Upscaling net ecosystem CO2 exchanges in croplands: The application of integrating object-based image analysis and machine learning approaches

Accurately estimating the net ecosystem exchange of CO2 (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and v...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Science of the total environment Ročník 944; s. 173887
Hlavní autori: Gao, Dexiang, Yao, Jingyu, Gao, Zhongming, Yuan, Wenping, He, Yingzhe, Wang, Bojun, Li, Lei, Ma, Yulong, Russell, Eric, Pressley, Shelley N., Zou, Xudong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 20.09.2024
Predmet:
ISSN:0048-9697, 1879-1026, 1879-1026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurately estimating the net ecosystem exchange of CO2 (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and variations in the efficacy of upscaling models. Here, we applied an integrated approach that combined object-based image analysis (OBIA) techniques with advanced machine learning (ML) approaches to upscale regional cropland NEE. We conducted a thorough evaluation of the upscaling approach across four distinct cropland areas characterized by diverse climate conditions. Our study confirmed that OBIA techniques can efficiently segment cropland objects, thereby enhancing the representation and accuracy of characteristics relevant to cropland features. The sequential least squares programming algorithm, among the three methods used for ML model integration, demonstrated exceptional performance in predicting NEE, with an R2 value exceeding 0.80 across all study areas and peaking at 0.90 in the most successful area. On average, there was an 18 % improvement compared to the poorest-performing ML model and a 6 % enhancement compared to the best-performing ML model. The upscaled regional products exhibited superior performance in characterizing cropland NEE patterns compared to pixel-based products. Additionally, we utilized the SHapley Additive exPlanations (SHAP) to assess driver importance, revealing that phenology and radiation had the greatest influence on prediction accuracy, followed by temperature and soil moisture. This study highlights the potential of integrating OBIA techniques with machine learning approaches for upscaling regional cropland NEE, while concurrently reducing estimation uncertainties. [Display omitted] •Evaluated the performance of an object-based integrated machine learning framework for upscaling CO2 fluxes in croplands•Explored key drivers affecting NEE prediction accuracy in conjunction with interpretable machine learning SHAP models•Generated maps of upscaled NEE and associated uncertainties for croplands in the study areas
AbstractList Accurately estimating the net ecosystem exchange of CO₂ (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and variations in the efficacy of upscaling models. Here, we applied an integrated approach that combined object-based image analysis (OBIA) techniques with advanced machine learning (ML) approaches to upscale regional cropland NEE. We conducted a thorough evaluation of the upscaling approach across four distinct cropland areas characterized by diverse climate conditions. Our study confirmed that OBIA techniques can efficiently segment cropland objects, thereby enhancing the representation and accuracy of characteristics relevant to cropland features. The sequential least squares programming algorithm, among the three methods used for ML model integration, demonstrated exceptional performance in predicting NEE, with an R² value exceeding 0.80 across all study areas and peaking at 0.90 in the most successful area. On average, there was an 18 % improvement compared to the poorest-performing ML model and a 6 % enhancement compared to the best-performing ML model. The upscaled regional products exhibited superior performance in characterizing cropland NEE patterns compared to pixel-based products. Additionally, we utilized the SHapley Additive exPlanations (SHAP) to assess driver importance, revealing that phenology and radiation had the greatest influence on prediction accuracy, followed by temperature and soil moisture. This study highlights the potential of integrating OBIA techniques with machine learning approaches for upscaling regional cropland NEE, while concurrently reducing estimation uncertainties.
Accurately estimating the net ecosystem exchange of CO2 (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and variations in the efficacy of upscaling models. Here, we applied an integrated approach that combined object-based image analysis (OBIA) techniques with advanced machine learning (ML) approaches to upscale regional cropland NEE. We conducted a thorough evaluation of the upscaling approach across four distinct cropland areas characterized by diverse climate conditions. Our study confirmed that OBIA techniques can efficiently segment cropland objects, thereby enhancing the representation and accuracy of characteristics relevant to cropland features. The sequential least squares programming algorithm, among the three methods used for ML model integration, demonstrated exceptional performance in predicting NEE, with an R2 value exceeding 0.80 across all study areas and peaking at 0.90 in the most successful area. On average, there was an 18 % improvement compared to the poorest-performing ML model and a 6 % enhancement compared to the best-performing ML model. The upscaled regional products exhibited superior performance in characterizing cropland NEE patterns compared to pixel-based products. Additionally, we utilized the SHapley Additive exPlanations (SHAP) to assess driver importance, revealing that phenology and radiation had the greatest influence on prediction accuracy, followed by temperature and soil moisture. This study highlights the potential of integrating OBIA techniques with machine learning approaches for upscaling regional cropland NEE, while concurrently reducing estimation uncertainties.Accurately estimating the net ecosystem exchange of CO2 (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and variations in the efficacy of upscaling models. Here, we applied an integrated approach that combined object-based image analysis (OBIA) techniques with advanced machine learning (ML) approaches to upscale regional cropland NEE. We conducted a thorough evaluation of the upscaling approach across four distinct cropland areas characterized by diverse climate conditions. Our study confirmed that OBIA techniques can efficiently segment cropland objects, thereby enhancing the representation and accuracy of characteristics relevant to cropland features. The sequential least squares programming algorithm, among the three methods used for ML model integration, demonstrated exceptional performance in predicting NEE, with an R2 value exceeding 0.80 across all study areas and peaking at 0.90 in the most successful area. On average, there was an 18 % improvement compared to the poorest-performing ML model and a 6 % enhancement compared to the best-performing ML model. The upscaled regional products exhibited superior performance in characterizing cropland NEE patterns compared to pixel-based products. Additionally, we utilized the SHapley Additive exPlanations (SHAP) to assess driver importance, revealing that phenology and radiation had the greatest influence on prediction accuracy, followed by temperature and soil moisture. This study highlights the potential of integrating OBIA techniques with machine learning approaches for upscaling regional cropland NEE, while concurrently reducing estimation uncertainties.
Accurately estimating the net ecosystem exchange of CO2 (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and variations in the efficacy of upscaling models. Here, we applied an integrated approach that combined object-based image analysis (OBIA) techniques with advanced machine learning (ML) approaches to upscale regional cropland NEE. We conducted a thorough evaluation of the upscaling approach across four distinct cropland areas characterized by diverse climate conditions. Our study confirmed that OBIA techniques can efficiently segment cropland objects, thereby enhancing the representation and accuracy of characteristics relevant to cropland features. The sequential least squares programming algorithm, among the three methods used for ML model integration, demonstrated exceptional performance in predicting NEE, with an R2 value exceeding 0.80 across all study areas and peaking at 0.90 in the most successful area. On average, there was an 18 % improvement compared to the poorest-performing ML model and a 6 % enhancement compared to the best-performing ML model. The upscaled regional products exhibited superior performance in characterizing cropland NEE patterns compared to pixel-based products. Additionally, we utilized the SHapley Additive exPlanations (SHAP) to assess driver importance, revealing that phenology and radiation had the greatest influence on prediction accuracy, followed by temperature and soil moisture. This study highlights the potential of integrating OBIA techniques with machine learning approaches for upscaling regional cropland NEE, while concurrently reducing estimation uncertainties. [Display omitted] •Evaluated the performance of an object-based integrated machine learning framework for upscaling CO2 fluxes in croplands•Explored key drivers affecting NEE prediction accuracy in conjunction with interpretable machine learning SHAP models•Generated maps of upscaled NEE and associated uncertainties for croplands in the study areas
ArticleNumber 173887
Author Yao, Jingyu
Yuan, Wenping
Ma, Yulong
Gao, Dexiang
Russell, Eric
He, Yingzhe
Pressley, Shelley N.
Gao, Zhongming
Li, Lei
Zou, Xudong
Wang, Bojun
Author_xml – sequence: 1
  givenname: Dexiang
  surname: Gao
  fullname: Gao, Dexiang
  organization: School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
– sequence: 2
  givenname: Jingyu
  surname: Yao
  fullname: Yao, Jingyu
  organization: School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
– sequence: 3
  givenname: Zhongming
  surname: Gao
  fullname: Gao, Zhongming
  email: gaozhm3@mail.sysu.edu.cn
  organization: School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
– sequence: 4
  givenname: Wenping
  surname: Yuan
  fullname: Yuan, Wenping
  organization: Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100091, China
– sequence: 5
  givenname: Yingzhe
  surname: He
  fullname: He, Yingzhe
  organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
– sequence: 6
  givenname: Bojun
  surname: Wang
  fullname: Wang, Bojun
  organization: School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
– sequence: 7
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  organization: School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
– sequence: 8
  givenname: Yulong
  surname: Ma
  fullname: Ma, Yulong
  organization: Guangdong-Hong kong-Macau Greater Bay Area Weather Research Center for Monitoring Warning and Forecasting (Shenzhen Institute of Meteorological Innovation), Shenzhen, Guangdong 518040, China
– sequence: 9
  givenname: Eric
  surname: Russell
  fullname: Russell, Eric
  organization: Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington 99163, USA
– sequence: 10
  givenname: Shelley N.
  surname: Pressley
  fullname: Pressley, Shelley N.
  organization: Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington 99163, USA
– sequence: 11
  givenname: Xudong
  surname: Zou
  fullname: Zou, Xudong
  organization: Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166, China
BookMark eNqNkcFuGyEURVGVSnXSfENYdjMuzAwwVOoispq0UqRskjVi4NnGGsMUSFT_RL-5z3WURTcpG-Dp3Iu495ycxRSBkCvOlpxx-Xm3LC7UVCE-L1vW9kuuumFQ78iCD0o3nLXyjCwY64dGS60-kPNSdgyXGviC_H6ci7NTiBsaoVJwqRxKhT1d3bcUfrmtjRsoNETqcponG335Qh-2QO08T8HZGlKkaY1AhU3GKxqlcQeuNqMt4GnY2w3S0U6HEgoePN1btw0R6AQ2x6MAvXLCIZSP5P3aTgUuX_YL8njz7WH1vbm7v_2xur5rXKtlbby0rWcAXaet1q3TooWBWz_gxFvFRiuGcdTQay3EKIW2vdAKpBgV4p3uLsinky8-_PMJSjX7UBxM-EFIT8V0XHSy73ut3kaZHJQQopeIfj2hmFUpGdYGm_kbUc02TIYzc6zM7MxrZeZYmTlVhnr1j37OmF8-_Ify-qQEDO05QD5yEB34kLEL41N40-MPLLe7Tg
CitedBy_id crossref_primary_10_1016_j_rsase_2025_101728
crossref_primary_10_1016_j_scitotenv_2025_178448
crossref_primary_10_1088_1748_9326_ade731
crossref_primary_10_1016_j_agrformet_2025_110784
Cites_doi 10.1016/j.asoc.2023.110859
10.1038/nclimate2837
10.5194/essd-10-2141-2018
10.1029/2018JG004666
10.1016/j.rse.2021.112523
10.1016/j.agrformet.2021.108743
10.1038/s41477-021-01042-5
10.1016/j.agee.2010.05.009
10.3390/rs71215820
10.1016/j.rse.2010.04.001
10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
10.1038/s41586-021-03325-5
10.1029/2011GL047533
10.1016/j.agwat.2019.105875
10.1007/s10533-018-0450-1
10.1016/j.agrformet.2006.01.007
10.1002/jgrg.20095
10.1016/j.rse.2017.10.005
10.1038/nature10452
10.1016/j.scitotenv.2022.154969
10.1038/s41467-020-18725-w
10.3390/rs70506380
10.1016/j.isprsjprs.2013.09.014
10.1111/j.1365-2486.2012.02678.x
10.1029/2020JG005814
10.1126/science.aau0323
10.1016/j.rse.2012.06.007
10.1016/j.geoderma.2020.114428
10.1038/s41597-020-0534-3
10.1016/S0034-4257(99)00061-9
10.1109/TGRS.2006.876297
10.1016/j.agrformet.2022.109253
10.3390/rs71013208
10.1073/pnas.1320008111
10.1038/nature20780
10.1016/j.rse.2022.113335
10.1016/j.agwat.2019.105758
10.1038/nature07296
10.5194/bg-6-2001-2009
10.1016/j.rse.2019.111383
10.5194/essd-15-5301-2023
10.1038/nature11299
10.1016/j.foreco.2009.09.047
10.1007/BF00713146
10.5194/bg-10-6865-2013
10.1111/gcb.14421
10.1016/j.agrformet.2010.09.002
10.5194/bg-5-433-2008
10.5194/acp-21-15589-2021
10.1038/nclimate3114
10.1111/gcb.14884
10.1016/j.agrformet.2016.05.008
10.1109/LGRS.2014.2334703
10.1038/s41597-020-00653-5
10.1016/j.agrformet.2008.06.015
10.1088/1748-9326/ab31e4
10.1038/s41467-020-15515-2
10.1016/j.agrformet.2021.108653
10.1016/0034-4257(95)00258-8
10.1126/science.1058629
10.5194/bg-13-4291-2016
10.1016/j.isprsjprs.2019.02.009
10.1046/j.1365-2486.2003.00609.x
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2024.173887
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2024_173887
S004896972404035X
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
9DU
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
WUQ
XPP
ZXP
ZY4
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c296t-d6a2d0ee339a992c952e81ad8e33da70ba58bb9e49955b659a4597e65b7992393
ISSN 0048-9697
1879-1026
IngestDate Thu Oct 02 22:50:58 EDT 2025
Sat Sep 27 20:48:41 EDT 2025
Tue Nov 18 21:41:11 EST 2025
Sat Nov 29 06:59:43 EST 2025
Sat Dec 28 15:51:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Net ecosystem exchange
Eddy covariance
Carbon flux upscaling
Object-oriented image analysis
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-d6a2d0ee339a992c952e81ad8e33da70ba58bb9e49955b659a4597e65b7992393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3068755546
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153644497
proquest_miscellaneous_3068755546
crossref_citationtrail_10_1016_j_scitotenv_2024_173887
crossref_primary_10_1016_j_scitotenv_2024_173887
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2024_173887
PublicationCentury 2000
PublicationDate 2024-09-20
PublicationDateYYYYMMDD 2024-09-20
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-20
  day: 20
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cho, Kang, Ichii, Kim, Lim, Chun, Park, Kim, Choi, Lee, Indrawati, Kim (bb0050) 2021; 311
Lundberg, Lee (bb1000) 2017
Li, Wang, Zhang, Lu (bb0165) 2015; 7
Ouyang, Jackson, McNicol, Fluet-Chouinard, Runkle, Papale, Knox, Cooley, Delwiche, Feron, Irvin, Malhotra, Muddasir, Sabbatini, Alberto, Cescatti, Chen, Dong, Fong, Guo, Hao, Iwata, Jia, Ju, Kang, Li, Kim, Reba, Nayak, Roberti, Ryu, Swain, Tsuang, Xiao, Yuan, Zhang, Zhang (bb0220) 2023; 284
Schmid (bb0270) 1994; 67
Zhang, Brodylo, Sirianni, Li, Comas, Douglas, Starr (bb0370) 2021; 262
Meng (bb0195) 2017
Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, Pongratz, Pickers, Korsbakken, Peters, Canadell, Arneth, Arora, Barbero, Bastos, Bopp, Chevallier, Chini, Ciais, Doney, Gkritzalis, Goll, Harris, Haverd, Hoffman, Hoppema, Houghton, Hurtt, Ilyina, Jain, Johannessen, Jones, Kato, Keeling, Goldewijk, Landschützer, Lefèvre, Lienert, Liu, Lombardozzi, Metzl, Munro, Nabel, Nakaoka, Neill, Olsen, Ono, Patra, Peregon, Peters, Peylin, Pfeil, Pierrot, Poulter, Rehder, Resplandy, Robertson, Rocher, Rödenbeck, Schuster, Schwinger, Séférian, Skjelvan, Steinhoff, Sutton, Tans, Tian, Tilbrook, Tubiello, van der Laan-Luijkx, van der Werf, Viovy, Walker, Wiltshire, Wright, Zaehle, Zheng (bb0160) 2018; 10
Xiao, Davis, Urban, Keller, Saliendra (bb0320) 2011; 116
Zeng, Matsunaga, Tan, Saigusa, Shirai, Tang, Peng, Fukuda (bb0365) 2020; 7
Papale, Valentini (bb0225) 2003; 9
Ma, Xiao, Miao, Li, Chen, Zhang, Zhao (bb0185) 2019; 14
Yao, Gao, Huang, Liu, Wang (bb0360) 2021; 21
Yao, Liu, Huang, Gao, Wang, Li, Yu, Chen (bb0355) 2020; 11
Yang, Xiong, Du, Ju, Gan, Li, Xia, Shen, Pacenka, Steenhuis, Siddique, Kang, Butterbach-Bahl (bb0350) 2024; 15
Osborne, Saunders, Walmsley, Jones, Smith (bb0215) 2010; 139
Piao, Wang, Wang, Li, Bastos, Canadell, Ciais, Friedlingstein, Sitch (bb0235) 2020; 26
Bai, Zhang, Bhattarai, Mallick, Liu, Tang, Im, Guo, Zhang (bb0010) 2021; 298
Running, Baldocchi, Turner, Gower, Bakwin, Hibbard (bb0265) 1999; 70
Xiao, Zhuang, Law, Baldocchi, Chen, Richardson, Melillo, Davis, Hollinger, Wharton, Oren, Noormets, Fischer, Verma, Cook, Sun, McNulty, Wofsy, Bolstad, Burns, Curtis, Drake, Falk, Foster, Gu, Hadley, Katul, Litvak, Ma, Martin, Matamala, Meyers, Monson, Munger, Oechel, Paw, Schmid, Scott, Starr, Suyker, Torn (bb0325) 2011; 151
Friedlingstein, O’Sullivan, Jones, Andrew, Bakker, Hauck, Landschützer, Le Quéré, Luijkx, Peters, Peters, Pongratz, Schwingshackl, Sitch, Canadell, Ciais, Jackson, Alin, Anthoni, Barbero, Bates, Becker, Bellouin, Decharme, Bopp, Brasika, Cadule, Chamberlain, Chandra, Chau, Chevallier, Chini, Cronin, Dou, Enyo, Evans, Falk, Feely, Feng, Ford, Gasser, Ghattas, Gkritzalis, Grassi, Gregor, Gruber, Gürses, Harris, Hefner, Heinke, Houghton, Hurtt, Iida, Ilyina, Jacobson, Jain, Jarníková, Jersild, Jiang, Jin, Joos, Kato, Keeling, Kennedy, Klein Goldewijk, Knauer, Korsbakken, Körtzinger, Lan, Lefèvre, Li, Liu, Liu, Ma, Marland, Mayot, McGuire, McKinley, Meyer, Morgan, Munro, Nakaoka, Niwa, O’Brien, Olsen, Omar, Ono, Paulsen, Pierrot, Pocock, Poulter, Powis, Rehder, Resplandy, Robertson, Rödenbeck, Rosan, Schwinger, Séférian, Smallman, Smith, Sospedra-Alfonso, Sun, Sutton, Sweeney, Takao, Tans, Tian, Tilbrook, Tsujino, Tubiello, van der Werf, van Ooijen, Wanninkhof, Watanabe, Wimart-Rousseau, Yang, Yang, Yuan, Yue, Zaehle, Zeng, Zheng (bb0090) 2023; 15
Blaschke, Hay, Kelly, Lang, Hofmann, Addink, Feitosa, van der Meer, van der Werff, van Coillie, Tiede (bb0035) 2014; 87
Guanter, Zhang, Jung, Joiner, Voigt, Berry, Frankenberg, Huete, Zarco-Tejada, Lee, Moran, Ponce-Campos, Beer, Camps-Valls, Buchmann, Gianelle, Klumpp, Cescatti, Baker, Griffis (bb0110) 2014; 111
Ran, Li, Sun, Kljun, Zhang, Wang, Zhu (bb0245) 2016; 230–231
Liu, Zhou, Guan, Peng, Xu, Tang, Zhu, Till, Jia, Jiang, Wang, Qin, Kong, Grant, Mezbahuddin, Kumar, Jin (bb0175) 2024; 15
Xiao, Chevallier, Gomez, Guanter, Hicke, Huete, Ichii, Ni, Pang, Rahman, Sun, Yuan, Zhang, Zhang (bb0330) 2019; 233
Ueyama, Ichii, Iwata, Euskirchen, Zona, Rocha, Harazono, Iwama, Nakai, Oechel (bb0295) 2013; 118
Jung, Reichstein, Schwalm, Huntingford, Sitch, Ahlstrom, Arneth, Camps-Valls, Ciais, Friedlingstein, Gans, Ichii, Jain, Kato, Papale, Poulter, Raduly, Rodenbeck, Tramontana, Viovy, Wang, Weber, Zaehle, Zeng (bb0145) 2017; 541
Reitz, Graf, Schmidt, Ketzler, Leuchner (bb0250) 2021; 126
Ballantyne, Alden, Miller, Tans, White (bb0020) 2012; 488
Rising, Devineni (bb0260) 2020; 11
Treat, Marushchak, Voigt, Zhang, Tan, Zhuang, Virtanen, Rasanen, Biasi, Hugelius, Kaverin, Miller, Stendel, Romanovsky, Rivkin, Martikainen, Shurpali (bb0285) 2018; 24
Yamaç, Todorovic (bb0335) 2020
Kraft (bb0155) 1988
Deng, Wang, Lu, Du, Ciais, Lin (bb0065) 2023; 328
Missik, Liu, Gao, Huang, Chen, Arntzen, Mcfarland, Ren, Titzler, Thomle, Goldman (bb0200) 2019; 124
Wang, Liu, Zheng, Pihlatie, Li, Haapanala, Vesala, Liu, Wang, Liu, Hu (bb0305) 2013; 10
Chu, Luo, Ouyang, Chan, Dengel, Biraud, Torn, Metzger, Kumar, Arain, Arkebauer, Baldocchi, Bernacchi, Billesbach, Black, Blanken, Bohrer, Bracho, Brown, Brunsell, Chen, Chen, Clark, Desai, Duman, Durden, Fares, Forbrich, Gamon, Gough, Griffis, Helbig, Hollinger, Humphreys, Ikawa, Iwata, Ju, Knowles, Knox, Kobayashi, Kolb, Law, Lee, Litvak, Liu, Munger, Noormets, Novick, Oberbauer, Oechel, Oikawa, Papuga, Pendall, Prajapati, Prueger, Quinton, Richardson, Russell, Scott, Starr, Staebler, Stoy, Stuart-Haentjens, Sonnentag, Sullivan, Suyker, Ueyama, Vargas, Wood, Zona (bb0055) 2021; 301
Hossain, Chen (bb0120) 2019; 150
Tramontana, Jung, Schwalm, Ichii, Camps-Valls, Raduly, Reichstein, Arain, Cescatti, Kiely, Merbold, Serrano-Ortiz, Sickert, Wolf, Papale (bb0280) 2016; 13
Wang, Zhuang, Wang, Liu, Xu (bb0310) 2015; 12
Lu, Zhuang (bb0180) 2010; 114
Yang, White, Michaelis, Ichii, Hashimoto, Votava, Zhu, Nemani (bb0345) 2006; 44
Fan, Ma, Wu, Zhang, Yu, Zeng (bb0075) 2019; 225
Murphy, Richards, Krol, Gebremichael, Lopez-Sangil, Rambaud, Cowan, Lanigan, Saunders (bb0205) 2022; 313
Fang, Chen, Peng, Zhao, Ci (bb0080) 2001; 292
Belgiu, Csillik (bb0025) 2018; 204
Matton, Canto, Waldner, Valero, Morin, Inglada, Arias, Bontemps, Koetz, Defourny (bb0190) 2015; 7
Baldocchi, Falge, Gu, Olson, Hollinger, Running, Anthoni, Bernhofer, Davis, Evans, Fuentes, Goldstein, Katul, Law, Lee, Malhi, Meyers, Munger, Oechel, Ktp, Pilegaard, Schmid, Valentini, Verma, Vesala, Wilson, Wofsy (bb0015) 2001; 82
Dronova (bb0070) 2015; 7
Yan, Tian, Li, Chen, Li, Fan (bb0340) 2016; 52
Gong, Zhao, Zeng, Li (bb0105) 2023; 148
Gao, Yao, Yu, Ma, Li, Gao (bb0095) 2023; 15
Shangguan, Xiong, Nourani, Li, Lu, Li, Huang, Zhang, Sun, Dai (bb0275) 2023; 14
Chen, van der Werf, Dolman, Groenendijk (bb0040) 2011; 38
Zhang, Brodylo, Rahman, Rahman, Douglas, Comas (bb0375) 2022; 831
Veroustraete, Patyn, Myneni (bb0300) 1996; 58
Arnone, Verburg, Johnson, Larsen, Jasoni, Lucchesi, Batts, von Nagy, Coulombe, Schorran, Buck, Braswell, Coleman, Sherry, Wallace, Luo, Schimel (bb0005) 2008; 455
Pastorello, Trotta, Canfora, Chu, Christianson, Cheah, Poindexter, Chen, Elbashandy, Humphrey, Isaac, Polidori, Reichstein, Ribeca, van Ingen, Vuichard, Zhang, Amiro, Ammann, Arain, Ardo, Arkebauer, Arndt, Arriga, Aubinet, Aurela, Baldocchi, Barr, Beamesderfer, Marchesini, Bergeron, Beringer, Bernhofer, Berveiller, Billesbach, Black, Blanken, Bohrer, Boike, Bolstad, Bonal, Bonnefond, Bowling, Bracho, Brodeur, Brummer, Buchmann, Burban, Burns, Buysse, Cale, Cavagna, Cellier, Chen, Chini, Christensen, Cleverly, Collalti, Consalvo, Cook, Cook, Coursolle, Cremonese, Curtis, D’Andrea, da Rocha, Dai, Davis, Cinti, Grandcourt, Ligne, Oliveira, Delpierre, Desai, Bella, Tommasi, Dolman, Domingo, Dong, Dore, Duce, Dufrene, Dunn, Dusek, Eamus, Eichelmann, ElKhidir, Eugster, Ewenz, Ewers, Famulari, Fares, Feigenwinter, Feitz, Fensholt, Filippa, Fischer, Frank, Galvagno, Gharun, Gianelle, Gielen, Gioli, Gitelson, Goded, Goeckede, Goldstein, Gough, Goulden, Graf, Griebel, Gruening, Grunwald, Hammerle, Han, Han, Hansen, Hanson, Hatakka, He, Hehn, Heinesch, Hinko-Najera, Hortnagl, Hutley, Ibrom, Ikawa, Jackowicz-Korczynski, Janous, Jans, Jassal, Jiang, Kato, Khomik, Klatt, Knohl, Knox, Kobayashi, Koerber, Kolle, Kosugi, Kotani, Kowalski, Kruijt, Kurbatova, Kutsch, Kwon, Launiainen, Laurila, Law, Leuning, Li, Liddell, Limousin, Lion, Liska, Lohila, Lopez-Ballesteros, Lopez-Blanco, Loubet, Loustau, Lucas-Moffat, Luers, Ma, Macfarlane, Magliulo, Maier, Mammarella, Manca, Marcolla, Margolis, Marras, Massman, Mastepanov, Matamala, Matthes, Mazzenga, McCaughey, McHugh, McMillan, Merbold, Meyer, Meyers, Miller, Minerbi, Moderow, Monson, Montagnani, Moore, Moors, Moreaux, Moureaux, Munger, Nakai, Neirynck, Nesic, Nicolini, Noormets, Northwood, Nosetto, Nouvellon, Novick, Oechel, Olesen, Ourcival, Papuga, Parmentier, Paul-Limoges, Pavelka, Peichl, Pendall, Phillips, Pilegaard, Pirk, Posse, Powell, Prasse, Prober, Rambal, Rannik, Raz-Yaseef, Rebmann, Reed, Dios, Restrepo-Coupe, Reverter, Roland, Sabbatini, Sachs, Saleska, Sanchez-Canete, Sanchez-Mejia, Schmid, Schmidt, Schneider, Schrader, Schroder, Scott, Sedlak, Serrano-Ortiz, Shao, Shi, Shironya, Siebicke, Sigut, Silberstein, Sirca, Spano, Steinbrecher, Stevens, Sturtevant, Suyker, Tagesson, Takanashi, Tang, Tapper, Thom, Tomassucci, Tuovinen, Urbanski, Valentini, van der Molen, van Gorsel, van Huissteden, Varlagin, Verfaillie, Vesala, Vincke, Vitale, Vygodskaya, Walker, Walter-Shea, Wang, Weber, Westermann, Wille, Wofsy, Wohlfahrt, Wolf, Woodgate, Li, Zampedri, Zhang, Zhou, Zona, Agarwal, Biraud, Torn, Papale (bb0230) 2020; 7
Pique, Fieuzal, Al Bitar, Veloso, Tallec, Brut, Ferlicoq, Zawilski, Dejoux, Gibrin, Ceschia (bb0240) 2020; 376
Goeckede, Foken, Aubinet, Aurela, Banza, Bernhofer, Bonnefond, Brunet, Carrara, Clement, Dellwik, Elbers, Eugster, Fuhrer, Granier, Gruenwald, Heinesch, Janssens, Knohl, Koeble, Laurila, Longdoz, Manca, Marek, Markkanen, Mateus, Matteucci, Mauder, Migliavacca, Minerbi, Moncrieff, Montagnani, Moors, Ourcival, Papale, Pereira, Pilegaard, Pita, Rambal, Rebma
Arnone (10.1016/j.scitotenv.2024.173887_bb0005) 2008; 455
Blaschke (10.1016/j.scitotenv.2024.173887_bb0035) 2014; 87
Rising (10.1016/j.scitotenv.2024.173887_bb0260) 2020; 11
Le Quéré (10.1016/j.scitotenv.2024.173887_bb0160) 2018; 10
Schmid (10.1016/j.scitotenv.2024.173887_bb0270) 1994; 67
Zhang (10.1016/j.scitotenv.2024.173887_bb0375) 2022; 831
Yang (10.1016/j.scitotenv.2024.173887_bb0345) 2006; 44
Yan (10.1016/j.scitotenv.2024.173887_bb0340) 2016; 52
Baldocchi (10.1016/j.scitotenv.2024.173887_bb0015) 2001; 82
Fan (10.1016/j.scitotenv.2024.173887_bb0075) 2019; 225
Veroustraete (10.1016/j.scitotenv.2024.173887_bb0300) 1996; 58
Goeckede (10.1016/j.scitotenv.2024.173887_bb0100) 2008; 5
Zhang (10.1016/j.scitotenv.2024.173887_bb0370) 2021; 262
Ouyang (10.1016/j.scitotenv.2024.173887_bb0220) 2023; 284
Chu (10.1016/j.scitotenv.2024.173887_bb0055) 2021; 301
Guo (10.1016/j.scitotenv.2024.173887_bb0115) 2010; 259
Li (10.1016/j.scitotenv.2024.173887_bb0165) 2015; 7
Kraft (10.1016/j.scitotenv.2024.173887_bb0155) 1988
Bergen (10.1016/j.scitotenv.2024.173887_bb0030) 2019; 363
Yamaç (10.1016/j.scitotenv.2024.173887_bb0335) 2020
Yang (10.1016/j.scitotenv.2024.173887_bb0350) 2024; 15
Liu (10.1016/j.scitotenv.2024.173887_bb0175) 2024; 15
Missik (10.1016/j.scitotenv.2024.173887_bb0200) 2019; 124
Xiao (10.1016/j.scitotenv.2024.173887_bb0315) 2008; 148
Zeng (10.1016/j.scitotenv.2024.173887_bb0365) 2020; 7
Treves (10.1016/j.scitotenv.2024.173887_bb0290) 2022; 8
Shangguan (10.1016/j.scitotenv.2024.173887_bb0275) 2023; 14
Tramontana (10.1016/j.scitotenv.2024.173887_bb0280) 2016; 13
Irvin (10.1016/j.scitotenv.2024.173887_bb0135) 2021; 308
Meng (10.1016/j.scitotenv.2024.173887_bb0195) 2017
Hossain (10.1016/j.scitotenv.2024.173887_bb0120) 2019; 150
Ran (10.1016/j.scitotenv.2024.173887_bb0245) 2016; 230–231
Xiao (10.1016/j.scitotenv.2024.173887_bb0325) 2011; 151
Xiao (10.1016/j.scitotenv.2024.173887_bb0330) 2019; 233
Novick (10.1016/j.scitotenv.2024.173887_bb0210) 2016; 6
Running (10.1016/j.scitotenv.2024.173887_bb0265) 1999; 70
Lian (10.1016/j.scitotenv.2024.173887_bb0170) 2023; 116
Treat (10.1016/j.scitotenv.2024.173887_bb0285) 2018; 24
Jung (10.1016/j.scitotenv.2024.173887_bb0140) 2009; 6
Gao (10.1016/j.scitotenv.2024.173887_bb0095) 2023; 15
Wang (10.1016/j.scitotenv.2024.173887_bb0305) 2013; 10
Ballantyne (10.1016/j.scitotenv.2024.173887_bb0020) 2012; 488
Friedlingstein (10.1016/j.scitotenv.2024.173887_bb0090) 2023; 15
Ueyama (10.1016/j.scitotenv.2024.173887_bb0295) 2013; 118
Wang (10.1016/j.scitotenv.2024.173887_bb0310) 2015; 12
Gong (10.1016/j.scitotenv.2024.173887_bb0105) 2023; 148
Matton (10.1016/j.scitotenv.2024.173887_bb0190) 2015; 7
Fang (10.1016/j.scitotenv.2024.173887_bb0080) 2001; 292
Lundberg (10.1016/j.scitotenv.2024.173887_bb1000) 2017
Humphrey (10.1016/j.scitotenv.2024.173887_bb0130) 2021; 592
Richardson (10.1016/j.scitotenv.2024.173887_bb0255) 2006; 136
Pique (10.1016/j.scitotenv.2024.173887_bb0240) 2020; 376
Ma (10.1016/j.scitotenv.2024.173887_bb0185) 2019; 14
Lu (10.1016/j.scitotenv.2024.173887_bb0180) 2010; 114
Bai (10.1016/j.scitotenv.2024.173887_bb0010) 2021; 298
Cho (10.1016/j.scitotenv.2024.173887_bb0050) 2021; 311
Keenan (10.1016/j.scitotenv.2024.173887_bb0150) 2012; 18
Reitz (10.1016/j.scitotenv.2024.173887_bb0250) 2021; 126
Chen (10.1016/j.scitotenv.2024.173887_bb0045) 2012; 124
Deng (10.1016/j.scitotenv.2024.173887_bb0065) 2023; 328
Jung (10.1016/j.scitotenv.2024.173887_bb0145) 2017; 541
Huang (10.1016/j.scitotenv.2024.173887_bb0125) 2016; 6
Foley (10.1016/j.scitotenv.2024.173887_bb0085) 2011; 478
Murphy (10.1016/j.scitotenv.2024.173887_bb0205) 2022; 313
Belgiu (10.1016/j.scitotenv.2024.173887_bb0025) 2018; 204
Pastorello (10.1016/j.scitotenv.2024.173887_bb0230) 2020; 7
Dronova (10.1016/j.scitotenv.2024.173887_bb0070) 2015; 7
Xiao (10.1016/j.scitotenv.2024.173887_bb0320) 2011; 116
Dalmagro (10.1016/j.scitotenv.2024.173887_bb0060) 2018; 139
Chen (10.1016/j.scitotenv.2024.173887_bb0040) 2011; 38
Osborne (10.1016/j.scitotenv.2024.173887_bb0215) 2010; 139
Yao (10.1016/j.scitotenv.2024.173887_bb0360) 2021; 21
Yao (10.1016/j.scitotenv.2024.173887_bb0355) 2020; 11
Papale (10.1016/j.scitotenv.2024.173887_bb0225) 2003; 9
Piao (10.1016/j.scitotenv.2024.173887_bb0235) 2020; 26
Guanter (10.1016/j.scitotenv.2024.173887_bb0110) 2014; 111
References_xml – volume: 7
  start-page: 225
  year: 2020
  ident: bb0230
  article-title: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
  publication-title: Sci Data
– volume: 6
  start-page: 166
  year: 2016
  end-page: 171
  ident: bb0125
  article-title: Accelerated dryland expansion under climate change
  publication-title: Nat. Clim. Chang.
– volume: 376
  year: 2020
  ident: bb0240
  article-title: Estimation of daily CO
  publication-title: Geoderma
– volume: 12
  start-page: 259
  year: 2015
  end-page: 263
  ident: bb0310
  article-title: Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 292
  start-page: 2320
  year: 2001
  end-page: 2322
  ident: bb0080
  article-title: Changes in forest biomass carbon storage in China between 1949 and 1998
  publication-title: Science
– volume: 139
  start-page: 1
  year: 2018
  end-page: 18
  ident: bb0060
  article-title: Carbon biogeochemistry of a flooded Pantanal forest over three annual flood cycles
  publication-title: Biogeochemistry
– volume: 148
  year: 2023
  ident: bb0105
  article-title: An experimental study on local and global optima of linear antenna array synthesis by using the sequential least squares programming
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 1971
  year: 2012
  end-page: 1987
  ident: bb0150
  article-title: Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO
  publication-title: Glob. Chang. Biol.
– volume: 13
  start-page: 4291
  year: 2016
  end-page: 4313
  ident: bb0280
  article-title: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms
  publication-title: Biogeosciences
– volume: 308
  year: 2021
  ident: bb0135
  article-title: Gap-filling eddy covariance methane fluxes: comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
  publication-title: Agric. For. Meteorol.
– volume: 9
  start-page: 525
  year: 2003
  end-page: 535
  ident: bb0225
  article-title: A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization
  publication-title: Glob. Chang. Biol.
– volume: 70
  start-page: 108
  year: 1999
  end-page: 127
  ident: bb0265
  article-title: A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data
  publication-title: Remote Sens. Environ.
– volume: 14
  year: 2023
  ident: bb0275
  article-title: A 1 km global carbon flux dataset using in situ measurements and deep learning
  publication-title: For. Trees Livelihoods
– volume: 204
  start-page: 509
  year: 2018
  end-page: 523
  ident: bb0025
  article-title: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis
  publication-title: Remote Sens. Environ.
– volume: 225
  year: 2019
  ident: bb0075
  article-title: Light gradient boosting machine: an efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data
  publication-title: Agric. Water Manag.
– volume: 139
  start-page: 293
  year: 2010
  end-page: 301
  ident: bb0215
  article-title: Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance
  publication-title: Agric. Ecosyst. Environ.
– volume: 136
  start-page: 1
  year: 2006
  end-page: 18
  ident: bb0255
  article-title: A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes
  publication-title: Agric. For. Meteorol.
– volume: 10
  start-page: 2141
  year: 2018
  end-page: 2194
  ident: bb0160
  article-title: Global carbon budget 2018
  publication-title: Earth Syst. Sci. Data
– volume: 126
  year: 2021
  ident: bb0250
  article-title: Upscaling net ecosystem exchange over heterogeneous landscapes with machine learning
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 24
  start-page: 5188
  year: 2018
  end-page: 5204
  ident: bb0285
  article-title: Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic
  publication-title: Glob. Chang. Biol.
– volume: 124
  start-page: 99
  year: 2019
  end-page: 114
  ident: bb0200
  article-title: Groundwater-River water exchange enhances growing season evapotranspiration and carbon uptake in a semiarid riparian ecosystem
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 233
  year: 2019
  ident: bb0330
  article-title: Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years
  publication-title: Remote Sens. Environ.
– volume: 124
  start-page: 742
  year: 2012
  end-page: 755
  ident: bb0045
  article-title: Characterizing spatial representativeness of flux tower eddy-covariance measurements across the Canadian carbon program network using remote sensing and footprint analysis
  publication-title: Remote Sens. Environ.
– volume: 15
  year: 2024
  ident: bb0175
  article-title: Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems
  publication-title: Nat. Commun.
– volume: 58
  start-page: 115
  year: 1996
  end-page: 130
  ident: bb0300
  article-title: Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model
  publication-title: Remote Sens. Environ.
– volume: 488
  year: 2012
  ident: bb0020
  article-title: Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years
  publication-title: Nature
– volume: 11
  year: 2020
  ident: bb0260
  article-title: Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5
  publication-title: Nat. Commun.
– volume: 7
  start-page: 313
  year: 2020
  ident: bb0365
  article-title: Global terrestrial carbon fluxes of 1999-2019 estimated by upscaling eddy covariance data with a random forest
  publication-title: Sci Data
– volume: 67
  start-page: 293
  year: 1994
  end-page: 318
  ident: bb0270
  article-title: Source areas for scalars and scalar fluxes
  publication-title: Bound.-Layer Meteorol.
– volume: 313
  year: 2022
  ident: bb0205
  article-title: Assessing nitrous oxide emissions in time and space with minimal uncertainty using static chambers and eddy covariance from a temperate grassland
  publication-title: Agric. For. Meteorol.
– volume: 118
  start-page: 1266
  year: 2013
  end-page: 1281
  ident: bb0295
  article-title: Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 7
  start-page: 13208
  year: 2015
  end-page: 13232
  ident: bb0190
  article-title: An automated method for annual cropland mapping along the season for various globally-distributed agrosystems using high spatial and temporal resolution time series
  publication-title: Remote Sens.
– volume: 148
  start-page: 1827
  year: 2008
  end-page: 1847
  ident: bb0315
  article-title: Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data
  publication-title: Agric. For. Meteorol.
– volume: 14
  year: 2019
  ident: bb0185
  article-title: Trends and controls of terrestrial gross primary productivity of China during 2000-2016
  publication-title: Environ. Res. Lett.
– volume: 541
  start-page: 516
  year: 2017
  end-page: 520
  ident: bb0145
  article-title: Compensatory water effects link yearly global land CO(2) sink changes to temperature
  publication-title: Nature
– volume: 116
  year: 2011
  ident: bb0320
  article-title: Upscaling carbon fluxes from towers to the regional scale: influence of parameter variability and land cover representation on regional flux estimates
  publication-title: J. Geophys. Res.
– volume: 21
  start-page: 15589
  year: 2021
  end-page: 15603
  ident: bb0360
  article-title: Technical note: Uncertainties in eddy covariance \chemCO_2 fluxes in a semiarid sagebrush ecosystem caused by gap-filling approaches
  publication-title: Atmos. Chem. Phys.
– volume: 44
  start-page: 3452
  year: 2006
  end-page: 3461
  ident: bb0345
  article-title: Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 116
  year: 2023
  ident: bb0170
  article-title: Mapping the net ecosystem exchange of CO2 of global terrestrial systems
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 230–231
  start-page: 114
  year: 2016
  end-page: 127
  ident: bb0245
  article-title: Spatial representativeness and uncertainty of eddy covariance carbon flux measurements for upscaling net ecosystem productivity to the grid scale
  publication-title: Agric. For. Meteorol.
– volume: 363
  year: 2019
  ident: bb0030
  article-title: Machine learning for data-driven discovery in solid earth geoscience
  publication-title: Science
– volume: 5
  start-page: 433
  year: 2008
  end-page: 450
  ident: bb0100
  article-title: Quality control of CarboEurope flux data - part 1: coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems
  publication-title: Biogeosciences
– volume: 10
  start-page: 6865
  year: 2013
  end-page: 6877
  ident: bb0305
  article-title: Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields
  publication-title: Biogeosciences
– volume: 6
  start-page: 2001
  year: 2009
  end-page: 2013
  ident: bb0140
  article-title: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model
  publication-title: Biogeosciences
– volume: 262
  year: 2021
  ident: bb0370
  article-title: Mapping CO2 fluxes of cypress swamp and marshes in the Greater Everglades using eddy covariance measurements and Landsat data
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 5301
  year: 2023
  end-page: 5369
  ident: bb0090
  article-title: Global carbon budget 2023
  publication-title: Earth System Sci. Data
– volume: 284
  year: 2023
  ident: bb0220
  article-title: Paddy rice methane emissions across monsoon Asia
  publication-title: Remote Sens. Environ.
– volume: 298
  year: 2021
  ident: bb0010
  article-title: On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient
  publication-title: Agric. For. Meteorol.
– volume: 301
  year: 2021
  ident: bb0055
  article-title: Representativeness of Eddy-covariance flux footprints for areas surrounding AmeriFlux sites
  publication-title: Agric. For. Meteorol.
– volume: 8
  start-page: 78
  year: 2022
  ident: bb0290
  article-title: Carbon flux through photosynthesis and central carbon metabolism show distinct patterns between algae, C
  publication-title: Nature Plants
– year: 2020
  ident: bb0335
  article-title: Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data
  publication-title: Agric. Water Manag.
– volume: 11
  year: 2020
  ident: bb0355
  article-title: Accelerated dryland expansion regulates future variability in dryland gross primary production
  publication-title: Nat. Commun.
– volume: 150
  start-page: 115
  year: 2019
  end-page: 134
  ident: bb0120
  article-title: Segmentation for object-based image analysis (OBIA): a review of algorithms and challenges from remote sensing perspective
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 87
  start-page: 180
  year: 2014
  end-page: 191
  ident: bb0035
  article-title: Geographic object-based image analysis-towards a new paradigm
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 259
  start-page: 1225
  year: 2010
  end-page: 1231
  ident: bb0115
  article-title: Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods
  publication-title: For. Ecol. Manag.
– volume: 478
  start-page: 337
  year: 2011
  end-page: 342
  ident: bb0085
  article-title: Solutions for a cultivated planet
  publication-title: Nature
– volume: 15
  year: 2023
  ident: bb0095
  article-title: Eddy covariance CO
  publication-title: Remote Sens.
– year: 1988
  ident: bb0155
  article-title: A Software Package for Sequential Quadratic Programming
– volume: 455
  start-page: 383
  year: 2008
  end-page: 386
  ident: bb0005
  article-title: Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year
  publication-title: Nature
– volume: 7
  start-page: 6380
  year: 2015
  end-page: 6413
  ident: bb0070
  article-title: Object-based image analysis in wetland research: a review
  publication-title: Remote Sens.
– volume: 328
  year: 2023
  ident: bb0065
  article-title: Divergent seasonal responses of carbon fluxes to extreme droughts over China
  publication-title: Agric. For. Meteorol.
– volume: 7
  start-page: 16091
  year: 2015
  end-page: 16107
  ident: bb0165
  article-title: Object-based crop classification with Landsat-MODIS enhanced time-series data
  publication-title: Remote Sens.
– volume: 26
  start-page: 300
  year: 2020
  end-page: 318
  ident: bb0235
  article-title: Interannual variation of terrestrial carbon cycle: issues and perspectives
  publication-title: Glob. Chang. Biol.
– volume: 311
  year: 2021
  ident: bb0050
  article-title: Evaluation of forest carbon uptake in South Korea using the national flux tower network, remote sensing, and data-driven technology
  publication-title: Agric. For. Meteorol.
– volume: 82
  start-page: 2415
  year: 2001
  end-page: 2434
  ident: bb0015
  article-title: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities
  publication-title: Bull. Am. Meteorol. Soc.
– year: 2017
  ident: bb1000
  article-title: A Unified Approach to Interpreting Model Predictions
– year: 2017
  ident: bb0195
  article-title: LightGBM: A Highly Efficient Gradient Boosting Decision Tree
– volume: 831
  year: 2022
  ident: bb0375
  article-title: Using an object-based machine learning ensemble approach to upscale evapotranspiration measured from eddy covariance towers in a subtropical wetland
  publication-title: Sci. Total Environ.
– volume: 114
  start-page: 1924
  year: 2010
  end-page: 1939
  ident: bb0180
  article-title: Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 1023
  year: 2016
  end-page: 1027
  ident: bb0210
  article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes
  publication-title: Nat. Clim. Chang.
– volume: 38
  year: 2011
  ident: bb0040
  article-title: Evaluation of cropland maximum light use efficiency using eddy flux measurements in North America and Europe
  publication-title: Geophys. Res. Lett.
– volume: 111
  start-page: E1327
  year: 2014
  end-page: E1333
  ident: bb0110
  article-title: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 52
  start-page: 515
  year: 2016
  end-page: 526
  ident: bb0340
  article-title: A long-term simulation of forest carbon fluxes over the Qilian Mountains
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 15
  year: 2024
  ident: bb0350
  article-title: Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health
  publication-title: Nat. Commun.
– volume: 592
  start-page: 65
  year: 2021
  end-page: 69
  ident: bb0130
  article-title: Soil moisture-atmosphere feedback dominates land carbon uptake variability
  publication-title: Nature
– volume: 151
  start-page: 60
  year: 2011
  end-page: 69
  ident: bb0325
  article-title: Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations
  publication-title: Agric. For. Meteorol.
– volume: 148
  year: 2023
  ident: 10.1016/j.scitotenv.2024.173887_bb0105
  article-title: An experimental study on local and global optima of linear antenna array synthesis by using the sequential least squares programming
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110859
– volume: 6
  start-page: 166
  year: 2016
  ident: 10.1016/j.scitotenv.2024.173887_bb0125
  article-title: Accelerated dryland expansion under climate change
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2837
– volume: 10
  start-page: 2141
  year: 2018
  ident: 10.1016/j.scitotenv.2024.173887_bb0160
  article-title: Global carbon budget 2018
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-10-2141-2018
– volume: 124
  start-page: 99
  year: 2019
  ident: 10.1016/j.scitotenv.2024.173887_bb0200
  article-title: Groundwater-River water exchange enhances growing season evapotranspiration and carbon uptake in a semiarid riparian ecosystem
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2018JG004666
– volume: 262
  year: 2021
  ident: 10.1016/j.scitotenv.2024.173887_bb0370
  article-title: Mapping CO2 fluxes of cypress swamp and marshes in the Greater Everglades using eddy covariance measurements and Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112523
– volume: 313
  year: 2022
  ident: 10.1016/j.scitotenv.2024.173887_bb0205
  article-title: Assessing nitrous oxide emissions in time and space with minimal uncertainty using static chambers and eddy covariance from a temperate grassland
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2021.108743
– volume: 8
  start-page: 78
  year: 2022
  ident: 10.1016/j.scitotenv.2024.173887_bb0290
  article-title: Carbon flux through photosynthesis and central carbon metabolism show distinct patterns between algae, C3 and C4 plants
  publication-title: Nature Plants
  doi: 10.1038/s41477-021-01042-5
– volume: 15
  year: 2023
  ident: 10.1016/j.scitotenv.2024.173887_bb0095
  article-title: Eddy covariance CO2 flux gap filling for long data gaps: a novel framework based on machine learning and time series decomposition
  publication-title: Remote Sens.
– volume: 139
  start-page: 293
  year: 2010
  ident: 10.1016/j.scitotenv.2024.173887_bb0215
  article-title: Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.05.009
– year: 1988
  ident: 10.1016/j.scitotenv.2024.173887_bb0155
– volume: 7
  start-page: 16091
  year: 2015
  ident: 10.1016/j.scitotenv.2024.173887_bb0165
  article-title: Object-based crop classification with Landsat-MODIS enhanced time-series data
  publication-title: Remote Sens.
  doi: 10.3390/rs71215820
– volume: 114
  start-page: 1924
  year: 2010
  ident: 10.1016/j.scitotenv.2024.173887_bb0180
  article-title: Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.04.001
– volume: 82
  start-page: 2415
  year: 2001
  ident: 10.1016/j.scitotenv.2024.173887_bb0015
  article-title: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
– volume: 592
  start-page: 65
  year: 2021
  ident: 10.1016/j.scitotenv.2024.173887_bb0130
  article-title: Soil moisture-atmosphere feedback dominates land carbon uptake variability
  publication-title: Nature
  doi: 10.1038/s41586-021-03325-5
– volume: 38
  year: 2011
  ident: 10.1016/j.scitotenv.2024.173887_bb0040
  article-title: Evaluation of cropland maximum light use efficiency using eddy flux measurements in North America and Europe
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL047533
– year: 2020
  ident: 10.1016/j.scitotenv.2024.173887_bb0335
  article-title: Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.105875
– volume: 139
  start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2024.173887_bb0060
  article-title: Carbon biogeochemistry of a flooded Pantanal forest over three annual flood cycles
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-018-0450-1
– volume: 136
  start-page: 1
  year: 2006
  ident: 10.1016/j.scitotenv.2024.173887_bb0255
  article-title: A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.01.007
– volume: 118
  start-page: 1266
  year: 2013
  ident: 10.1016/j.scitotenv.2024.173887_bb0295
  article-title: Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1002/jgrg.20095
– volume: 204
  start-page: 509
  year: 2018
  ident: 10.1016/j.scitotenv.2024.173887_bb0025
  article-title: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.005
– volume: 478
  start-page: 337
  year: 2011
  ident: 10.1016/j.scitotenv.2024.173887_bb0085
  article-title: Solutions for a cultivated planet
  publication-title: Nature
  doi: 10.1038/nature10452
– volume: 116
  year: 2023
  ident: 10.1016/j.scitotenv.2024.173887_bb0170
  article-title: Mapping the net ecosystem exchange of CO2 of global terrestrial systems
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 831
  year: 2022
  ident: 10.1016/j.scitotenv.2024.173887_bb0375
  article-title: Using an object-based machine learning ensemble approach to upscale evapotranspiration measured from eddy covariance towers in a subtropical wetland
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.154969
– volume: 11
  year: 2020
  ident: 10.1016/j.scitotenv.2024.173887_bb0260
  article-title: Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18725-w
– volume: 308
  year: 2021
  ident: 10.1016/j.scitotenv.2024.173887_bb0135
  article-title: Gap-filling eddy covariance methane fluxes: comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
  publication-title: Agric. For. Meteorol.
– volume: 7
  start-page: 6380
  year: 2015
  ident: 10.1016/j.scitotenv.2024.173887_bb0070
  article-title: Object-based image analysis in wetland research: a review
  publication-title: Remote Sens.
  doi: 10.3390/rs70506380
– volume: 87
  start-page: 180
  year: 2014
  ident: 10.1016/j.scitotenv.2024.173887_bb0035
  article-title: Geographic object-based image analysis-towards a new paradigm
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.09.014
– volume: 18
  start-page: 1971
  year: 2012
  ident: 10.1016/j.scitotenv.2024.173887_bb0150
  article-title: Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2012.02678.x
– volume: 126
  year: 2021
  ident: 10.1016/j.scitotenv.2024.173887_bb0250
  article-title: Upscaling net ecosystem exchange over heterogeneous landscapes with machine learning
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2020JG005814
– volume: 363
  year: 2019
  ident: 10.1016/j.scitotenv.2024.173887_bb0030
  article-title: Machine learning for data-driven discovery in solid earth geoscience
  publication-title: Science
  doi: 10.1126/science.aau0323
– volume: 116
  year: 2011
  ident: 10.1016/j.scitotenv.2024.173887_bb0320
  article-title: Upscaling carbon fluxes from towers to the regional scale: influence of parameter variability and land cover representation on regional flux estimates
  publication-title: J. Geophys. Res.
– volume: 124
  start-page: 742
  year: 2012
  ident: 10.1016/j.scitotenv.2024.173887_bb0045
  article-title: Characterizing spatial representativeness of flux tower eddy-covariance measurements across the Canadian carbon program network using remote sensing and footprint analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.06.007
– volume: 376
  year: 2020
  ident: 10.1016/j.scitotenv.2024.173887_bb0240
  article-title: Estimation of daily CO2 fluxes and of the components of the carbon budget for winter wheat by the assimilation of sentinel 2-like remote sensing data into a crop model
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114428
– volume: 7
  start-page: 225
  year: 2020
  ident: 10.1016/j.scitotenv.2024.173887_bb0230
  article-title: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
  publication-title: Sci Data
  doi: 10.1038/s41597-020-0534-3
– volume: 70
  start-page: 108
  year: 1999
  ident: 10.1016/j.scitotenv.2024.173887_bb0265
  article-title: A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(99)00061-9
– volume: 44
  start-page: 3452
  year: 2006
  ident: 10.1016/j.scitotenv.2024.173887_bb0345
  article-title: Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.876297
– volume: 328
  year: 2023
  ident: 10.1016/j.scitotenv.2024.173887_bb0065
  article-title: Divergent seasonal responses of carbon fluxes to extreme droughts over China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2022.109253
– volume: 15
  year: 2024
  ident: 10.1016/j.scitotenv.2024.173887_bb0175
  article-title: Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems
  publication-title: Nat. Commun.
– year: 2017
  ident: 10.1016/j.scitotenv.2024.173887_bb1000
– volume: 7
  start-page: 13208
  year: 2015
  ident: 10.1016/j.scitotenv.2024.173887_bb0190
  article-title: An automated method for annual cropland mapping along the season for various globally-distributed agrosystems using high spatial and temporal resolution time series
  publication-title: Remote Sens.
  doi: 10.3390/rs71013208
– volume: 111
  start-page: E1327
  year: 2014
  ident: 10.1016/j.scitotenv.2024.173887_bb0110
  article-title: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1320008111
– volume: 541
  start-page: 516
  year: 2017
  ident: 10.1016/j.scitotenv.2024.173887_bb0145
  article-title: Compensatory water effects link yearly global land CO(2) sink changes to temperature
  publication-title: Nature
  doi: 10.1038/nature20780
– volume: 284
  year: 2023
  ident: 10.1016/j.scitotenv.2024.173887_bb0220
  article-title: Paddy rice methane emissions across monsoon Asia
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113335
– volume: 225
  year: 2019
  ident: 10.1016/j.scitotenv.2024.173887_bb0075
  article-title: Light gradient boosting machine: an efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.105758
– volume: 455
  start-page: 383
  year: 2008
  ident: 10.1016/j.scitotenv.2024.173887_bb0005
  article-title: Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year
  publication-title: Nature
  doi: 10.1038/nature07296
– volume: 6
  start-page: 2001
  year: 2009
  ident: 10.1016/j.scitotenv.2024.173887_bb0140
  article-title: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model
  publication-title: Biogeosciences
  doi: 10.5194/bg-6-2001-2009
– volume: 233
  year: 2019
  ident: 10.1016/j.scitotenv.2024.173887_bb0330
  article-title: Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111383
– volume: 15
  start-page: 5301
  year: 2023
  ident: 10.1016/j.scitotenv.2024.173887_bb0090
  article-title: Global carbon budget 2023
  publication-title: Earth System Sci. Data
  doi: 10.5194/essd-15-5301-2023
– volume: 15
  year: 2024
  ident: 10.1016/j.scitotenv.2024.173887_bb0350
  article-title: Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health
  publication-title: Nat. Commun.
– volume: 488
  year: 2012
  ident: 10.1016/j.scitotenv.2024.173887_bb0020
  article-title: Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years
  publication-title: Nature
  doi: 10.1038/nature11299
– volume: 259
  start-page: 1225
  year: 2010
  ident: 10.1016/j.scitotenv.2024.173887_bb0115
  article-title: Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2009.09.047
– volume: 67
  start-page: 293
  year: 1994
  ident: 10.1016/j.scitotenv.2024.173887_bb0270
  article-title: Source areas for scalars and scalar fluxes
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/BF00713146
– volume: 10
  start-page: 6865
  year: 2013
  ident: 10.1016/j.scitotenv.2024.173887_bb0305
  article-title: Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-6865-2013
– volume: 301
  year: 2021
  ident: 10.1016/j.scitotenv.2024.173887_bb0055
  article-title: Representativeness of Eddy-covariance flux footprints for areas surrounding AmeriFlux sites
  publication-title: Agric. For. Meteorol.
– volume: 24
  start-page: 5188
  year: 2018
  ident: 10.1016/j.scitotenv.2024.173887_bb0285
  article-title: Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14421
– volume: 14
  year: 2023
  ident: 10.1016/j.scitotenv.2024.173887_bb0275
  article-title: A 1 km global carbon flux dataset using in situ measurements and deep learning
  publication-title: For. Trees Livelihoods
– volume: 151
  start-page: 60
  year: 2011
  ident: 10.1016/j.scitotenv.2024.173887_bb0325
  article-title: Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2010.09.002
– volume: 52
  start-page: 515
  year: 2016
  ident: 10.1016/j.scitotenv.2024.173887_bb0340
  article-title: A long-term simulation of forest carbon fluxes over the Qilian Mountains
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 5
  start-page: 433
  year: 2008
  ident: 10.1016/j.scitotenv.2024.173887_bb0100
  article-title: Quality control of CarboEurope flux data - part 1: coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems
  publication-title: Biogeosciences
  doi: 10.5194/bg-5-433-2008
– volume: 21
  start-page: 15589
  year: 2021
  ident: 10.1016/j.scitotenv.2024.173887_bb0360
  article-title: Technical note: Uncertainties in eddy covariance \chemCO_2 fluxes in a semiarid sagebrush ecosystem caused by gap-filling approaches
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-15589-2021
– volume: 6
  start-page: 1023
  year: 2016
  ident: 10.1016/j.scitotenv.2024.173887_bb0210
  article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate3114
– volume: 26
  start-page: 300
  year: 2020
  ident: 10.1016/j.scitotenv.2024.173887_bb0235
  article-title: Interannual variation of terrestrial carbon cycle: issues and perspectives
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14884
– volume: 230–231
  start-page: 114
  year: 2016
  ident: 10.1016/j.scitotenv.2024.173887_bb0245
  article-title: Spatial representativeness and uncertainty of eddy covariance carbon flux measurements for upscaling net ecosystem productivity to the grid scale
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.05.008
– volume: 12
  start-page: 259
  year: 2015
  ident: 10.1016/j.scitotenv.2024.173887_bb0310
  article-title: Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2334703
– volume: 7
  start-page: 313
  year: 2020
  ident: 10.1016/j.scitotenv.2024.173887_bb0365
  article-title: Global terrestrial carbon fluxes of 1999-2019 estimated by upscaling eddy covariance data with a random forest
  publication-title: Sci Data
  doi: 10.1038/s41597-020-00653-5
– volume: 148
  start-page: 1827
  year: 2008
  ident: 10.1016/j.scitotenv.2024.173887_bb0315
  article-title: Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2008.06.015
– volume: 14
  year: 2019
  ident: 10.1016/j.scitotenv.2024.173887_bb0185
  article-title: Trends and controls of terrestrial gross primary productivity of China during 2000-2016
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab31e4
– volume: 11
  year: 2020
  ident: 10.1016/j.scitotenv.2024.173887_bb0355
  article-title: Accelerated dryland expansion regulates future variability in dryland gross primary production
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15515-2
– volume: 311
  year: 2021
  ident: 10.1016/j.scitotenv.2024.173887_bb0050
  article-title: Evaluation of forest carbon uptake in South Korea using the national flux tower network, remote sensing, and data-driven technology
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2021.108653
– volume: 58
  start-page: 115
  year: 1996
  ident: 10.1016/j.scitotenv.2024.173887_bb0300
  article-title: Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00258-8
– year: 2017
  ident: 10.1016/j.scitotenv.2024.173887_bb0195
– volume: 298
  year: 2021
  ident: 10.1016/j.scitotenv.2024.173887_bb0010
  article-title: On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient
  publication-title: Agric. For. Meteorol.
– volume: 292
  start-page: 2320
  year: 2001
  ident: 10.1016/j.scitotenv.2024.173887_bb0080
  article-title: Changes in forest biomass carbon storage in China between 1949 and 1998
  publication-title: Science
  doi: 10.1126/science.1058629
– volume: 13
  start-page: 4291
  year: 2016
  ident: 10.1016/j.scitotenv.2024.173887_bb0280
  article-title: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-4291-2016
– volume: 150
  start-page: 115
  year: 2019
  ident: 10.1016/j.scitotenv.2024.173887_bb0120
  article-title: Segmentation for object-based image analysis (OBIA): a review of algorithms and challenges from remote sensing perspective
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.02.009
– volume: 9
  start-page: 525
  year: 2003
  ident: 10.1016/j.scitotenv.2024.173887_bb0225
  article-title: A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization
  publication-title: Glob. Chang. Biol.
  doi: 10.1046/j.1365-2486.2003.00609.x
SSID ssj0000781
Score 2.4733245
Snippet Accurately estimating the net ecosystem exchange of CO2 (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and...
Accurately estimating the net ecosystem exchange of CO₂ (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 173887
SubjectTerms algorithms
carbon dioxide
Carbon flux upscaling
climate
cropland
Eddy covariance
environment
image analysis
Machine learning
Net ecosystem exchange
Object-oriented image analysis
phenology
prediction
soil water
temperature
Title Upscaling net ecosystem CO2 exchanges in croplands: The application of integrating object-based image analysis and machine learning approaches
URI https://dx.doi.org/10.1016/j.scitotenv.2024.173887
https://www.proquest.com/docview/3068755546
https://www.proquest.com/docview/3153644497
Volume 944
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiQkhKAwMS6TkXirUqW52d7bNBXBHgYSm4h4iezE6VqtSbWmU_cn-Av8VY5jO8k2YCDESxRZjnP5Ph8fn5wLQm8j7ka5LyOH5TlVSbVhzlE4cNDuaS4Y8TJeF5sgx8c0jtmnXu-7jYW5PCdFQTcbtvyvUEMbgK1CZ_8C7mZQaIBzAB2OADsc_wj40-UKvruyABSyGsLuUidrHh5-9IZyowN9aydYVbyrjvS1nhedn9ndTBK1X7RQ9hpHrXnZcLZQjj7cpjNRpvdF7ZMpbRGKaZOr3LgozltSWmlinBOqUoVjduLtGo8gXmqBuAEGTxvppFuP4B5X6xtdv56VxXQx63Rea_PuF1ksbbOxcHiBcsfw3Nbsdiv0RovyACR1pJ17rShnOpfkrWVBWyjmI9Aq4K3glUbqPqMx8alZ7q_n3P6sRleDg74TuH4Yb6Ftj4SM9tH2wYdJfNQu9oTqoozmaa65EP70dr9SgG6oArV-c_IYPTIbE3ygCfUE9WQxQPd1qdKrAdqZtAhBNwPiaoAeasMv1vFsT9G3hn8Y-Icb_mHgH274h2cFbvi3j4EXuMM-XOa4wz7cZR-u2Yct--Akw4Z92LIPt-x7hk7fTU4O3zum6IeTeiyqnCziXuZK6fuMM-alLPQkHfOMQkvGiSt4SIVgEnbqYSiikPEA9sQyCgWB7j7zd1C_KAv5HGERCEq5yMepzIKQEiHGLJO5F6SBBK1V7qLIIpGkJiO-KsxynljXx3nSQJgoCBMN4S5ymwuXOinM3ZfsW6gTo9tqnTUBjt598RtLjgSkv_qlxwtZrlcJbPgpCZWn6W_6gFIDu56AkRf_8hAv0YN2cr5C_epiLV-je-llNVtd7KEtEtM9Mzt-AK2q7zM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upscaling+net+ecosystem+CO2+exchanges+in+croplands%3A+The+application+of+integrating+object-based+image+analysis+and+machine+learning+approaches&rft.jtitle=The+Science+of+the+total+environment&rft.au=Gao%2C+Dexiang&rft.au=Yao%2C+Jingyu&rft.au=Gao%2C+Zhongming&rft.au=Yuan%2C+Wenping&rft.date=2024-09-20&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.volume=944&rft_id=info:doi/10.1016%2Fj.scitotenv.2024.173887&rft.externalDocID=S004896972404035X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon