. To extend the deep learning design to multi-antennas users, we present a flexible approach that allows the various antenna configurations at the user side to be handled. Simulation results show that the deep learning design can significantly reduce the computational complexity compared with the existing precoder designs while achieving near optimal performance.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2023.3269849