Upscaling net ecosystem CO2 exchanges in croplands: The application of integrating object-based image analysis and machine learning approaches
Accurately estimating the net ecosystem exchange of CO2 (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and v...
Uloženo v:
| Vydáno v: | The Science of the total environment Ročník 944; s. 173887 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
20.09.2024
|
| Témata: | |
| ISSN: | 0048-9697, 1879-1026, 1879-1026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurately estimating the net ecosystem exchange of CO2 (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and variations in the efficacy of upscaling models. Here, we applied an integrated approach that combined object-based image analysis (OBIA) techniques with advanced machine learning (ML) approaches to upscale regional cropland NEE. We conducted a thorough evaluation of the upscaling approach across four distinct cropland areas characterized by diverse climate conditions. Our study confirmed that OBIA techniques can efficiently segment cropland objects, thereby enhancing the representation and accuracy of characteristics relevant to cropland features. The sequential least squares programming algorithm, among the three methods used for ML model integration, demonstrated exceptional performance in predicting NEE, with an R2 value exceeding 0.80 across all study areas and peaking at 0.90 in the most successful area. On average, there was an 18 % improvement compared to the poorest-performing ML model and a 6 % enhancement compared to the best-performing ML model. The upscaled regional products exhibited superior performance in characterizing cropland NEE patterns compared to pixel-based products. Additionally, we utilized the SHapley Additive exPlanations (SHAP) to assess driver importance, revealing that phenology and radiation had the greatest influence on prediction accuracy, followed by temperature and soil moisture. This study highlights the potential of integrating OBIA techniques with machine learning approaches for upscaling regional cropland NEE, while concurrently reducing estimation uncertainties.
[Display omitted]
•Evaluated the performance of an object-based integrated machine learning framework for upscaling CO2 fluxes in croplands•Explored key drivers affecting NEE prediction accuracy in conjunction with interpretable machine learning SHAP models•Generated maps of upscaled NEE and associated uncertainties for croplands in the study areas |
|---|---|
| AbstractList | Accurately estimating the net ecosystem exchange of CO₂ (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and variations in the efficacy of upscaling models. Here, we applied an integrated approach that combined object-based image analysis (OBIA) techniques with advanced machine learning (ML) approaches to upscale regional cropland NEE. We conducted a thorough evaluation of the upscaling approach across four distinct cropland areas characterized by diverse climate conditions. Our study confirmed that OBIA techniques can efficiently segment cropland objects, thereby enhancing the representation and accuracy of characteristics relevant to cropland features. The sequential least squares programming algorithm, among the three methods used for ML model integration, demonstrated exceptional performance in predicting NEE, with an R² value exceeding 0.80 across all study areas and peaking at 0.90 in the most successful area. On average, there was an 18 % improvement compared to the poorest-performing ML model and a 6 % enhancement compared to the best-performing ML model. The upscaled regional products exhibited superior performance in characterizing cropland NEE patterns compared to pixel-based products. Additionally, we utilized the SHapley Additive exPlanations (SHAP) to assess driver importance, revealing that phenology and radiation had the greatest influence on prediction accuracy, followed by temperature and soil moisture. This study highlights the potential of integrating OBIA techniques with machine learning approaches for upscaling regional cropland NEE, while concurrently reducing estimation uncertainties. Accurately estimating the net ecosystem exchange of CO2 (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and variations in the efficacy of upscaling models. Here, we applied an integrated approach that combined object-based image analysis (OBIA) techniques with advanced machine learning (ML) approaches to upscale regional cropland NEE. We conducted a thorough evaluation of the upscaling approach across four distinct cropland areas characterized by diverse climate conditions. Our study confirmed that OBIA techniques can efficiently segment cropland objects, thereby enhancing the representation and accuracy of characteristics relevant to cropland features. The sequential least squares programming algorithm, among the three methods used for ML model integration, demonstrated exceptional performance in predicting NEE, with an R2 value exceeding 0.80 across all study areas and peaking at 0.90 in the most successful area. On average, there was an 18 % improvement compared to the poorest-performing ML model and a 6 % enhancement compared to the best-performing ML model. The upscaled regional products exhibited superior performance in characterizing cropland NEE patterns compared to pixel-based products. Additionally, we utilized the SHapley Additive exPlanations (SHAP) to assess driver importance, revealing that phenology and radiation had the greatest influence on prediction accuracy, followed by temperature and soil moisture. This study highlights the potential of integrating OBIA techniques with machine learning approaches for upscaling regional cropland NEE, while concurrently reducing estimation uncertainties.Accurately estimating the net ecosystem exchange of CO2 (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and variations in the efficacy of upscaling models. Here, we applied an integrated approach that combined object-based image analysis (OBIA) techniques with advanced machine learning (ML) approaches to upscale regional cropland NEE. We conducted a thorough evaluation of the upscaling approach across four distinct cropland areas characterized by diverse climate conditions. Our study confirmed that OBIA techniques can efficiently segment cropland objects, thereby enhancing the representation and accuracy of characteristics relevant to cropland features. The sequential least squares programming algorithm, among the three methods used for ML model integration, demonstrated exceptional performance in predicting NEE, with an R2 value exceeding 0.80 across all study areas and peaking at 0.90 in the most successful area. On average, there was an 18 % improvement compared to the poorest-performing ML model and a 6 % enhancement compared to the best-performing ML model. The upscaled regional products exhibited superior performance in characterizing cropland NEE patterns compared to pixel-based products. Additionally, we utilized the SHapley Additive exPlanations (SHAP) to assess driver importance, revealing that phenology and radiation had the greatest influence on prediction accuracy, followed by temperature and soil moisture. This study highlights the potential of integrating OBIA techniques with machine learning approaches for upscaling regional cropland NEE, while concurrently reducing estimation uncertainties. Accurately estimating the net ecosystem exchange of CO2 (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and variations in the efficacy of upscaling models. Here, we applied an integrated approach that combined object-based image analysis (OBIA) techniques with advanced machine learning (ML) approaches to upscale regional cropland NEE. We conducted a thorough evaluation of the upscaling approach across four distinct cropland areas characterized by diverse climate conditions. Our study confirmed that OBIA techniques can efficiently segment cropland objects, thereby enhancing the representation and accuracy of characteristics relevant to cropland features. The sequential least squares programming algorithm, among the three methods used for ML model integration, demonstrated exceptional performance in predicting NEE, with an R2 value exceeding 0.80 across all study areas and peaking at 0.90 in the most successful area. On average, there was an 18 % improvement compared to the poorest-performing ML model and a 6 % enhancement compared to the best-performing ML model. The upscaled regional products exhibited superior performance in characterizing cropland NEE patterns compared to pixel-based products. Additionally, we utilized the SHapley Additive exPlanations (SHAP) to assess driver importance, revealing that phenology and radiation had the greatest influence on prediction accuracy, followed by temperature and soil moisture. This study highlights the potential of integrating OBIA techniques with machine learning approaches for upscaling regional cropland NEE, while concurrently reducing estimation uncertainties. [Display omitted] •Evaluated the performance of an object-based integrated machine learning framework for upscaling CO2 fluxes in croplands•Explored key drivers affecting NEE prediction accuracy in conjunction with interpretable machine learning SHAP models•Generated maps of upscaled NEE and associated uncertainties for croplands in the study areas |
| ArticleNumber | 173887 |
| Author | Yao, Jingyu Yuan, Wenping Ma, Yulong Gao, Dexiang Russell, Eric He, Yingzhe Pressley, Shelley N. Gao, Zhongming Li, Lei Zou, Xudong Wang, Bojun |
| Author_xml | – sequence: 1 givenname: Dexiang surname: Gao fullname: Gao, Dexiang organization: School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China – sequence: 2 givenname: Jingyu surname: Yao fullname: Yao, Jingyu organization: School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China – sequence: 3 givenname: Zhongming surname: Gao fullname: Gao, Zhongming email: gaozhm3@mail.sysu.edu.cn organization: School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China – sequence: 4 givenname: Wenping surname: Yuan fullname: Yuan, Wenping organization: Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100091, China – sequence: 5 givenname: Yingzhe surname: He fullname: He, Yingzhe organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou, Guangdong 510006, China – sequence: 6 givenname: Bojun surname: Wang fullname: Wang, Bojun organization: School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai, Guangdong 519082, China – sequence: 7 givenname: Lei surname: Li fullname: Li, Lei organization: School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China – sequence: 8 givenname: Yulong surname: Ma fullname: Ma, Yulong organization: Guangdong-Hong kong-Macau Greater Bay Area Weather Research Center for Monitoring Warning and Forecasting (Shenzhen Institute of Meteorological Innovation), Shenzhen, Guangdong 518040, China – sequence: 9 givenname: Eric surname: Russell fullname: Russell, Eric organization: Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington 99163, USA – sequence: 10 givenname: Shelley N. surname: Pressley fullname: Pressley, Shelley N. organization: Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington 99163, USA – sequence: 11 givenname: Xudong surname: Zou fullname: Zou, Xudong organization: Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166, China |
| BookMark | eNqNkcFuGyEURVGVSnXSfENYdjMuzAwwVOoispq0UqRskjVi4NnGGsMUSFT_RL-5z3WURTcpG-Dp3Iu495ycxRSBkCvOlpxx-Xm3LC7UVCE-L1vW9kuuumFQ78iCD0o3nLXyjCwY64dGS60-kPNSdgyXGviC_H6ci7NTiBsaoVJwqRxKhT1d3bcUfrmtjRsoNETqcponG335Qh-2QO08T8HZGlKkaY1AhU3GKxqlcQeuNqMt4GnY2w3S0U6HEgoePN1btw0R6AQ2x6MAvXLCIZSP5P3aTgUuX_YL8njz7WH1vbm7v_2xur5rXKtlbby0rWcAXaet1q3TooWBWz_gxFvFRiuGcdTQay3EKIW2vdAKpBgV4p3uLsinky8-_PMJSjX7UBxM-EFIT8V0XHSy73ut3kaZHJQQopeIfj2hmFUpGdYGm_kbUc02TIYzc6zM7MxrZeZYmTlVhnr1j37OmF8-_Ify-qQEDO05QD5yEB34kLEL41N40-MPLLe7Tg |
| CitedBy_id | crossref_primary_10_1016_j_rsase_2025_101728 crossref_primary_10_1016_j_scitotenv_2025_178448 crossref_primary_10_1088_1748_9326_ade731 crossref_primary_10_1016_j_agrformet_2025_110784 |
| Cites_doi | 10.1016/j.asoc.2023.110859 10.1038/nclimate2837 10.5194/essd-10-2141-2018 10.1029/2018JG004666 10.1016/j.rse.2021.112523 10.1016/j.agrformet.2021.108743 10.1038/s41477-021-01042-5 10.1016/j.agee.2010.05.009 10.3390/rs71215820 10.1016/j.rse.2010.04.001 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 10.1038/s41586-021-03325-5 10.1029/2011GL047533 10.1016/j.agwat.2019.105875 10.1007/s10533-018-0450-1 10.1016/j.agrformet.2006.01.007 10.1002/jgrg.20095 10.1016/j.rse.2017.10.005 10.1038/nature10452 10.1016/j.scitotenv.2022.154969 10.1038/s41467-020-18725-w 10.3390/rs70506380 10.1016/j.isprsjprs.2013.09.014 10.1111/j.1365-2486.2012.02678.x 10.1029/2020JG005814 10.1126/science.aau0323 10.1016/j.rse.2012.06.007 10.1016/j.geoderma.2020.114428 10.1038/s41597-020-0534-3 10.1016/S0034-4257(99)00061-9 10.1109/TGRS.2006.876297 10.1016/j.agrformet.2022.109253 10.3390/rs71013208 10.1073/pnas.1320008111 10.1038/nature20780 10.1016/j.rse.2022.113335 10.1016/j.agwat.2019.105758 10.1038/nature07296 10.5194/bg-6-2001-2009 10.1016/j.rse.2019.111383 10.5194/essd-15-5301-2023 10.1038/nature11299 10.1016/j.foreco.2009.09.047 10.1007/BF00713146 10.5194/bg-10-6865-2013 10.1111/gcb.14421 10.1016/j.agrformet.2010.09.002 10.5194/bg-5-433-2008 10.5194/acp-21-15589-2021 10.1038/nclimate3114 10.1111/gcb.14884 10.1016/j.agrformet.2016.05.008 10.1109/LGRS.2014.2334703 10.1038/s41597-020-00653-5 10.1016/j.agrformet.2008.06.015 10.1088/1748-9326/ab31e4 10.1038/s41467-020-15515-2 10.1016/j.agrformet.2021.108653 10.1016/0034-4257(95)00258-8 10.1126/science.1058629 10.5194/bg-13-4291-2016 10.1016/j.isprsjprs.2019.02.009 10.1046/j.1365-2486.2003.00609.x |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.scitotenv.2024.173887 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| ExternalDocumentID | 10_1016_j_scitotenv_2024_173887 S004896972404035X |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G 9DU AAQXK AATTM AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN WUQ XPP ZXP ZY4 ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c296t-d6a2d0ee339a992c952e81ad8e33da70ba58bb9e49955b659a4597e65b7992393 |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Thu Oct 02 22:50:58 EDT 2025 Sat Sep 27 20:48:41 EDT 2025 Tue Nov 18 21:41:11 EST 2025 Sat Nov 29 06:59:43 EST 2025 Sat Dec 28 15:51:29 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Net ecosystem exchange Eddy covariance Carbon flux upscaling Object-oriented image analysis Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c296t-d6a2d0ee339a992c952e81ad8e33da70ba58bb9e49955b659a4597e65b7992393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3068755546 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3153644497 proquest_miscellaneous_3068755546 crossref_citationtrail_10_1016_j_scitotenv_2024_173887 crossref_primary_10_1016_j_scitotenv_2024_173887 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2024_173887 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-20 |
| PublicationDateYYYYMMDD | 2024-09-20 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | The Science of the total environment |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cho, Kang, Ichii, Kim, Lim, Chun, Park, Kim, Choi, Lee, Indrawati, Kim (bb0050) 2021; 311 Lundberg, Lee (bb1000) 2017 Li, Wang, Zhang, Lu (bb0165) 2015; 7 Ouyang, Jackson, McNicol, Fluet-Chouinard, Runkle, Papale, Knox, Cooley, Delwiche, Feron, Irvin, Malhotra, Muddasir, Sabbatini, Alberto, Cescatti, Chen, Dong, Fong, Guo, Hao, Iwata, Jia, Ju, Kang, Li, Kim, Reba, Nayak, Roberti, Ryu, Swain, Tsuang, Xiao, Yuan, Zhang, Zhang (bb0220) 2023; 284 Schmid (bb0270) 1994; 67 Zhang, Brodylo, Sirianni, Li, Comas, Douglas, Starr (bb0370) 2021; 262 Meng (bb0195) 2017 Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, Pongratz, Pickers, Korsbakken, Peters, Canadell, Arneth, Arora, Barbero, Bastos, Bopp, Chevallier, Chini, Ciais, Doney, Gkritzalis, Goll, Harris, Haverd, Hoffman, Hoppema, Houghton, Hurtt, Ilyina, Jain, Johannessen, Jones, Kato, Keeling, Goldewijk, Landschützer, Lefèvre, Lienert, Liu, Lombardozzi, Metzl, Munro, Nabel, Nakaoka, Neill, Olsen, Ono, Patra, Peregon, Peters, Peylin, Pfeil, Pierrot, Poulter, Rehder, Resplandy, Robertson, Rocher, Rödenbeck, Schuster, Schwinger, Séférian, Skjelvan, Steinhoff, Sutton, Tans, Tian, Tilbrook, Tubiello, van der Laan-Luijkx, van der Werf, Viovy, Walker, Wiltshire, Wright, Zaehle, Zheng (bb0160) 2018; 10 Xiao, Davis, Urban, Keller, Saliendra (bb0320) 2011; 116 Zeng, Matsunaga, Tan, Saigusa, Shirai, Tang, Peng, Fukuda (bb0365) 2020; 7 Papale, Valentini (bb0225) 2003; 9 Ma, Xiao, Miao, Li, Chen, Zhang, Zhao (bb0185) 2019; 14 Yao, Gao, Huang, Liu, Wang (bb0360) 2021; 21 Yao, Liu, Huang, Gao, Wang, Li, Yu, Chen (bb0355) 2020; 11 Yang, Xiong, Du, Ju, Gan, Li, Xia, Shen, Pacenka, Steenhuis, Siddique, Kang, Butterbach-Bahl (bb0350) 2024; 15 Osborne, Saunders, Walmsley, Jones, Smith (bb0215) 2010; 139 Piao, Wang, Wang, Li, Bastos, Canadell, Ciais, Friedlingstein, Sitch (bb0235) 2020; 26 Bai, Zhang, Bhattarai, Mallick, Liu, Tang, Im, Guo, Zhang (bb0010) 2021; 298 Running, Baldocchi, Turner, Gower, Bakwin, Hibbard (bb0265) 1999; 70 Xiao, Zhuang, Law, Baldocchi, Chen, Richardson, Melillo, Davis, Hollinger, Wharton, Oren, Noormets, Fischer, Verma, Cook, Sun, McNulty, Wofsy, Bolstad, Burns, Curtis, Drake, Falk, Foster, Gu, Hadley, Katul, Litvak, Ma, Martin, Matamala, Meyers, Monson, Munger, Oechel, Paw, Schmid, Scott, Starr, Suyker, Torn (bb0325) 2011; 151 Friedlingstein, O’Sullivan, Jones, Andrew, Bakker, Hauck, Landschützer, Le Quéré, Luijkx, Peters, Peters, Pongratz, Schwingshackl, Sitch, Canadell, Ciais, Jackson, Alin, Anthoni, Barbero, Bates, Becker, Bellouin, Decharme, Bopp, Brasika, Cadule, Chamberlain, Chandra, Chau, Chevallier, Chini, Cronin, Dou, Enyo, Evans, Falk, Feely, Feng, Ford, Gasser, Ghattas, Gkritzalis, Grassi, Gregor, Gruber, Gürses, Harris, Hefner, Heinke, Houghton, Hurtt, Iida, Ilyina, Jacobson, Jain, Jarníková, Jersild, Jiang, Jin, Joos, Kato, Keeling, Kennedy, Klein Goldewijk, Knauer, Korsbakken, Körtzinger, Lan, Lefèvre, Li, Liu, Liu, Ma, Marland, Mayot, McGuire, McKinley, Meyer, Morgan, Munro, Nakaoka, Niwa, O’Brien, Olsen, Omar, Ono, Paulsen, Pierrot, Pocock, Poulter, Powis, Rehder, Resplandy, Robertson, Rödenbeck, Rosan, Schwinger, Séférian, Smallman, Smith, Sospedra-Alfonso, Sun, Sutton, Sweeney, Takao, Tans, Tian, Tilbrook, Tsujino, Tubiello, van der Werf, van Ooijen, Wanninkhof, Watanabe, Wimart-Rousseau, Yang, Yang, Yuan, Yue, Zaehle, Zeng, Zheng (bb0090) 2023; 15 Blaschke, Hay, Kelly, Lang, Hofmann, Addink, Feitosa, van der Meer, van der Werff, van Coillie, Tiede (bb0035) 2014; 87 Guanter, Zhang, Jung, Joiner, Voigt, Berry, Frankenberg, Huete, Zarco-Tejada, Lee, Moran, Ponce-Campos, Beer, Camps-Valls, Buchmann, Gianelle, Klumpp, Cescatti, Baker, Griffis (bb0110) 2014; 111 Ran, Li, Sun, Kljun, Zhang, Wang, Zhu (bb0245) 2016; 230–231 Liu, Zhou, Guan, Peng, Xu, Tang, Zhu, Till, Jia, Jiang, Wang, Qin, Kong, Grant, Mezbahuddin, Kumar, Jin (bb0175) 2024; 15 Xiao, Chevallier, Gomez, Guanter, Hicke, Huete, Ichii, Ni, Pang, Rahman, Sun, Yuan, Zhang, Zhang (bb0330) 2019; 233 Ueyama, Ichii, Iwata, Euskirchen, Zona, Rocha, Harazono, Iwama, Nakai, Oechel (bb0295) 2013; 118 Jung, Reichstein, Schwalm, Huntingford, Sitch, Ahlstrom, Arneth, Camps-Valls, Ciais, Friedlingstein, Gans, Ichii, Jain, Kato, Papale, Poulter, Raduly, Rodenbeck, Tramontana, Viovy, Wang, Weber, Zaehle, Zeng (bb0145) 2017; 541 Reitz, Graf, Schmidt, Ketzler, Leuchner (bb0250) 2021; 126 Ballantyne, Alden, Miller, Tans, White (bb0020) 2012; 488 Rising, Devineni (bb0260) 2020; 11 Treat, Marushchak, Voigt, Zhang, Tan, Zhuang, Virtanen, Rasanen, Biasi, Hugelius, Kaverin, Miller, Stendel, Romanovsky, Rivkin, Martikainen, Shurpali (bb0285) 2018; 24 Yamaç, Todorovic (bb0335) 2020 Kraft (bb0155) 1988 Deng, Wang, Lu, Du, Ciais, Lin (bb0065) 2023; 328 Missik, Liu, Gao, Huang, Chen, Arntzen, Mcfarland, Ren, Titzler, Thomle, Goldman (bb0200) 2019; 124 Wang, Liu, Zheng, Pihlatie, Li, Haapanala, Vesala, Liu, Wang, Liu, Hu (bb0305) 2013; 10 Chu, Luo, Ouyang, Chan, Dengel, Biraud, Torn, Metzger, Kumar, Arain, Arkebauer, Baldocchi, Bernacchi, Billesbach, Black, Blanken, Bohrer, Bracho, Brown, Brunsell, Chen, Chen, Clark, Desai, Duman, Durden, Fares, Forbrich, Gamon, Gough, Griffis, Helbig, Hollinger, Humphreys, Ikawa, Iwata, Ju, Knowles, Knox, Kobayashi, Kolb, Law, Lee, Litvak, Liu, Munger, Noormets, Novick, Oberbauer, Oechel, Oikawa, Papuga, Pendall, Prajapati, Prueger, Quinton, Richardson, Russell, Scott, Starr, Staebler, Stoy, Stuart-Haentjens, Sonnentag, Sullivan, Suyker, Ueyama, Vargas, Wood, Zona (bb0055) 2021; 301 Hossain, Chen (bb0120) 2019; 150 Tramontana, Jung, Schwalm, Ichii, Camps-Valls, Raduly, Reichstein, Arain, Cescatti, Kiely, Merbold, Serrano-Ortiz, Sickert, Wolf, Papale (bb0280) 2016; 13 Wang, Zhuang, Wang, Liu, Xu (bb0310) 2015; 12 Lu, Zhuang (bb0180) 2010; 114 Yang, White, Michaelis, Ichii, Hashimoto, Votava, Zhu, Nemani (bb0345) 2006; 44 Fan, Ma, Wu, Zhang, Yu, Zeng (bb0075) 2019; 225 Murphy, Richards, Krol, Gebremichael, Lopez-Sangil, Rambaud, Cowan, Lanigan, Saunders (bb0205) 2022; 313 Fang, Chen, Peng, Zhao, Ci (bb0080) 2001; 292 Belgiu, Csillik (bb0025) 2018; 204 Matton, Canto, Waldner, Valero, Morin, Inglada, Arias, Bontemps, Koetz, Defourny (bb0190) 2015; 7 Baldocchi, Falge, Gu, Olson, Hollinger, Running, Anthoni, Bernhofer, Davis, Evans, Fuentes, Goldstein, Katul, Law, Lee, Malhi, Meyers, Munger, Oechel, Ktp, Pilegaard, Schmid, Valentini, Verma, Vesala, Wilson, Wofsy (bb0015) 2001; 82 Dronova (bb0070) 2015; 7 Yan, Tian, Li, Chen, Li, Fan (bb0340) 2016; 52 Gong, Zhao, Zeng, Li (bb0105) 2023; 148 Gao, Yao, Yu, Ma, Li, Gao (bb0095) 2023; 15 Shangguan, Xiong, Nourani, Li, Lu, Li, Huang, Zhang, Sun, Dai (bb0275) 2023; 14 Chen, van der Werf, Dolman, Groenendijk (bb0040) 2011; 38 Zhang, Brodylo, Rahman, Rahman, Douglas, Comas (bb0375) 2022; 831 Veroustraete, Patyn, Myneni (bb0300) 1996; 58 Arnone, Verburg, Johnson, Larsen, Jasoni, Lucchesi, Batts, von Nagy, Coulombe, Schorran, Buck, Braswell, Coleman, Sherry, Wallace, Luo, Schimel (bb0005) 2008; 455 Pastorello, Trotta, Canfora, Chu, Christianson, Cheah, Poindexter, Chen, Elbashandy, Humphrey, Isaac, Polidori, Reichstein, Ribeca, van Ingen, Vuichard, Zhang, Amiro, Ammann, Arain, Ardo, Arkebauer, Arndt, Arriga, Aubinet, Aurela, Baldocchi, Barr, Beamesderfer, Marchesini, Bergeron, Beringer, Bernhofer, Berveiller, Billesbach, Black, Blanken, Bohrer, Boike, Bolstad, Bonal, Bonnefond, Bowling, Bracho, Brodeur, Brummer, Buchmann, Burban, Burns, Buysse, Cale, Cavagna, Cellier, Chen, Chini, Christensen, Cleverly, Collalti, Consalvo, Cook, Cook, Coursolle, Cremonese, Curtis, D’Andrea, da Rocha, Dai, Davis, Cinti, Grandcourt, Ligne, Oliveira, Delpierre, Desai, Bella, Tommasi, Dolman, Domingo, Dong, Dore, Duce, Dufrene, Dunn, Dusek, Eamus, Eichelmann, ElKhidir, Eugster, Ewenz, Ewers, Famulari, Fares, Feigenwinter, Feitz, Fensholt, Filippa, Fischer, Frank, Galvagno, Gharun, Gianelle, Gielen, Gioli, Gitelson, Goded, Goeckede, Goldstein, Gough, Goulden, Graf, Griebel, Gruening, Grunwald, Hammerle, Han, Han, Hansen, Hanson, Hatakka, He, Hehn, Heinesch, Hinko-Najera, Hortnagl, Hutley, Ibrom, Ikawa, Jackowicz-Korczynski, Janous, Jans, Jassal, Jiang, Kato, Khomik, Klatt, Knohl, Knox, Kobayashi, Koerber, Kolle, Kosugi, Kotani, Kowalski, Kruijt, Kurbatova, Kutsch, Kwon, Launiainen, Laurila, Law, Leuning, Li, Liddell, Limousin, Lion, Liska, Lohila, Lopez-Ballesteros, Lopez-Blanco, Loubet, Loustau, Lucas-Moffat, Luers, Ma, Macfarlane, Magliulo, Maier, Mammarella, Manca, Marcolla, Margolis, Marras, Massman, Mastepanov, Matamala, Matthes, Mazzenga, McCaughey, McHugh, McMillan, Merbold, Meyer, Meyers, Miller, Minerbi, Moderow, Monson, Montagnani, Moore, Moors, Moreaux, Moureaux, Munger, Nakai, Neirynck, Nesic, Nicolini, Noormets, Northwood, Nosetto, Nouvellon, Novick, Oechel, Olesen, Ourcival, Papuga, Parmentier, Paul-Limoges, Pavelka, Peichl, Pendall, Phillips, Pilegaard, Pirk, Posse, Powell, Prasse, Prober, Rambal, Rannik, Raz-Yaseef, Rebmann, Reed, Dios, Restrepo-Coupe, Reverter, Roland, Sabbatini, Sachs, Saleska, Sanchez-Canete, Sanchez-Mejia, Schmid, Schmidt, Schneider, Schrader, Schroder, Scott, Sedlak, Serrano-Ortiz, Shao, Shi, Shironya, Siebicke, Sigut, Silberstein, Sirca, Spano, Steinbrecher, Stevens, Sturtevant, Suyker, Tagesson, Takanashi, Tang, Tapper, Thom, Tomassucci, Tuovinen, Urbanski, Valentini, van der Molen, van Gorsel, van Huissteden, Varlagin, Verfaillie, Vesala, Vincke, Vitale, Vygodskaya, Walker, Walter-Shea, Wang, Weber, Westermann, Wille, Wofsy, Wohlfahrt, Wolf, Woodgate, Li, Zampedri, Zhang, Zhou, Zona, Agarwal, Biraud, Torn, Papale (bb0230) 2020; 7 Pique, Fieuzal, Al Bitar, Veloso, Tallec, Brut, Ferlicoq, Zawilski, Dejoux, Gibrin, Ceschia (bb0240) 2020; 376 Goeckede, Foken, Aubinet, Aurela, Banza, Bernhofer, Bonnefond, Brunet, Carrara, Clement, Dellwik, Elbers, Eugster, Fuhrer, Granier, Gruenwald, Heinesch, Janssens, Knohl, Koeble, Laurila, Longdoz, Manca, Marek, Markkanen, Mateus, Matteucci, Mauder, Migliavacca, Minerbi, Moncrieff, Montagnani, Moors, Ourcival, Papale, Pereira, Pilegaard, Pita, Rambal, Rebma Arnone (10.1016/j.scitotenv.2024.173887_bb0005) 2008; 455 Blaschke (10.1016/j.scitotenv.2024.173887_bb0035) 2014; 87 Rising (10.1016/j.scitotenv.2024.173887_bb0260) 2020; 11 Le Quéré (10.1016/j.scitotenv.2024.173887_bb0160) 2018; 10 Schmid (10.1016/j.scitotenv.2024.173887_bb0270) 1994; 67 Zhang (10.1016/j.scitotenv.2024.173887_bb0375) 2022; 831 Yang (10.1016/j.scitotenv.2024.173887_bb0345) 2006; 44 Yan (10.1016/j.scitotenv.2024.173887_bb0340) 2016; 52 Baldocchi (10.1016/j.scitotenv.2024.173887_bb0015) 2001; 82 Fan (10.1016/j.scitotenv.2024.173887_bb0075) 2019; 225 Veroustraete (10.1016/j.scitotenv.2024.173887_bb0300) 1996; 58 Goeckede (10.1016/j.scitotenv.2024.173887_bb0100) 2008; 5 Zhang (10.1016/j.scitotenv.2024.173887_bb0370) 2021; 262 Ouyang (10.1016/j.scitotenv.2024.173887_bb0220) 2023; 284 Chu (10.1016/j.scitotenv.2024.173887_bb0055) 2021; 301 Guo (10.1016/j.scitotenv.2024.173887_bb0115) 2010; 259 Li (10.1016/j.scitotenv.2024.173887_bb0165) 2015; 7 Kraft (10.1016/j.scitotenv.2024.173887_bb0155) 1988 Bergen (10.1016/j.scitotenv.2024.173887_bb0030) 2019; 363 Yamaç (10.1016/j.scitotenv.2024.173887_bb0335) 2020 Yang (10.1016/j.scitotenv.2024.173887_bb0350) 2024; 15 Liu (10.1016/j.scitotenv.2024.173887_bb0175) 2024; 15 Missik (10.1016/j.scitotenv.2024.173887_bb0200) 2019; 124 Xiao (10.1016/j.scitotenv.2024.173887_bb0315) 2008; 148 Zeng (10.1016/j.scitotenv.2024.173887_bb0365) 2020; 7 Treves (10.1016/j.scitotenv.2024.173887_bb0290) 2022; 8 Shangguan (10.1016/j.scitotenv.2024.173887_bb0275) 2023; 14 Tramontana (10.1016/j.scitotenv.2024.173887_bb0280) 2016; 13 Irvin (10.1016/j.scitotenv.2024.173887_bb0135) 2021; 308 Meng (10.1016/j.scitotenv.2024.173887_bb0195) 2017 Hossain (10.1016/j.scitotenv.2024.173887_bb0120) 2019; 150 Ran (10.1016/j.scitotenv.2024.173887_bb0245) 2016; 230–231 Xiao (10.1016/j.scitotenv.2024.173887_bb0325) 2011; 151 Xiao (10.1016/j.scitotenv.2024.173887_bb0330) 2019; 233 Novick (10.1016/j.scitotenv.2024.173887_bb0210) 2016; 6 Running (10.1016/j.scitotenv.2024.173887_bb0265) 1999; 70 Lian (10.1016/j.scitotenv.2024.173887_bb0170) 2023; 116 Treat (10.1016/j.scitotenv.2024.173887_bb0285) 2018; 24 Jung (10.1016/j.scitotenv.2024.173887_bb0140) 2009; 6 Gao (10.1016/j.scitotenv.2024.173887_bb0095) 2023; 15 Wang (10.1016/j.scitotenv.2024.173887_bb0305) 2013; 10 Ballantyne (10.1016/j.scitotenv.2024.173887_bb0020) 2012; 488 Friedlingstein (10.1016/j.scitotenv.2024.173887_bb0090) 2023; 15 Ueyama (10.1016/j.scitotenv.2024.173887_bb0295) 2013; 118 Wang (10.1016/j.scitotenv.2024.173887_bb0310) 2015; 12 Gong (10.1016/j.scitotenv.2024.173887_bb0105) 2023; 148 Matton (10.1016/j.scitotenv.2024.173887_bb0190) 2015; 7 Fang (10.1016/j.scitotenv.2024.173887_bb0080) 2001; 292 Lundberg (10.1016/j.scitotenv.2024.173887_bb1000) 2017 Humphrey (10.1016/j.scitotenv.2024.173887_bb0130) 2021; 592 Richardson (10.1016/j.scitotenv.2024.173887_bb0255) 2006; 136 Pique (10.1016/j.scitotenv.2024.173887_bb0240) 2020; 376 Ma (10.1016/j.scitotenv.2024.173887_bb0185) 2019; 14 Lu (10.1016/j.scitotenv.2024.173887_bb0180) 2010; 114 Bai (10.1016/j.scitotenv.2024.173887_bb0010) 2021; 298 Cho (10.1016/j.scitotenv.2024.173887_bb0050) 2021; 311 Keenan (10.1016/j.scitotenv.2024.173887_bb0150) 2012; 18 Reitz (10.1016/j.scitotenv.2024.173887_bb0250) 2021; 126 Chen (10.1016/j.scitotenv.2024.173887_bb0045) 2012; 124 Deng (10.1016/j.scitotenv.2024.173887_bb0065) 2023; 328 Jung (10.1016/j.scitotenv.2024.173887_bb0145) 2017; 541 Huang (10.1016/j.scitotenv.2024.173887_bb0125) 2016; 6 Foley (10.1016/j.scitotenv.2024.173887_bb0085) 2011; 478 Murphy (10.1016/j.scitotenv.2024.173887_bb0205) 2022; 313 Belgiu (10.1016/j.scitotenv.2024.173887_bb0025) 2018; 204 Pastorello (10.1016/j.scitotenv.2024.173887_bb0230) 2020; 7 Dronova (10.1016/j.scitotenv.2024.173887_bb0070) 2015; 7 Xiao (10.1016/j.scitotenv.2024.173887_bb0320) 2011; 116 Dalmagro (10.1016/j.scitotenv.2024.173887_bb0060) 2018; 139 Chen (10.1016/j.scitotenv.2024.173887_bb0040) 2011; 38 Osborne (10.1016/j.scitotenv.2024.173887_bb0215) 2010; 139 Yao (10.1016/j.scitotenv.2024.173887_bb0360) 2021; 21 Yao (10.1016/j.scitotenv.2024.173887_bb0355) 2020; 11 Papale (10.1016/j.scitotenv.2024.173887_bb0225) 2003; 9 Piao (10.1016/j.scitotenv.2024.173887_bb0235) 2020; 26 Guanter (10.1016/j.scitotenv.2024.173887_bb0110) 2014; 111 |
| References_xml | – volume: 7 start-page: 225 year: 2020 ident: bb0230 article-title: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data publication-title: Sci Data – volume: 6 start-page: 166 year: 2016 end-page: 171 ident: bb0125 article-title: Accelerated dryland expansion under climate change publication-title: Nat. Clim. Chang. – volume: 376 year: 2020 ident: bb0240 article-title: Estimation of daily CO publication-title: Geoderma – volume: 12 start-page: 259 year: 2015 end-page: 263 ident: bb0310 article-title: Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 292 start-page: 2320 year: 2001 end-page: 2322 ident: bb0080 article-title: Changes in forest biomass carbon storage in China between 1949 and 1998 publication-title: Science – volume: 139 start-page: 1 year: 2018 end-page: 18 ident: bb0060 article-title: Carbon biogeochemistry of a flooded Pantanal forest over three annual flood cycles publication-title: Biogeochemistry – volume: 148 year: 2023 ident: bb0105 article-title: An experimental study on local and global optima of linear antenna array synthesis by using the sequential least squares programming publication-title: Appl. Soft Comput. – volume: 18 start-page: 1971 year: 2012 end-page: 1987 ident: bb0150 article-title: Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO publication-title: Glob. Chang. Biol. – volume: 13 start-page: 4291 year: 2016 end-page: 4313 ident: bb0280 article-title: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms publication-title: Biogeosciences – volume: 308 year: 2021 ident: bb0135 article-title: Gap-filling eddy covariance methane fluxes: comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands publication-title: Agric. For. Meteorol. – volume: 9 start-page: 525 year: 2003 end-page: 535 ident: bb0225 article-title: A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization publication-title: Glob. Chang. Biol. – volume: 70 start-page: 108 year: 1999 end-page: 127 ident: bb0265 article-title: A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data publication-title: Remote Sens. Environ. – volume: 14 year: 2023 ident: bb0275 article-title: A 1 km global carbon flux dataset using in situ measurements and deep learning publication-title: For. Trees Livelihoods – volume: 204 start-page: 509 year: 2018 end-page: 523 ident: bb0025 article-title: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis publication-title: Remote Sens. Environ. – volume: 225 year: 2019 ident: bb0075 article-title: Light gradient boosting machine: an efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data publication-title: Agric. Water Manag. – volume: 139 start-page: 293 year: 2010 end-page: 301 ident: bb0215 article-title: Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance publication-title: Agric. Ecosyst. Environ. – volume: 136 start-page: 1 year: 2006 end-page: 18 ident: bb0255 article-title: A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes publication-title: Agric. For. Meteorol. – volume: 10 start-page: 2141 year: 2018 end-page: 2194 ident: bb0160 article-title: Global carbon budget 2018 publication-title: Earth Syst. Sci. Data – volume: 126 year: 2021 ident: bb0250 article-title: Upscaling net ecosystem exchange over heterogeneous landscapes with machine learning publication-title: J. Geophys. Res. Biogeosci. – volume: 24 start-page: 5188 year: 2018 end-page: 5204 ident: bb0285 article-title: Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic publication-title: Glob. Chang. Biol. – volume: 124 start-page: 99 year: 2019 end-page: 114 ident: bb0200 article-title: Groundwater-River water exchange enhances growing season evapotranspiration and carbon uptake in a semiarid riparian ecosystem publication-title: J. Geophys. Res. Biogeosci. – volume: 233 year: 2019 ident: bb0330 article-title: Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years publication-title: Remote Sens. Environ. – volume: 124 start-page: 742 year: 2012 end-page: 755 ident: bb0045 article-title: Characterizing spatial representativeness of flux tower eddy-covariance measurements across the Canadian carbon program network using remote sensing and footprint analysis publication-title: Remote Sens. Environ. – volume: 15 year: 2024 ident: bb0175 article-title: Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems publication-title: Nat. Commun. – volume: 58 start-page: 115 year: 1996 end-page: 130 ident: bb0300 article-title: Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model publication-title: Remote Sens. Environ. – volume: 488 year: 2012 ident: bb0020 article-title: Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years publication-title: Nature – volume: 11 year: 2020 ident: bb0260 article-title: Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5 publication-title: Nat. Commun. – volume: 7 start-page: 313 year: 2020 ident: bb0365 article-title: Global terrestrial carbon fluxes of 1999-2019 estimated by upscaling eddy covariance data with a random forest publication-title: Sci Data – volume: 67 start-page: 293 year: 1994 end-page: 318 ident: bb0270 article-title: Source areas for scalars and scalar fluxes publication-title: Bound.-Layer Meteorol. – volume: 313 year: 2022 ident: bb0205 article-title: Assessing nitrous oxide emissions in time and space with minimal uncertainty using static chambers and eddy covariance from a temperate grassland publication-title: Agric. For. Meteorol. – volume: 118 start-page: 1266 year: 2013 end-page: 1281 ident: bb0295 article-title: Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression publication-title: J. Geophys. Res. Biogeosci. – volume: 7 start-page: 13208 year: 2015 end-page: 13232 ident: bb0190 article-title: An automated method for annual cropland mapping along the season for various globally-distributed agrosystems using high spatial and temporal resolution time series publication-title: Remote Sens. – volume: 148 start-page: 1827 year: 2008 end-page: 1847 ident: bb0315 article-title: Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data publication-title: Agric. For. Meteorol. – volume: 14 year: 2019 ident: bb0185 article-title: Trends and controls of terrestrial gross primary productivity of China during 2000-2016 publication-title: Environ. Res. Lett. – volume: 541 start-page: 516 year: 2017 end-page: 520 ident: bb0145 article-title: Compensatory water effects link yearly global land CO(2) sink changes to temperature publication-title: Nature – volume: 116 year: 2011 ident: bb0320 article-title: Upscaling carbon fluxes from towers to the regional scale: influence of parameter variability and land cover representation on regional flux estimates publication-title: J. Geophys. Res. – volume: 21 start-page: 15589 year: 2021 end-page: 15603 ident: bb0360 article-title: Technical note: Uncertainties in eddy covariance \chemCO_2 fluxes in a semiarid sagebrush ecosystem caused by gap-filling approaches publication-title: Atmos. Chem. Phys. – volume: 44 start-page: 3452 year: 2006 end-page: 3461 ident: bb0345 article-title: Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 116 year: 2023 ident: bb0170 article-title: Mapping the net ecosystem exchange of CO2 of global terrestrial systems publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 230–231 start-page: 114 year: 2016 end-page: 127 ident: bb0245 article-title: Spatial representativeness and uncertainty of eddy covariance carbon flux measurements for upscaling net ecosystem productivity to the grid scale publication-title: Agric. For. Meteorol. – volume: 363 year: 2019 ident: bb0030 article-title: Machine learning for data-driven discovery in solid earth geoscience publication-title: Science – volume: 5 start-page: 433 year: 2008 end-page: 450 ident: bb0100 article-title: Quality control of CarboEurope flux data - part 1: coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems publication-title: Biogeosciences – volume: 10 start-page: 6865 year: 2013 end-page: 6877 ident: bb0305 article-title: Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields publication-title: Biogeosciences – volume: 6 start-page: 2001 year: 2009 end-page: 2013 ident: bb0140 article-title: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model publication-title: Biogeosciences – volume: 262 year: 2021 ident: bb0370 article-title: Mapping CO2 fluxes of cypress swamp and marshes in the Greater Everglades using eddy covariance measurements and Landsat data publication-title: Remote Sens. Environ. – volume: 15 start-page: 5301 year: 2023 end-page: 5369 ident: bb0090 article-title: Global carbon budget 2023 publication-title: Earth System Sci. Data – volume: 284 year: 2023 ident: bb0220 article-title: Paddy rice methane emissions across monsoon Asia publication-title: Remote Sens. Environ. – volume: 298 year: 2021 ident: bb0010 article-title: On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient publication-title: Agric. For. Meteorol. – volume: 301 year: 2021 ident: bb0055 article-title: Representativeness of Eddy-covariance flux footprints for areas surrounding AmeriFlux sites publication-title: Agric. For. Meteorol. – volume: 8 start-page: 78 year: 2022 ident: bb0290 article-title: Carbon flux through photosynthesis and central carbon metabolism show distinct patterns between algae, C publication-title: Nature Plants – year: 2020 ident: bb0335 article-title: Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data publication-title: Agric. Water Manag. – volume: 11 year: 2020 ident: bb0355 article-title: Accelerated dryland expansion regulates future variability in dryland gross primary production publication-title: Nat. Commun. – volume: 150 start-page: 115 year: 2019 end-page: 134 ident: bb0120 article-title: Segmentation for object-based image analysis (OBIA): a review of algorithms and challenges from remote sensing perspective publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 87 start-page: 180 year: 2014 end-page: 191 ident: bb0035 article-title: Geographic object-based image analysis-towards a new paradigm publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 259 start-page: 1225 year: 2010 end-page: 1231 ident: bb0115 article-title: Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods publication-title: For. Ecol. Manag. – volume: 478 start-page: 337 year: 2011 end-page: 342 ident: bb0085 article-title: Solutions for a cultivated planet publication-title: Nature – volume: 15 year: 2023 ident: bb0095 article-title: Eddy covariance CO publication-title: Remote Sens. – year: 1988 ident: bb0155 article-title: A Software Package for Sequential Quadratic Programming – volume: 455 start-page: 383 year: 2008 end-page: 386 ident: bb0005 article-title: Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year publication-title: Nature – volume: 7 start-page: 6380 year: 2015 end-page: 6413 ident: bb0070 article-title: Object-based image analysis in wetland research: a review publication-title: Remote Sens. – volume: 328 year: 2023 ident: bb0065 article-title: Divergent seasonal responses of carbon fluxes to extreme droughts over China publication-title: Agric. For. Meteorol. – volume: 7 start-page: 16091 year: 2015 end-page: 16107 ident: bb0165 article-title: Object-based crop classification with Landsat-MODIS enhanced time-series data publication-title: Remote Sens. – volume: 26 start-page: 300 year: 2020 end-page: 318 ident: bb0235 article-title: Interannual variation of terrestrial carbon cycle: issues and perspectives publication-title: Glob. Chang. Biol. – volume: 311 year: 2021 ident: bb0050 article-title: Evaluation of forest carbon uptake in South Korea using the national flux tower network, remote sensing, and data-driven technology publication-title: Agric. For. Meteorol. – volume: 82 start-page: 2415 year: 2001 end-page: 2434 ident: bb0015 article-title: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities publication-title: Bull. Am. Meteorol. Soc. – year: 2017 ident: bb1000 article-title: A Unified Approach to Interpreting Model Predictions – year: 2017 ident: bb0195 article-title: LightGBM: A Highly Efficient Gradient Boosting Decision Tree – volume: 831 year: 2022 ident: bb0375 article-title: Using an object-based machine learning ensemble approach to upscale evapotranspiration measured from eddy covariance towers in a subtropical wetland publication-title: Sci. Total Environ. – volume: 114 start-page: 1924 year: 2010 end-page: 1939 ident: bb0180 article-title: Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data publication-title: Remote Sens. Environ. – volume: 6 start-page: 1023 year: 2016 end-page: 1027 ident: bb0210 article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes publication-title: Nat. Clim. Chang. – volume: 38 year: 2011 ident: bb0040 article-title: Evaluation of cropland maximum light use efficiency using eddy flux measurements in North America and Europe publication-title: Geophys. Res. Lett. – volume: 111 start-page: E1327 year: 2014 end-page: E1333 ident: bb0110 article-title: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence publication-title: Proc. Natl. Acad. Sci. USA – volume: 52 start-page: 515 year: 2016 end-page: 526 ident: bb0340 article-title: A long-term simulation of forest carbon fluxes over the Qilian Mountains publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 15 year: 2024 ident: bb0350 article-title: Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health publication-title: Nat. Commun. – volume: 592 start-page: 65 year: 2021 end-page: 69 ident: bb0130 article-title: Soil moisture-atmosphere feedback dominates land carbon uptake variability publication-title: Nature – volume: 151 start-page: 60 year: 2011 end-page: 69 ident: bb0325 article-title: Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations publication-title: Agric. For. Meteorol. – volume: 148 year: 2023 ident: 10.1016/j.scitotenv.2024.173887_bb0105 article-title: An experimental study on local and global optima of linear antenna array synthesis by using the sequential least squares programming publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110859 – volume: 6 start-page: 166 year: 2016 ident: 10.1016/j.scitotenv.2024.173887_bb0125 article-title: Accelerated dryland expansion under climate change publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2837 – volume: 10 start-page: 2141 year: 2018 ident: 10.1016/j.scitotenv.2024.173887_bb0160 article-title: Global carbon budget 2018 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-10-2141-2018 – volume: 124 start-page: 99 year: 2019 ident: 10.1016/j.scitotenv.2024.173887_bb0200 article-title: Groundwater-River water exchange enhances growing season evapotranspiration and carbon uptake in a semiarid riparian ecosystem publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2018JG004666 – volume: 262 year: 2021 ident: 10.1016/j.scitotenv.2024.173887_bb0370 article-title: Mapping CO2 fluxes of cypress swamp and marshes in the Greater Everglades using eddy covariance measurements and Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112523 – volume: 313 year: 2022 ident: 10.1016/j.scitotenv.2024.173887_bb0205 article-title: Assessing nitrous oxide emissions in time and space with minimal uncertainty using static chambers and eddy covariance from a temperate grassland publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2021.108743 – volume: 8 start-page: 78 year: 2022 ident: 10.1016/j.scitotenv.2024.173887_bb0290 article-title: Carbon flux through photosynthesis and central carbon metabolism show distinct patterns between algae, C3 and C4 plants publication-title: Nature Plants doi: 10.1038/s41477-021-01042-5 – volume: 15 year: 2023 ident: 10.1016/j.scitotenv.2024.173887_bb0095 article-title: Eddy covariance CO2 flux gap filling for long data gaps: a novel framework based on machine learning and time series decomposition publication-title: Remote Sens. – volume: 139 start-page: 293 year: 2010 ident: 10.1016/j.scitotenv.2024.173887_bb0215 article-title: Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.05.009 – year: 1988 ident: 10.1016/j.scitotenv.2024.173887_bb0155 – volume: 7 start-page: 16091 year: 2015 ident: 10.1016/j.scitotenv.2024.173887_bb0165 article-title: Object-based crop classification with Landsat-MODIS enhanced time-series data publication-title: Remote Sens. doi: 10.3390/rs71215820 – volume: 114 start-page: 1924 year: 2010 ident: 10.1016/j.scitotenv.2024.173887_bb0180 article-title: Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.04.001 – volume: 82 start-page: 2415 year: 2001 ident: 10.1016/j.scitotenv.2024.173887_bb0015 article-title: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 – volume: 592 start-page: 65 year: 2021 ident: 10.1016/j.scitotenv.2024.173887_bb0130 article-title: Soil moisture-atmosphere feedback dominates land carbon uptake variability publication-title: Nature doi: 10.1038/s41586-021-03325-5 – volume: 38 year: 2011 ident: 10.1016/j.scitotenv.2024.173887_bb0040 article-title: Evaluation of cropland maximum light use efficiency using eddy flux measurements in North America and Europe publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL047533 – year: 2020 ident: 10.1016/j.scitotenv.2024.173887_bb0335 article-title: Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.105875 – volume: 139 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2024.173887_bb0060 article-title: Carbon biogeochemistry of a flooded Pantanal forest over three annual flood cycles publication-title: Biogeochemistry doi: 10.1007/s10533-018-0450-1 – volume: 136 start-page: 1 year: 2006 ident: 10.1016/j.scitotenv.2024.173887_bb0255 article-title: A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2006.01.007 – volume: 118 start-page: 1266 year: 2013 ident: 10.1016/j.scitotenv.2024.173887_bb0295 article-title: Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression publication-title: J. Geophys. Res. Biogeosci. doi: 10.1002/jgrg.20095 – volume: 204 start-page: 509 year: 2018 ident: 10.1016/j.scitotenv.2024.173887_bb0025 article-title: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.005 – volume: 478 start-page: 337 year: 2011 ident: 10.1016/j.scitotenv.2024.173887_bb0085 article-title: Solutions for a cultivated planet publication-title: Nature doi: 10.1038/nature10452 – volume: 116 year: 2023 ident: 10.1016/j.scitotenv.2024.173887_bb0170 article-title: Mapping the net ecosystem exchange of CO2 of global terrestrial systems publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 831 year: 2022 ident: 10.1016/j.scitotenv.2024.173887_bb0375 article-title: Using an object-based machine learning ensemble approach to upscale evapotranspiration measured from eddy covariance towers in a subtropical wetland publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.154969 – volume: 11 year: 2020 ident: 10.1016/j.scitotenv.2024.173887_bb0260 article-title: Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18725-w – volume: 308 year: 2021 ident: 10.1016/j.scitotenv.2024.173887_bb0135 article-title: Gap-filling eddy covariance methane fluxes: comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands publication-title: Agric. For. Meteorol. – volume: 7 start-page: 6380 year: 2015 ident: 10.1016/j.scitotenv.2024.173887_bb0070 article-title: Object-based image analysis in wetland research: a review publication-title: Remote Sens. doi: 10.3390/rs70506380 – volume: 87 start-page: 180 year: 2014 ident: 10.1016/j.scitotenv.2024.173887_bb0035 article-title: Geographic object-based image analysis-towards a new paradigm publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.09.014 – volume: 18 start-page: 1971 year: 2012 ident: 10.1016/j.scitotenv.2024.173887_bb0150 article-title: Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2012.02678.x – volume: 126 year: 2021 ident: 10.1016/j.scitotenv.2024.173887_bb0250 article-title: Upscaling net ecosystem exchange over heterogeneous landscapes with machine learning publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2020JG005814 – volume: 363 year: 2019 ident: 10.1016/j.scitotenv.2024.173887_bb0030 article-title: Machine learning for data-driven discovery in solid earth geoscience publication-title: Science doi: 10.1126/science.aau0323 – volume: 116 year: 2011 ident: 10.1016/j.scitotenv.2024.173887_bb0320 article-title: Upscaling carbon fluxes from towers to the regional scale: influence of parameter variability and land cover representation on regional flux estimates publication-title: J. Geophys. Res. – volume: 124 start-page: 742 year: 2012 ident: 10.1016/j.scitotenv.2024.173887_bb0045 article-title: Characterizing spatial representativeness of flux tower eddy-covariance measurements across the Canadian carbon program network using remote sensing and footprint analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.06.007 – volume: 376 year: 2020 ident: 10.1016/j.scitotenv.2024.173887_bb0240 article-title: Estimation of daily CO2 fluxes and of the components of the carbon budget for winter wheat by the assimilation of sentinel 2-like remote sensing data into a crop model publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114428 – volume: 7 start-page: 225 year: 2020 ident: 10.1016/j.scitotenv.2024.173887_bb0230 article-title: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data publication-title: Sci Data doi: 10.1038/s41597-020-0534-3 – volume: 70 start-page: 108 year: 1999 ident: 10.1016/j.scitotenv.2024.173887_bb0265 article-title: A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00061-9 – volume: 44 start-page: 3452 year: 2006 ident: 10.1016/j.scitotenv.2024.173887_bb0345 article-title: Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.876297 – volume: 328 year: 2023 ident: 10.1016/j.scitotenv.2024.173887_bb0065 article-title: Divergent seasonal responses of carbon fluxes to extreme droughts over China publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2022.109253 – volume: 15 year: 2024 ident: 10.1016/j.scitotenv.2024.173887_bb0175 article-title: Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems publication-title: Nat. Commun. – year: 2017 ident: 10.1016/j.scitotenv.2024.173887_bb1000 – volume: 7 start-page: 13208 year: 2015 ident: 10.1016/j.scitotenv.2024.173887_bb0190 article-title: An automated method for annual cropland mapping along the season for various globally-distributed agrosystems using high spatial and temporal resolution time series publication-title: Remote Sens. doi: 10.3390/rs71013208 – volume: 111 start-page: E1327 year: 2014 ident: 10.1016/j.scitotenv.2024.173887_bb0110 article-title: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1320008111 – volume: 541 start-page: 516 year: 2017 ident: 10.1016/j.scitotenv.2024.173887_bb0145 article-title: Compensatory water effects link yearly global land CO(2) sink changes to temperature publication-title: Nature doi: 10.1038/nature20780 – volume: 284 year: 2023 ident: 10.1016/j.scitotenv.2024.173887_bb0220 article-title: Paddy rice methane emissions across monsoon Asia publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113335 – volume: 225 year: 2019 ident: 10.1016/j.scitotenv.2024.173887_bb0075 article-title: Light gradient boosting machine: an efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.105758 – volume: 455 start-page: 383 year: 2008 ident: 10.1016/j.scitotenv.2024.173887_bb0005 article-title: Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year publication-title: Nature doi: 10.1038/nature07296 – volume: 6 start-page: 2001 year: 2009 ident: 10.1016/j.scitotenv.2024.173887_bb0140 article-title: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model publication-title: Biogeosciences doi: 10.5194/bg-6-2001-2009 – volume: 233 year: 2019 ident: 10.1016/j.scitotenv.2024.173887_bb0330 article-title: Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111383 – volume: 15 start-page: 5301 year: 2023 ident: 10.1016/j.scitotenv.2024.173887_bb0090 article-title: Global carbon budget 2023 publication-title: Earth System Sci. Data doi: 10.5194/essd-15-5301-2023 – volume: 15 year: 2024 ident: 10.1016/j.scitotenv.2024.173887_bb0350 article-title: Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health publication-title: Nat. Commun. – volume: 488 year: 2012 ident: 10.1016/j.scitotenv.2024.173887_bb0020 article-title: Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years publication-title: Nature doi: 10.1038/nature11299 – volume: 259 start-page: 1225 year: 2010 ident: 10.1016/j.scitotenv.2024.173887_bb0115 article-title: Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2009.09.047 – volume: 67 start-page: 293 year: 1994 ident: 10.1016/j.scitotenv.2024.173887_bb0270 article-title: Source areas for scalars and scalar fluxes publication-title: Bound.-Layer Meteorol. doi: 10.1007/BF00713146 – volume: 10 start-page: 6865 year: 2013 ident: 10.1016/j.scitotenv.2024.173887_bb0305 article-title: Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields publication-title: Biogeosciences doi: 10.5194/bg-10-6865-2013 – volume: 301 year: 2021 ident: 10.1016/j.scitotenv.2024.173887_bb0055 article-title: Representativeness of Eddy-covariance flux footprints for areas surrounding AmeriFlux sites publication-title: Agric. For. Meteorol. – volume: 24 start-page: 5188 year: 2018 ident: 10.1016/j.scitotenv.2024.173887_bb0285 article-title: Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14421 – volume: 14 year: 2023 ident: 10.1016/j.scitotenv.2024.173887_bb0275 article-title: A 1 km global carbon flux dataset using in situ measurements and deep learning publication-title: For. Trees Livelihoods – volume: 151 start-page: 60 year: 2011 ident: 10.1016/j.scitotenv.2024.173887_bb0325 article-title: Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2010.09.002 – volume: 52 start-page: 515 year: 2016 ident: 10.1016/j.scitotenv.2024.173887_bb0340 article-title: A long-term simulation of forest carbon fluxes over the Qilian Mountains publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 5 start-page: 433 year: 2008 ident: 10.1016/j.scitotenv.2024.173887_bb0100 article-title: Quality control of CarboEurope flux data - part 1: coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems publication-title: Biogeosciences doi: 10.5194/bg-5-433-2008 – volume: 21 start-page: 15589 year: 2021 ident: 10.1016/j.scitotenv.2024.173887_bb0360 article-title: Technical note: Uncertainties in eddy covariance \chemCO_2 fluxes in a semiarid sagebrush ecosystem caused by gap-filling approaches publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-15589-2021 – volume: 6 start-page: 1023 year: 2016 ident: 10.1016/j.scitotenv.2024.173887_bb0210 article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate3114 – volume: 26 start-page: 300 year: 2020 ident: 10.1016/j.scitotenv.2024.173887_bb0235 article-title: Interannual variation of terrestrial carbon cycle: issues and perspectives publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14884 – volume: 230–231 start-page: 114 year: 2016 ident: 10.1016/j.scitotenv.2024.173887_bb0245 article-title: Spatial representativeness and uncertainty of eddy covariance carbon flux measurements for upscaling net ecosystem productivity to the grid scale publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.05.008 – volume: 12 start-page: 259 year: 2015 ident: 10.1016/j.scitotenv.2024.173887_bb0310 article-title: Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2334703 – volume: 7 start-page: 313 year: 2020 ident: 10.1016/j.scitotenv.2024.173887_bb0365 article-title: Global terrestrial carbon fluxes of 1999-2019 estimated by upscaling eddy covariance data with a random forest publication-title: Sci Data doi: 10.1038/s41597-020-00653-5 – volume: 148 start-page: 1827 year: 2008 ident: 10.1016/j.scitotenv.2024.173887_bb0315 article-title: Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2008.06.015 – volume: 14 year: 2019 ident: 10.1016/j.scitotenv.2024.173887_bb0185 article-title: Trends and controls of terrestrial gross primary productivity of China during 2000-2016 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab31e4 – volume: 11 year: 2020 ident: 10.1016/j.scitotenv.2024.173887_bb0355 article-title: Accelerated dryland expansion regulates future variability in dryland gross primary production publication-title: Nat. Commun. doi: 10.1038/s41467-020-15515-2 – volume: 311 year: 2021 ident: 10.1016/j.scitotenv.2024.173887_bb0050 article-title: Evaluation of forest carbon uptake in South Korea using the national flux tower network, remote sensing, and data-driven technology publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2021.108653 – volume: 58 start-page: 115 year: 1996 ident: 10.1016/j.scitotenv.2024.173887_bb0300 article-title: Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00258-8 – year: 2017 ident: 10.1016/j.scitotenv.2024.173887_bb0195 – volume: 298 year: 2021 ident: 10.1016/j.scitotenv.2024.173887_bb0010 article-title: On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient publication-title: Agric. For. Meteorol. – volume: 292 start-page: 2320 year: 2001 ident: 10.1016/j.scitotenv.2024.173887_bb0080 article-title: Changes in forest biomass carbon storage in China between 1949 and 1998 publication-title: Science doi: 10.1126/science.1058629 – volume: 13 start-page: 4291 year: 2016 ident: 10.1016/j.scitotenv.2024.173887_bb0280 article-title: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms publication-title: Biogeosciences doi: 10.5194/bg-13-4291-2016 – volume: 150 start-page: 115 year: 2019 ident: 10.1016/j.scitotenv.2024.173887_bb0120 article-title: Segmentation for object-based image analysis (OBIA): a review of algorithms and challenges from remote sensing perspective publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.02.009 – volume: 9 start-page: 525 year: 2003 ident: 10.1016/j.scitotenv.2024.173887_bb0225 article-title: A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization publication-title: Glob. Chang. Biol. doi: 10.1046/j.1365-2486.2003.00609.x |
| SSID | ssj0000781 |
| Score | 2.473248 |
| Snippet | Accurately estimating the net ecosystem exchange of CO2 (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and... Accurately estimating the net ecosystem exchange of CO₂ (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 173887 |
| SubjectTerms | algorithms carbon dioxide Carbon flux upscaling climate cropland Eddy covariance environment image analysis Machine learning Net ecosystem exchange Object-oriented image analysis phenology prediction soil water temperature |
| Title | Upscaling net ecosystem CO2 exchanges in croplands: The application of integrating object-based image analysis and machine learning approaches |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2024.173887 https://www.proquest.com/docview/3068755546 https://www.proquest.com/docview/3153644497 |
| Volume | 944 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6DiQkhKAwMT4mIyFeqlRp4sTx3qapE0xTx0MrKl4sJ3FLqzUJazt1f4L_wD_lOraTMA02HniJIstOmp6Tm-vrc30Rek9ZSpj0mTONw9ghALHDYkEcQt0wFX0_if1pWWyCDofRZMI-t1o_bS7M1QXNsmi7ZcV_hRraAGyVOvsPcFcXhQY4B9DhCLDD8V7Aj4sV_O8qApDJdRdml3qz5u7xudeVW53oW4pgVfGuMtPXKi8ai9nNnSRKXXSs4jWO-ual3flSCX2E3c5Ehd6XpSZT2iIUs2qvciNRXNSktNbEiBPWuUrHbOTbVYogkWuDuAUGzyrrpFtP4R7Xmxtdv37Ls9ly3ui80eHdLzIrbLOJcHhEyTE8t2m1CRjlUOt4rdVmhHSLXp_6ykre-i3QYYlFD1wJeBR4jp66uBlSf_7skv_wnJ-Mz874aDAZfSi-O6owmVrAN1VadtCuRwMWtdHu0afB5LT-3NNIl2U0P_I3EeGt9_6TC3TDGSg9nNFT9MRMTfCRptQz1JJZBz3UxUqvO2hvUGME3QyMqw56rEO_WGe0PUc_KgZiYCCuGIiBgbhiIJ5nuGLgIQZm4Ab_cD7FDf7hJv9wyT9s-QcnKTb8w5Z_uObfCzQ-GYyOPzqm7IeTeCxcO2kovNSV0veZYMxLWODJqC_SCFpSQd1YBFEcMwlz9SCIw4AJArNiGQYxhe4-8_dQO8sz-RLhJExYOAUfG4wOSd2-SJI0BmfNDZIpkYzuo9AiwROzJ74qzXLBrfhxwSsIuYKQawj3kVsNLPS2MHcPObRQc-Pdaq-VA2HvHvzOkoOD_VeLeiKT-WbFYcof0UBpTf_SB9wamPcQRl_do89r9Kh-C9-g9vpyI9-iB8nVer66PEA7dBIdmJfgF0gq6Bw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upscaling+net+ecosystem+CO2+exchanges+in+croplands%3A+The+application+of+integrating+object-based+image+analysis+and+machine+learning+approaches&rft.jtitle=The+Science+of+the+total+environment&rft.au=Gao%2C+Dexiang&rft.au=Yao%2C+Jingyu&rft.au=Gao%2C+Zhongming&rft.au=Yuan%2C+Wenping&rft.date=2024-09-20&rft.issn=0048-9697&rft.volume=944+p.173887-&rft_id=info:doi/10.1016%2Fj.scitotenv.2024.173887&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |