Joint Coding-Modulation for Digital Semantic Communications via Variational Autoencoder

Semantic communications have emerged as a new paradigm for improving communication efficiency by transmitting the semantic information of a source message that is most relevant to a desired task at the receiver. Most existing approaches typically utilize neural networks (NNs) to design end-to-end se...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on communications Ročník 72; číslo 9; s. 5626 - 5640
Hlavní autori: Bo, Yufei, Duan, Yiheng, Shao, Shuo, Tao, Meixia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0090-6778, 1558-0857
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Semantic communications have emerged as a new paradigm for improving communication efficiency by transmitting the semantic information of a source message that is most relevant to a desired task at the receiver. Most existing approaches typically utilize neural networks (NNs) to design end-to-end semantic communication systems, where NN-based semantic encoders output continuously distributed signals to be sent directly to the channel in an analog fashion. In this work, we propose a joint coding-modulation (JCM) framework for digital semantic communications by using variational autoencoder (VAE). Our approach learns the transition probability from source data to discrete constellation symbols, thereby avoiding the non-differentiability problem of digital modulation. Meanwhile, by jointly designing the coding and modulation process together, we can match the obtained modulation strategy with the operating channel condition. We also derive a matching loss function with information-theoretic meaning for end-to-end training. Experiments on image semantic communication validate the superiority of our proposed JCM framework over the state-of-the-art quantization-based digital semantic coding-modulation methods across a wide range of channel conditions, transmission rates, and modulation orders. Furthermore, its performance gap to analog semantic communication reduces as the modulation order increases while enjoying the hardware implementation convenience.
AbstractList Semantic communications have emerged as a new paradigm for improving communication efficiency by transmitting the semantic information of a source message that is most relevant to a desired task at the receiver. Most existing approaches typically utilize neural networks (NNs) to design end-to-end semantic communication systems, where NN-based semantic encoders output continuously distributed signals to be sent directly to the channel in an analog fashion. In this work, we propose a joint coding-modulation (JCM) framework for digital semantic communications by using variational autoencoder (VAE). Our approach learns the transition probability from source data to discrete constellation symbols, thereby avoiding the non-differentiability problem of digital modulation. Meanwhile, by jointly designing the coding and modulation process together, we can match the obtained modulation strategy with the operating channel condition. We also derive a matching loss function with information-theoretic meaning for end-to-end training. Experiments on image semantic communication validate the superiority of our proposed JCM framework over the state-of-the-art quantization-based digital semantic coding-modulation methods across a wide range of channel conditions, transmission rates, and modulation orders. Furthermore, its performance gap to analog semantic communication reduces as the modulation order increases while enjoying the hardware implementation convenience.
Author Bo, Yufei
Duan, Yiheng
Tao, Meixia
Shao, Shuo
Author_xml – sequence: 1
  givenname: Yufei
  orcidid: 0009-0001-6880-8562
  surname: Bo
  fullname: Bo, Yufei
  email: boyufei01@sjtu.edu.cn
  organization: Department of Electronic Engineering and the Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Yiheng
  surname: Duan
  fullname: Duan, Yiheng
  email: duanyiheng@sjtu.edu.cn
  organization: Department of Electronic Engineering and the Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Shuo
  orcidid: 0000-0003-2872-795X
  surname: Shao
  fullname: Shao, Shuo
  email: shuoshao@sjtu.edu.cn
  organization: School of Cyber Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Meixia
  orcidid: 0000-0002-0799-0954
  surname: Tao
  fullname: Tao, Meixia
  email: mxtao@sjtu.edu.cn
  organization: Department of Electronic Engineering and the Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, Shanghai, China
BookMark eNp9kD1PwzAQhi0EEm3hDyCGSMwp59ixk7Eq32rVgQJj5MZO5Sqxi-0g8e9xPwbEwHQ63fOc7t4hOjXWKISuMIwxhvJ2OV3M5-MMMjompGA55ydogPO8SKHI-SkaAJSQMs6LczT0fgMAFAgZoI8Xq01IplZqs07nVvatCNqapLEuudNrHUSbvKpOmKDriHVdb3S9R3zypUXyLpzet5Gb9MEqU1up3AU6a0Tr1eWxjtDbw_1y-pTOFo_P08ksrbOShVRmkiumKBNZI5qM50WjMKslZStouFqxLHYcIJdUKeAijiXhJYdSlpiJmozQzWHv1tnPXvlQbWzv4jG-IhgYLYFyFqniQNXOeu9UU9Xxsd3VwQndVhiqXYzVPsZqF2N1jDGq2R9163Qn3Pf_0vVB0kqpXwItc0KA_ACkaYG7
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_JIOT_2025_3565017
crossref_primary_10_1109_LWC_2025_3548084
crossref_primary_10_1109_JIOT_2025_3545667
crossref_primary_10_1109_JIOT_2025_3579582
crossref_primary_10_1109_JSAC_2025_3536557
crossref_primary_10_1109_LCOMM_2025_3571544
crossref_primary_10_1109_TGRS_2025_3576382
crossref_primary_10_1016_j_eng_2025_07_022
crossref_primary_10_1109_JIOT_2025_3530462
crossref_primary_10_1109_JSAC_2025_3531406
crossref_primary_10_1109_JIOT_2024_3516730
crossref_primary_10_1109_JIOT_2025_3534462
crossref_primary_10_3390_a17110492
crossref_primary_10_1016_j_comnet_2025_111531
crossref_primary_10_1109_TCCN_2024_3510586
crossref_primary_10_1109_JSAC_2025_3559138
crossref_primary_10_1109_JSAC_2025_3559149
crossref_primary_10_1109_LCOMM_2025_3587319
crossref_primary_10_1109_TCOMM_2024_3450877
crossref_primary_10_1145_3701701_3701707
crossref_primary_10_1109_TWC_2025_3543373
crossref_primary_10_3390_electronics14050956
crossref_primary_10_1364_OE_568127
crossref_primary_10_3390_electronics14061130
Cites_doi 10.1109/LWC.2021.3136045
10.48550/arXiv.1312.6114
10.1109/JSAC.2022.3221968
10.23919/JCIN.2021.9663101
10.1109/TSP.2021.3071210
10.1109/wcsp55476.2022.10039447
10.1109/JSAC.2021.3087240
10.1109/OJCOMS.2022.3189023
10.1109/LWC.2021.3132067
10.1109/GLOBECOM48099.2022.10001359
10.1109/TCCN.2019.2919300
10.1109/TCOMM.2022.3180997
10.1109/JSAIT.2022.3231042
10.1023/A:1020281327116
10.1016/j.dsp.2021.103134
10.1109/18.256499
10.1007/s11263-021-01491-7
10.1002/0471200611
10.1109/JSAC.2022.3223408
10.1109/tai.2022.3185179
10.1109/JSAC.2022.3180802
10.1109/GCWkshps45667.2019.9024567
10.1145/3422622
10.48550/ARXIV.1706.03762
10.1109/JSAC.2022.3221991
10.1109/ACCESS.2019.2920929
10.1109/JSAC.2022.3221999
10.1109/JSAC.2022.3221977
10.1109/JSAC.2020.3036968
10.1109/JSAC.2022.3191326
10.1080/01621459.2017.1285773
10.1109/GLOBECOM42002.2020.9348032
10.1109/MWC.101.2100269
10.1109/CVPR.2016.90
10.1109/JSAC.2021.3126087
10.1109/JSAC.2022.3221952
10.1109/ACCESS.2019.2897381
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2024.3386577
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 5640
ExternalDocumentID 10_1109_TCOMM_2024_3386577
10495330
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: 62125108; 62231022
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of China
  grantid: 12031011
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2020YFA0712300
– fundername: Fundamental Research Funds for the Central Universities; Fundamental Research Funds for the Central Universities of China
  funderid: 10.13039/501100012226
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c296t-d2d7e6e46a2faf2758fe16cd46b0f7eb6216c7005d4ee07a8fed379709d916ac3
IEDL.DBID RIE
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001319557300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Mon Jun 30 10:12:42 EDT 2025
Sat Nov 29 04:08:28 EST 2025
Tue Nov 18 21:32:24 EST 2025
Wed Aug 27 01:59:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-d2d7e6e46a2faf2758fe16cd46b0f7eb6216c7005d4ee07a8fed379709d916ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-6880-8562
0000-0002-0799-0954
0000-0003-2872-795X
PQID 3106490476
PQPubID 85472
PageCount 15
ParticipantIDs ieee_primary_10495330
proquest_journals_3106490476
crossref_citationtrail_10_1109_TCOMM_2024_3386577
crossref_primary_10_1109_TCOMM_2024_3386577
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref48
ref47
ref44
ref43
Mnih (ref39); 32
ref49
ref8
ref7
Mohamed (ref38) 2020; 21
ref9
ref4
ref3
Choi (ref37); 97
ref5
ref35
ref36
Le (ref45) 2015; 7
ref30
ref32
ref2
Jang (ref31) 2016
ref1
Gumbel (ref41) 1954
Barber (ref33)
Krizhevsky (ref42) 2009
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Linsker (ref29)
Tishby (ref34) 2000
ref28
ref27
Gregor (ref40); 32
Qin (ref6) 2021
References_xml – year: 2021
  ident: ref6
  article-title: Semantic communications: Principles and challenges
  publication-title: arXiv:2201.01389
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref33
  article-title: Kernelized infomax clustering
– ident: ref18
  doi: 10.1109/LWC.2021.3136045
– ident: ref30
  doi: 10.48550/arXiv.1312.6114
– ident: ref17
  doi: 10.1109/JSAC.2022.3221968
– ident: ref4
  doi: 10.23919/JCIN.2021.9663101
– ident: ref9
  doi: 10.1109/TSP.2021.3071210
– ident: ref1
  doi: 10.1109/wcsp55476.2022.10039447
– ident: ref7
  doi: 10.1109/JSAC.2021.3087240
– year: 2000
  ident: ref34
  article-title: The information bottleneck method
  publication-title: arXiv:physics/0004057
– ident: ref11
  doi: 10.1109/OJCOMS.2022.3189023
– ident: ref10
  doi: 10.1109/LWC.2021.3132067
– ident: ref23
  doi: 10.1109/GLOBECOM48099.2022.10001359
– ident: ref20
  doi: 10.1109/TCCN.2019.2919300
– year: 2016
  ident: ref31
  article-title: Categorical reparameterization with Gumbel–Softmax
  publication-title: arXiv:1611.01144
– ident: ref28
  doi: 10.1109/TCOMM.2022.3180997
– ident: ref27
  doi: 10.1109/JSAIT.2022.3231042
– ident: ref36
  doi: 10.1023/A:1020281327116
– ident: ref2
  doi: 10.1016/j.dsp.2021.103134
– ident: ref46
  doi: 10.1109/18.256499
– year: 2009
  ident: ref42
  article-title: Learning multiple layers of features from tiny images
– ident: ref13
  doi: 10.1007/s11263-021-01491-7
– ident: ref32
  doi: 10.1002/0471200611
– ident: ref5
  doi: 10.1109/JSAC.2022.3223408
– ident: ref44
  doi: 10.1109/tai.2022.3185179
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref29
  article-title: Towards an organizing principle for a layered perceptual network
– ident: ref15
  doi: 10.1109/JSAC.2022.3180802
– ident: ref48
  doi: 10.1109/GCWkshps45667.2019.9024567
– ident: ref21
  doi: 10.1145/3422622
– ident: ref19
  doi: 10.48550/ARXIV.1706.03762
– volume: 7
  start-page: 3
  issue: 7
  year: 2015
  ident: ref45
  article-title: Tiny imagenet visual recognition challenge
  publication-title: CS 231N
– ident: ref14
  doi: 10.1109/JSAC.2022.3221991
– volume-title: Statistical Theory of Extreme Values and Some Practical Applications: A Series of Lectures
  year: 1954
  ident: ref41
– ident: ref25
  doi: 10.1109/ACCESS.2019.2920929
– volume: 32
  start-page: 1242
  volume-title: Proc. 31st Int. Conf. Mach. Learn.
  ident: ref40
  article-title: Deep autoregressive networks
– volume: 32
  start-page: 1791
  volume-title: Proc. 31th Int. Conf. Mach. Learn. (ICML)
  ident: ref39
  article-title: Neural variational inference and learning in belief networks
– ident: ref22
  doi: 10.1109/JSAC.2022.3221999
– ident: ref16
  doi: 10.1109/JSAC.2022.3221977
– ident: ref24
  doi: 10.1109/JSAC.2020.3036968
– ident: ref26
  doi: 10.1109/JSAC.2022.3191326
– volume: 21
  start-page: 5183
  issue: 1
  year: 2020
  ident: ref38
  article-title: Monte Carlo gradient estimation in machine learning
  publication-title: J. Mach. Learn. Res.
– ident: ref35
  doi: 10.1080/01621459.2017.1285773
– ident: ref49
  doi: 10.1109/GLOBECOM42002.2020.9348032
– volume: 97
  start-page: 1182
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref37
  article-title: Neural joint source-channel coding
– ident: ref3
  doi: 10.1109/MWC.101.2100269
– ident: ref43
  doi: 10.1109/CVPR.2016.90
– ident: ref12
  doi: 10.1109/JSAC.2021.3126087
– ident: ref8
  doi: 10.1109/JSAC.2022.3221952
– ident: ref47
  doi: 10.1109/ACCESS.2019.2897381
SSID ssj0004033
Score 2.6698778
Snippet Semantic communications have emerged as a new paradigm for improving communication efficiency by transmitting the semantic information of a source message that...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5626
SubjectTerms Artificial neural networks
Coding
Communication
Communications systems
Decoding
Digital imaging
Digital modulation
Information theory
Modulation
mutual information
Neural networks
Probabilistic logic
Receivers
Semantic communications
Semantics
Symbols
Transition probabilities
variational autoencoder
Title Joint Coding-Modulation for Digital Semantic Communications via Variational Autoencoder
URI https://ieeexplore.ieee.org/document/10495330
https://www.proquest.com/docview/3106490476
Volume 72
WOSCitedRecordID wos001319557300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9OfNAHPyfOL_Lgm3S2aZY0j2M6RNwU_HwrbXKRgq6ydf79JmmmG6LgW0tzpdzlmrvkfvdD6ETmeayIjoI4I52ACqntIaEOtEo6oIXuZA4L83jNh8Pk-VncerC6w8IAgCs-g7a9dGf5qpRTu1VmPLyuhmygBue8Bmt9gyDD2LectPXsPJkhZEJxdt-7GQxMLkhoO7Ycl5wvrEKOVuXHv9gtMP2Nf37aJlr3kSTu1qbfQksw2kZrc_0Fd9DTVVmMKtwr7QIVDErlubqwiVTxefFiCUPwHbwZ7RYSL2BFJvijyPCjyaT9biHuTqvSdr1UMG6ih_7Ffe8y8EwKgSSCVYEiigMDyjKiM01MjqAhYlJRlofasqIQc8eNQyoKEPLMPFYxFzwUyoSPmYx30fKoHMEewokwcnGkIp4nFExornMFChinOWVEkRaKZppNpW8zbtkuXlOXboQiddZIrTVSb40WOv2Sea-bbPw5umn1PzeyVn0LHc4smHpHnKQmemVUhJSz_V_EDtCqfXtdN3aIlqvxFI7Qivyoisn42M2xTzfOz-k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xmDR44GMDUT6GH_aGwhLHteNHVEDA2oK0wniLEvs8RRoNalP-fmzHHaCJSbwlik-J7nzxnX2_-wF8U2WZamqSKC1oN2JSGXdIaCKjsy4aabqFx8Lc9sVwmN3dyesAVvdYGET0xWd45C79Wb6u1cxtlVkPb6shP8BSlzGatHCtZxhknIamk66iXWRzjEwsv496V4OBzQYpO0ody6UQr9YhT6zyz9_YLzFna-_8uHVYDbEkOW6NvwELOP4MKy86DH6BX5d1NW5Ir3ZLVDSodWDrIjZWJSfVb0cZQn7ivdVvpcgrtMiUPFYFubW5dNgvJMezpnZ9LzVONuHm7HTUO48Cl0KkqORNpKkWyJHxgprCUJslGEy40oyXsXG8KNTeCeuSmiHGorCPdSqkiKW2AWSh0i1YHNdj3AaSSSuXJjoRZcbQBuem1KiRC1YyTjXtQDLXbK5Co3HHd_En9wlHLHNvjdxZIw_W6MDhX5mHts3Gf0dvOv2_GNmqvgN7cwvmwRWnuY1fOZMxE3znDbED-HQ-GvTz_sXwxy4suze1VWR7sNhMZrgPH9VjU00nX_18ewIxSdMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Coding-Modulation+for+Digital+Semantic+Communications+via+Variational+Autoencoder&rft.jtitle=IEEE+transactions+on+communications&rft.au=Bo%2C+Yufei&rft.au=Duan%2C+Yiheng&rft.au=Shao%2C+Shuo&rft.au=Tao%2C+Meixia&rft.date=2024-09-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=72&rft.issue=9&rft.spage=5626&rft.epage=5640&rft_id=info:doi/10.1109%2FTCOMM.2024.3386577&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2024_3386577
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon