Robust WMMSE Precoder With Deep Learning Design for Massive MIMO

In this paper, we investigate the downlink robust precoding with imperfect channel state information (CSI) for massive multiple-input-multiple-output (MIMO) communications. With the estimated channel and channel error statistics, the general design of the robust precoder is to maximize the ergodic s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on communications Ročník 71; číslo 7; s. 3963 - 3976
Hlavní autori: Shi, Junchao, Lu, An-An, Zhong, Wen, Gao, Xiqi, Li, Geoffrey Ye
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0090-6778, 1558-0857
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we investigate the downlink robust precoding with imperfect channel state information (CSI) for massive multiple-input-multiple-output (MIMO) communications. With the estimated channel and channel error statistics, the general design of the robust precoder is to maximize the ergodic sum rate subject to the total transmit power constraint. To make the problem more tractable, we find a lower bound of the ergodic sum rate and propose the robust weighted minimum mean-squared-error (WMMSE) precoder to maximize the bound. We characterize the structure of the precoding vectors by low-dimensional parameters, which are learned directly from the available CSI through a neural network. As such, the precoding vectors can be immediately computed without iterations. To extend the deep learning design to multi-antennas users, we present a flexible approach that allows the various antenna configurations at the user side to be handled. Simulation results show that the deep learning design can significantly reduce the computational complexity compared with the existing precoder designs while achieving near optimal performance.
AbstractList In this paper, we investigate the downlink robust precoding with imperfect channel state information (CSI) for massive multiple-input-multiple-output (MIMO) communications. With the estimated channel and channel error statistics, the general design of the robust precoder is to maximize the ergodic sum rate subject to the total transmit power constraint. To make the problem more tractable, we find a lower bound of the ergodic sum rate and propose the robust weighted minimum mean-squared-error (WMMSE) precoder to maximize the bound. We characterize the structure of the precoding vectors by low-dimensional parameters, which are learned directly from the available CSI through a neural network. As such, the precoding vectors can be immediately computed without iterations. To extend the deep learning design to multi-antennas users, we present a flexible approach that allows the various antenna configurations at the user side to be handled. Simulation results show that the deep learning design can significantly reduce the computational complexity compared with the existing precoder designs while achieving near optimal performance.
Author Gao, Xiqi
Shi, Junchao
Li, Geoffrey Ye
Lu, An-An
Zhong, Wen
Author_xml – sequence: 1
  givenname: Junchao
  orcidid: 0000-0002-6459-8908
  surname: Shi
  fullname: Shi, Junchao
  email: jcshi@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 2
  givenname: An-An
  orcidid: 0000-0003-0193-6372
  surname: Lu
  fullname: Lu, An-An
  email: aalu@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 3
  givenname: Wen
  surname: Zhong
  fullname: Zhong, Wen
  email: wzhong@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 4
  givenname: Xiqi
  orcidid: 0000-0001-9107-6593
  surname: Gao
  fullname: Gao, Xiqi
  email: xqgao@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 5
  givenname: Geoffrey Ye
  orcidid: 0000-0002-7894-2415
  surname: Li
  fullname: Li, Geoffrey Ye
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K
BookMark eNp90M9LwzAUwPEgCm7Tf0A8BDx35keTpjdlTh2sTHSyY0ja15kxm5l0gv-9ndtBPHgKD_J5D759dNz4BhC6oGRIKcmv56NZUQwZYXzImcxVmh-hHhVCJUSJ7Bj1CMlJIrNMnaJ-jCtCSEo476GbZ2-3scWLongZ46cApa8g4IVr3_AdwAZPwYTGNctuim7Z4NoHXJgY3SfgYlLMztBJbdYRzg_vAL3ej-ejx2Q6e5iMbqdJyXLZJpVJCStFbRUwaUtepYpTClJkVgkjuFW2AkY55ZDbUlAupKwzlVaWgaqJ5QN0td-7Cf5jC7HVK78NTXdSM8Uzynna4QFS-19l8DEGqHXpWtM637TBuLWmRO966Z9eetdLH3p1lP2hm-DeTfj6H13ukQOAX4CSTJKcfwNg9Xam
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_TSP_2025_3574005
crossref_primary_10_1007_s11277_024_10919_5
crossref_primary_10_1109_TWC_2025_3541644
crossref_primary_10_3390_s24165188
crossref_primary_10_1109_LWC_2024_3483893
crossref_primary_10_1109_JSAC_2024_3460084
crossref_primary_10_1109_OJCOMS_2025_3586560
crossref_primary_10_1109_JSAC_2025_3536504
Cites_doi 10.1109/MWC.2019.1800601
10.1109/TWC.2007.360373
10.1109/TSP.2011.2147784
10.1109/TAP.2014.2310220
10.1109/LWC.2017.2757490
10.1109/LCOMM.2021.3063707
10.1109/TWC.2021.3052973
10.1109/TWC.2020.3028365
10.1109/MCOM.2014.6736761
10.1109/TWC.2020.3033334
10.1109/TWC.2010.092810.091092
10.1016/j.acha.2019.06.004
10.1109/TSP.2017.2675862
10.1007/BF02551274
10.15325/BLTJ.2015.2407793
10.1109/ICASSP39728.2021.9414561
10.1109/SPAWC.2013.6612065
10.1109/LWC.2021.3075996
10.1109/ISWCS.2012.6328433
10.1109/WCL.2012.022012.110206
10.1109/TIT.2003.817421
10.1109/T-WC.2008.070851
10.1109/TCOMM.2004.840638
10.1109/TWC.2020.3035843
10.1007/s11432-015-5390-y
10.1109/TCOMM.2021.3105569
10.1016/0893-6080(91)90009-T
10.1109/TCOMM.2019.2960361
10.1017/CBO9780511804441
10.1109/GLOCOM.2018.8647574
10.1109/TCOMM.2019.2912383
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2023.3269849
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 3976
ExternalDocumentID 10_1109_TCOMM_2023_3269849
10107609
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China the Jiangsu Province Basic Research Project the Key R&D Plan of Jiangsu Province the National Natural Science Foundation of China the Huawei Cooperation Project
  grantid: 2018YFB1801103; BK20192002; BE2022067; 61801113; 61960206006
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c296t-da402c5fb8e26bc3d48311e657b85a53b8bde21313e9bc513566f784db2e8f0b3
IEDL.DBID RIE
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035493400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Mon Jun 30 08:33:15 EDT 2025
Tue Nov 18 22:20:18 EST 2025
Sat Nov 29 04:08:26 EST 2025
Wed Aug 27 02:18:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-da402c5fb8e26bc3d48311e657b85a53b8bde21313e9bc513566f784db2e8f0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6459-8908
0000-0002-7894-2415
0000-0003-0193-6372
0000-0001-9107-6593
PQID 2837133431
PQPubID 85472
PageCount 14
ParticipantIDs proquest_journals_2837133431
ieee_primary_10107609
crossref_citationtrail_10_1109_TCOMM_2023_3269849
crossref_primary_10_1109_TCOMM_2023_3269849
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref10
ref32
ref2
goodfellow (ref26) 2016
ref1
ref17
ref16
ref19
ref18
nair (ref27) 2010
ref24
ref23
ref25
ref20
ref22
ref21
kingma (ref33) 2015
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1109/MWC.2019.1800601
– start-page: 1
  year: 2015
  ident: ref33
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref5
  doi: 10.1109/TWC.2007.360373
– ident: ref24
  doi: 10.1109/TSP.2011.2147784
– ident: ref32
  doi: 10.1109/TAP.2014.2310220
– ident: ref7
  doi: 10.1109/LWC.2017.2757490
– ident: ref18
  doi: 10.1109/LCOMM.2021.3063707
– ident: ref11
  doi: 10.1109/TWC.2021.3052973
– ident: ref31
  doi: 10.1109/TWC.2020.3028365
– ident: ref2
  doi: 10.1109/MCOM.2014.6736761
– ident: ref9
  doi: 10.1109/TWC.2020.3033334
– ident: ref1
  doi: 10.1109/TWC.2010.092810.091092
– ident: ref30
  doi: 10.1016/j.acha.2019.06.004
– ident: ref21
  doi: 10.1109/TSP.2017.2675862
– ident: ref28
  doi: 10.1007/BF02551274
– start-page: 807
  year: 2010
  ident: ref27
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc IEEE Int Conf Mach Learn (ICML)
– ident: ref3
  doi: 10.15325/BLTJ.2015.2407793
– ident: ref10
  doi: 10.1109/ICASSP39728.2021.9414561
– ident: ref16
  doi: 10.1109/SPAWC.2013.6612065
– ident: ref19
  doi: 10.1109/LWC.2021.3075996
– ident: ref25
  doi: 10.1109/ISWCS.2012.6328433
– year: 2016
  ident: ref26
  publication-title: Deep Learning
– ident: ref14
  doi: 10.1109/WCL.2012.022012.110206
– ident: ref23
  doi: 10.1109/TIT.2003.817421
– ident: ref6
  doi: 10.1109/T-WC.2008.070851
– ident: ref4
  doi: 10.1109/TCOMM.2004.840638
– ident: ref12
  doi: 10.1109/TWC.2020.3035843
– ident: ref15
  doi: 10.1007/s11432-015-5390-y
– ident: ref20
  doi: 10.1109/TCOMM.2021.3105569
– ident: ref29
  doi: 10.1016/0893-6080(91)90009-T
– ident: ref13
  doi: 10.1109/TCOMM.2019.2960361
– ident: ref34
  doi: 10.1017/CBO9780511804441
– ident: ref22
  doi: 10.1109/GLOCOM.2018.8647574
– ident: ref17
  doi: 10.1109/TCOMM.2019.2912383
SSID ssj0004033
Score 2.5395923
Snippet In this paper, we investigate the downlink robust precoding with imperfect channel state information (CSI) for massive multiple-input-multiple-output (MIMO)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3963
SubjectTerms Antennas
Channel estimation
Channel models
Deep learning
deep learning design
Downlink
Ergodic processes
imperfect CSI
Instructional design
Lower bounds
Massive MIMO
MIMO communication
neural network
Neural networks
Precoding
Robust WMMSE precoder
Robustness
Sums
Title Robust WMMSE Precoder With Deep Learning Design for Massive MIMO
URI https://ieeexplore.ieee.org/document/10107609
https://www.proquest.com/docview/2837133431
Volume 71
WOSCitedRecordID wos001035493400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5ueNCDPydOp-TgTTqbpm2SmzI39NApOtlupUlfdCDb2Dr_fpO004EoeGshCeXLj_e95r3vIXTBZcBjY1q82Pg_XijDzMskIx6jWukogFyzzBWbYP0-H43EY5Ws7nJhAMAFn0HbPrq7_HyqlvZXmdnhxF4kiRqqMcbKZK3vJEifVpKTNp6d8VWGjC-uBp2HJGnbQuFtw1YEt8KZa1bIlVX5cRY7A9Pb_een7aGdiknim3Lq99EGTA7Q9pq-4CG6fprK5aLAwyR57uJH6_zmMMfDcfGGbwFmuFJXfTVvNpADGwaLE0OnzRGIk_vkoYFeet1B586rSiZ4KhBx4eWZ8QdVpCWHIJaK5iGnhEAcMcmjLKKSyxwCQgkFIVVEqGFzmvEwlwFw7Ut6hOqT6QSOEWacaBVmATMEK8yYlpBzFfhCC22H0E1EVhCmqtITt2Ut3lPnV_gidbCnFva0gr2JLr_6zEo1jT9bNyzQay1LjJuotZqqtNpxi9Sq-Bh_2_Chk1-6naItO3oZa9tC9WK-hDO0qT6K8WJ-7hbTJy6RxFk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61FKlw4F2xPIoP3KossZ3E9g3EQ6CSBcFWcItiZ0yR0C7azfb313aysBICiVsi2Un0OfZ8Y898A7AvNZOZMy1R5vyfKNFJGZVa0Ehwa2zKsLKiDMUmRK8n7-_VdZusHnJhEDEEn2HXX4az_GpoJn6rzM1w6g-S1Ff4liYJo0261msaZMxb0Ukf0S7kNEcmVgf946s87_pS4V3HV5T00pkzdigUVnmzGgcTc7b8yY9bgaWWS5KjZvBX4QsO1mBxRmFwHQ5vhnoyrsldnt-ekmvv_lY4IneP9V9ygvhMWn3VB3fnQzmI47Akd4TaLYIkv8ivNuDP2Wn_-DxqiyZEhqmsjqrSeYQmtVoiy7ThVSI5pZilQsu0TLmWukJGOeWotEkpd3zOCplUmqG0seY_YG4wHOAmECGpNUnJhKNYSSmsxkoaFiurrH-E7QCdQliYVlHcF7Z4KoJnEasiwF542IsW9g78eunz3OhpfNh6wwM907LBuAM706Eq2jk3LryOj_O4HSPaeqfbHnw_7-eXxeVF7_c2LPg3NZG3OzBXjya4C_PmX_04Hv0MP9Z_k87HoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+WMMSE+Precoder+With+Deep+Learning+Design+for+Massive+MIMO&rft.jtitle=IEEE+transactions+on+communications&rft.au=Shi%2C+Junchao&rft.au=An-An%2C+Lu&rft.au=Zhong%2C+Wen&rft.au=Gao%2C+Xiqi&rft.date=2023-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=71&rft.issue=7&rft.spage=3963&rft_id=info:doi/10.1109%2FTCOMM.2023.3269849&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon