Robust WMMSE Precoder With Deep Learning Design for Massive MIMO
In this paper, we investigate the downlink robust precoding with imperfect channel state information (CSI) for massive multiple-input-multiple-output (MIMO) communications. With the estimated channel and channel error statistics, the general design of the robust precoder is to maximize the ergodic s...
Uloženo v:
| Vydáno v: | IEEE transactions on communications Ročník 71; číslo 7; s. 3963 - 3976 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0090-6778, 1558-0857 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we investigate the downlink robust precoding with imperfect channel state information (CSI) for massive multiple-input-multiple-output (MIMO) communications. With the estimated channel and channel error statistics, the general design of the robust precoder is to maximize the ergodic sum rate subject to the total transmit power constraint. To make the problem more tractable, we find a lower bound of the ergodic sum rate and propose the robust weighted minimum mean-squared-error (WMMSE) precoder to maximize the bound. We characterize the structure of the precoding vectors by low-dimensional parameters, which are learned directly from the available CSI through a neural network. As such, the precoding vectors can be immediately computed without iterations. To extend the deep learning design to multi-antennas users, we present a flexible approach that allows the various antenna configurations at the user side to be handled. Simulation results show that the deep learning design can significantly reduce the computational complexity compared with the existing precoder designs while achieving near optimal performance. |
|---|---|
| AbstractList | In this paper, we investigate the downlink robust precoding with imperfect channel state information (CSI) for massive multiple-input-multiple-output (MIMO) communications. With the estimated channel and channel error statistics, the general design of the robust precoder is to maximize the ergodic sum rate subject to the total transmit power constraint. To make the problem more tractable, we find a lower bound of the ergodic sum rate and propose the robust weighted minimum mean-squared-error (WMMSE) precoder to maximize the bound. We characterize the structure of the precoding vectors by low-dimensional parameters, which are learned directly from the available CSI through a neural network. As such, the precoding vectors can be immediately computed without iterations. To extend the deep learning design to multi-antennas users, we present a flexible approach that allows the various antenna configurations at the user side to be handled. Simulation results show that the deep learning design can significantly reduce the computational complexity compared with the existing precoder designs while achieving near optimal performance. |
| Author | Gao, Xiqi Shi, Junchao Li, Geoffrey Ye Lu, An-An Zhong, Wen |
| Author_xml | – sequence: 1 givenname: Junchao orcidid: 0000-0002-6459-8908 surname: Shi fullname: Shi, Junchao email: jcshi@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China – sequence: 2 givenname: An-An orcidid: 0000-0003-0193-6372 surname: Lu fullname: Lu, An-An email: aalu@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China – sequence: 3 givenname: Wen surname: Zhong fullname: Zhong, Wen email: wzhong@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China – sequence: 4 givenname: Xiqi orcidid: 0000-0001-9107-6593 surname: Gao fullname: Gao, Xiqi email: xqgao@seu.edu.cn organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China – sequence: 5 givenname: Geoffrey Ye orcidid: 0000-0002-7894-2415 surname: Li fullname: Li, Geoffrey Ye organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K |
| BookMark | eNp90M9LwzAUwPEgCm7Tf0A8BDx35keTpjdlTh2sTHSyY0ja15kxm5l0gv-9ndtBPHgKD_J5D759dNz4BhC6oGRIKcmv56NZUQwZYXzImcxVmh-hHhVCJUSJ7Bj1CMlJIrNMnaJ-jCtCSEo476GbZ2-3scWLongZ46cApa8g4IVr3_AdwAZPwYTGNctuim7Z4NoHXJgY3SfgYlLMztBJbdYRzg_vAL3ej-ejx2Q6e5iMbqdJyXLZJpVJCStFbRUwaUtepYpTClJkVgkjuFW2AkY55ZDbUlAupKwzlVaWgaqJ5QN0td-7Cf5jC7HVK78NTXdSM8Uzynna4QFS-19l8DEGqHXpWtM637TBuLWmRO966Z9eetdLH3p1lP2hm-DeTfj6H13ukQOAX4CSTJKcfwNg9Xam |
| CODEN | IECMBT |
| CitedBy_id | crossref_primary_10_1109_TSP_2025_3574005 crossref_primary_10_1007_s11277_024_10919_5 crossref_primary_10_1109_TWC_2025_3541644 crossref_primary_10_3390_s24165188 crossref_primary_10_1109_LWC_2024_3483893 crossref_primary_10_1109_JSAC_2024_3460084 crossref_primary_10_1109_OJCOMS_2025_3586560 crossref_primary_10_1109_JSAC_2025_3536504 |
| Cites_doi | 10.1109/MWC.2019.1800601 10.1109/TWC.2007.360373 10.1109/TSP.2011.2147784 10.1109/TAP.2014.2310220 10.1109/LWC.2017.2757490 10.1109/LCOMM.2021.3063707 10.1109/TWC.2021.3052973 10.1109/TWC.2020.3028365 10.1109/MCOM.2014.6736761 10.1109/TWC.2020.3033334 10.1109/TWC.2010.092810.091092 10.1016/j.acha.2019.06.004 10.1109/TSP.2017.2675862 10.1007/BF02551274 10.15325/BLTJ.2015.2407793 10.1109/ICASSP39728.2021.9414561 10.1109/SPAWC.2013.6612065 10.1109/LWC.2021.3075996 10.1109/ISWCS.2012.6328433 10.1109/WCL.2012.022012.110206 10.1109/TIT.2003.817421 10.1109/T-WC.2008.070851 10.1109/TCOMM.2004.840638 10.1109/TWC.2020.3035843 10.1007/s11432-015-5390-y 10.1109/TCOMM.2021.3105569 10.1016/0893-6080(91)90009-T 10.1109/TCOMM.2019.2960361 10.1017/CBO9780511804441 10.1109/GLOCOM.2018.8647574 10.1109/TCOMM.2019.2912383 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCOMM.2023.3269849 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0857 |
| EndPage | 3976 |
| ExternalDocumentID | 10_1109_TCOMM_2023_3269849 10107609 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key R&D Program of China the Jiangsu Province Basic Research Project the Key R&D Plan of Jiangsu Province the National Natural Science Foundation of China the Huawei Cooperation Project grantid: 2018YFB1801103; BK20192002; BE2022067; 61801113; 61960206006 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c296t-da402c5fb8e26bc3d48311e657b85a53b8bde21313e9bc513566f784db2e8f0b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035493400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0090-6778 |
| IngestDate | Mon Jun 30 08:33:15 EDT 2025 Tue Nov 18 22:20:18 EST 2025 Sat Nov 29 04:08:26 EST 2025 Wed Aug 27 02:18:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-da402c5fb8e26bc3d48311e657b85a53b8bde21313e9bc513566f784db2e8f0b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6459-8908 0000-0002-7894-2415 0000-0003-0193-6372 0000-0001-9107-6593 |
| PQID | 2837133431 |
| PQPubID | 85472 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2837133431 ieee_primary_10107609 crossref_citationtrail_10_1109_TCOMM_2023_3269849 crossref_primary_10_1109_TCOMM_2023_3269849 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on communications |
| PublicationTitleAbbrev | TCOMM |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref10 ref32 ref2 goodfellow (ref26) 2016 ref1 ref17 ref16 ref19 ref18 nair (ref27) 2010 ref24 ref23 ref25 ref20 ref22 ref21 kingma (ref33) 2015 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref8 doi: 10.1109/MWC.2019.1800601 – start-page: 1 year: 2015 ident: ref33 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref5 doi: 10.1109/TWC.2007.360373 – ident: ref24 doi: 10.1109/TSP.2011.2147784 – ident: ref32 doi: 10.1109/TAP.2014.2310220 – ident: ref7 doi: 10.1109/LWC.2017.2757490 – ident: ref18 doi: 10.1109/LCOMM.2021.3063707 – ident: ref11 doi: 10.1109/TWC.2021.3052973 – ident: ref31 doi: 10.1109/TWC.2020.3028365 – ident: ref2 doi: 10.1109/MCOM.2014.6736761 – ident: ref9 doi: 10.1109/TWC.2020.3033334 – ident: ref1 doi: 10.1109/TWC.2010.092810.091092 – ident: ref30 doi: 10.1016/j.acha.2019.06.004 – ident: ref21 doi: 10.1109/TSP.2017.2675862 – ident: ref28 doi: 10.1007/BF02551274 – start-page: 807 year: 2010 ident: ref27 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc IEEE Int Conf Mach Learn (ICML) – ident: ref3 doi: 10.15325/BLTJ.2015.2407793 – ident: ref10 doi: 10.1109/ICASSP39728.2021.9414561 – ident: ref16 doi: 10.1109/SPAWC.2013.6612065 – ident: ref19 doi: 10.1109/LWC.2021.3075996 – ident: ref25 doi: 10.1109/ISWCS.2012.6328433 – year: 2016 ident: ref26 publication-title: Deep Learning – ident: ref14 doi: 10.1109/WCL.2012.022012.110206 – ident: ref23 doi: 10.1109/TIT.2003.817421 – ident: ref6 doi: 10.1109/T-WC.2008.070851 – ident: ref4 doi: 10.1109/TCOMM.2004.840638 – ident: ref12 doi: 10.1109/TWC.2020.3035843 – ident: ref15 doi: 10.1007/s11432-015-5390-y – ident: ref20 doi: 10.1109/TCOMM.2021.3105569 – ident: ref29 doi: 10.1016/0893-6080(91)90009-T – ident: ref13 doi: 10.1109/TCOMM.2019.2960361 – ident: ref34 doi: 10.1017/CBO9780511804441 – ident: ref22 doi: 10.1109/GLOCOM.2018.8647574 – ident: ref17 doi: 10.1109/TCOMM.2019.2912383 |
| SSID | ssj0004033 |
| Score | 2.5395923 |
| Snippet | In this paper, we investigate the downlink robust precoding with imperfect channel state information (CSI) for massive multiple-input-multiple-output (MIMO)... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3963 |
| SubjectTerms | Antennas Channel estimation Channel models Deep learning deep learning design Downlink Ergodic processes imperfect CSI Instructional design Lower bounds Massive MIMO MIMO communication neural network Neural networks Precoding Robust WMMSE precoder Robustness Sums |
| Title | Robust WMMSE Precoder With Deep Learning Design for Massive MIMO |
| URI | https://ieeexplore.ieee.org/document/10107609 https://www.proquest.com/docview/2837133431 |
| Volume | 71 |
| WOSCitedRecordID | wos001035493400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-0857 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004033 issn: 0090-6778 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxOnU3LwJpvtkjYvN2U69NApfqC30iSvOpBtbJ1_v0na6UAUvLWQlPJ7yftI3vs9Qk4CE2uurfbjAbrTKmRtgExZgRjIMgjiXOS-2YQYDODlRd5Vxeq-FgYRffIZdtyjv8s3Yz13R2V2h4fuIknWSE0IURZrfRdBBqyinHT57AIWFTKBPHvs3SZJxzUK71hvRYIjzlyyQr6tyg9d7A1Mf_Ofv7ZFNipPkl6Uot8mKzjaIetL_IK75Px-rOazgj4nycMVvXPBr8EpfR4Wb_QScUIrdtVX--YSOaj1YGli3WmrAmlyk9w2yFP_6rF33a5aJrR1V8ZF22Q2HtRRrgC7sdLMcGBhiHEkFERZxBQog92QhQyl0lHIrDeXC-BGdRHyQLE9Uh-NR7hPqFYguLSGDSDngpvMQpkbyUGxiDPImiRcQJjqik_ctbV4T31cEcjUw5462NMK9iY5_ZozKdk0_hzdcEAvjSwxbpLWQlRpteNmqWPxsfG29YcOfpl2SNbc18tc2xapF9M5HpFV_VEMZ9Njv5g-AWuTw20 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xgLS7B95oy9MHbquWJHaS8Q3EQyBIQdAV3KLYngDSqkVtyu_HdlKohEDilki2En1jz8Oe-QZgLzCJFtpqPxGQO60i3kYslBWIwaLAICnT0jebSLtdvL-X102xuq-FISKffEYd9-jv8s1Aj91Rmd3hobtIkj9gLhYiCutyrfcyyIA3pJMuoz3FSY1MIPd7R1dZ1nGtwjvWX5HoqDOn7JBvrPJBG3sTc7r4zZ9bgoXGl2SHtfCXYYb6K_B7imFwFQ5uBmo8qthdlt2esGsX_hoasrun6pEdEz2zhl_1wb65VA5mfViWWYfaKkGWnWdXa_Dv9KR3dNZumia0dSSTqm0KGxHquFRIUaI0NwJ5GFISpwrjIuYKlaEo5CEnqXQccuvPlSkKoyLCMlB8HWb7gz79AaYVpkJa04ZYilSYwkJZGilQ8VhwLFoQTiDMdcMo7hpb_M99ZBHI3MOeO9jzBvYW_H2b81zzaXw5es0BPTWyxrgFWxNR5c2eG-WOx8dG3NYj2vhk2i78POtll_nlefdiE365L9WZt1swWw3HtA3z-qV6Gg13_MJ6BcXAxrQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+WMMSE+Precoder+With+Deep+Learning+Design+for+Massive+MIMO&rft.jtitle=IEEE+transactions+on+communications&rft.au=Shi%2C+Junchao&rft.au=An-An%2C+Lu&rft.au=Zhong%2C+Wen&rft.au=Gao%2C+Xiqi&rft.date=2023-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=71&rft.issue=7&rft.spage=3963&rft_id=info:doi/10.1109%2FTCOMM.2023.3269849&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |