Multi-Gradient-Descent Federated Learning With Parity for Cooperative Short-Term Load Forecasting

Short-term load forecasting (STLF) is essential in power system research. In scenarios where multiple distribution system operators are involved in cooperative forecasting, it is important to uphold the fairness of multi-party cooperation and drive the parity of model gains among parties under the p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on power systems Ročník 40; číslo 2; s. 1199 - 1213
Hlavní autori: Wang, Haijin, Xing, Shuangshuang, Si, Caomingzhe, Pan, Zibin, Zhao, Junhua, Qiu, Jing, Dong, Zhaoyang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0885-8950, 1558-0679
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Short-term load forecasting (STLF) is essential in power system research. In scenarios where multiple distribution system operators are involved in cooperative forecasting, it is important to uphold the fairness of multi-party cooperation and drive the parity of model gains among parties under the premise of privacy protection. In this context, this paper proposes a short-term load forecasting method namely Multi-Gradient-Descent Federated Learning with Parity Long-short Term Memory (MGD-FLP-LSTM) under a federated learning framework. First, MGD-FLP-LSTM transforms cooperative STLF into a Multi-Objective Optimization (MOO) problem with parity-driven objective. The designed algorithm optimizes multiple objectives simultaneously and incorporates Karush-Kuhn-Tucker (KKT) conditions in solving the dual form of the problem, thus accelerating the global model convergence. Second, MGD-FLP-LSTM constitutes a parity-driven objective with cosine similarity in the MOO iteration. The objective allows all local loss functions to have similar descents on the common gradient descending direction. Third, MGD-FLP-LSTM constructs a Performance Parity Control (PPC) scheme that enables an active moderate trade-off between forecasting accuracy and parity. Experiments on real-measured load dataset highlight the method's enhanced accuracy, efficiency, and performance while maintaining consumer privacy.
AbstractList Short-term load forecasting (STLF) is essential in power system research. In scenarios where multiple distribution system operators are involved in cooperative forecasting, it is important to uphold the fairness of multi-party cooperation and drive the parity of model gains among parties under the premise of privacy protection. In this context, this paper proposes a short-term load forecasting method namely Multi-Gradient-Descent Federated Learning with Parity Long-short Term Memory (MGD-FLP-LSTM) under a federated learning framework. First, MGD-FLP-LSTM transforms cooperative STLF into a Multi-Objective Optimization (MOO) problem with parity-driven objective. The designed algorithm optimizes multiple objectives simultaneously and incorporates Karush-Kuhn-Tucker (KKT) conditions in solving the dual form of the problem, thus accelerating the global model convergence. Second, MGD-FLP-LSTM constitutes a parity-driven objective with cosine similarity in the MOO iteration. The objective allows all local loss functions to have similar descents on the common gradient descending direction. Third, MGD-FLP-LSTM constructs a Performance Parity Control (PPC) scheme that enables an active moderate trade-off between forecasting accuracy and parity. Experiments on real-measured load dataset highlight the method's enhanced accuracy, efficiency, and performance while maintaining consumer privacy.
Author Pan, Zibin
Zhao, Junhua
Xing, Shuangshuang
Wang, Haijin
Dong, Zhaoyang
Si, Caomingzhe
Qiu, Jing
Author_xml – sequence: 1
  givenname: Haijin
  orcidid: 0000-0002-1913-0505
  surname: Wang
  fullname: Wang, Haijin
  email: wanghj@csg.cn
  organization: China Southern Power Grid Company, Ltd., Energy Development Research Institute, CSG, Guangdong, China
– sequence: 2
  givenname: Shuangshuang
  surname: Xing
  fullname: Xing, Shuangshuang
  email: xingshuangshuang@zj.sgcc.com.cn
  organization: Tonglu Electric Power Company, State Grid Zhejiang Electric Power Company, Ltd., Hangzhou, China
– sequence: 3
  givenname: Caomingzhe
  surname: Si
  fullname: Si, Caomingzhe
  email: scmz21@mails.tsinghua.edu.cn
  organization: Department of Electrical Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Zibin
  surname: Pan
  fullname: Pan, Zibin
  email: zibinpan@link.cuhk.edu.cn
  organization: School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
– sequence: 5
  givenname: Junhua
  orcidid: 0000-0001-5446-2655
  surname: Zhao
  fullname: Zhao, Junhua
  email: zhaojunhua@cuhk.edu.cn
  organization: School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
– sequence: 6
  givenname: Jing
  orcidid: 0000-0001-8507-0558
  surname: Qiu
  fullname: Qiu, Jing
  email: qiujing0322@gmail.com
  organization: School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia
– sequence: 7
  givenname: Zhaoyang
  orcidid: 0000-0001-9659-0858
  surname: Dong
  fullname: Dong, Zhaoyang
  email: zy.dong@ntu.edu.sg
  organization: Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong
BookMark eNp9kMFKAzEQhoNUsK2-gHgIeN462Ww2yVGqVaGi2IrHJd1MNKXd1Gwq-PZurQfx4Ok_zP_NMN-A9JrQICGnDEaMgb6YP748zUY55MWIFzkoxg5InwmhMiil7pE-KCUypQUckUHbLgGg7AZ9Yu63q-Szm2isxyZlV9jWXdIJWowmoaVTNLHxzSt98emNPpro0yd1IdJxCJtdx38gnb2FmLI5xjWdBmPpJESsTZs67pgcOrNq8eQnh-R5cj0f32bTh5u78eU0q3NdpswCSmlFrpVirpaldJAbzsUCSmOBFeCKUhcGFzUrpVigFbUDaZR1TnGtkQ_J-X7vJob3LbapWoZtbLqTFWelzrkEXnQttW_VMbRtRFfVPnU_hCZF41cVg2ontPoWWu2EVj9COzT_g26iX5v4-T90toc8Iv4ChJRCA_8CuU2EqQ
CODEN ITPSEG
CitedBy_id crossref_primary_10_1016_j_ins_2025_122440
Cites_doi 10.1287/moor.22.2.301
10.1145/3447548.3470814
10.1016/j.apenergy.2017.03.034
10.1145/3375627.3375840
10.1016/j.eswa.2010.11.033
10.1109/TSG.2020.3031007
10.1016/j.asoc.2019.105616
10.1109/TII.2021.3055283
10.1137/1.9781611976700.21
10.1109/TSG.2021.3125677
10.1561/9781680837896
10.1109/TPWRS.2018.2868167
10.1109/tnnls.2022.3216981
10.1109/TPWRS.2007.907583
10.1016/j.apenergy.2022.119915
10.1109/TSG.2022.3215742
10.1016/j.neucom.2008.10.017
10.17775/CSEEJPES.2021.07350
10.1109/TSG.2023.3253855
10.1080/02331934.2010.522710
10.1049/enc2.12055
10.1109/TSG.2019.2933413
10.1109/TSG.2017.2753802
10.1109/JSYST.2016.2594208
10.1109/tnnls.2023.3263594
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2024.3420811
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 1213
ExternalDocumentID 10_1109_TPWRS_2024_3420811
10577590
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c296t-d0e77d529881fc767f02a335b06ad0140f4694aebc1675bed5cf07a8dff8399e3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001468243700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-8950
IngestDate Fri Jul 25 12:16:47 EDT 2025
Sat Nov 29 08:18:33 EST 2025
Tue Nov 18 22:13:16 EST 2025
Wed Aug 27 01:52:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-d0e77d529881fc767f02a335b06ad0140f4694aebc1675bed5cf07a8dff8399e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1913-0505
0000-0001-5446-2655
0000-0001-9659-0858
0000-0001-8507-0558
PQID 3169237034
PQPubID 85441
PageCount 15
ParticipantIDs ieee_primary_10577590
crossref_citationtrail_10_1109_TPWRS_2024_3420811
proquest_journals_3169237034
crossref_primary_10_1109_TPWRS_2024_3420811
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref19
Li (ref28)
Dieterich (ref12) 2016; 7
ref23
ref26
ref25
McMahan (ref18)
ref20
Bagdasaryan (ref24)
ref22
ref21
ref27
ref29
ref8
ref7
Li (ref17)
ref9
ref4
(ref16) 2023
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1287/moor.22.2.301
– ident: ref29
  doi: 10.1145/3447548.3470814
– start-page: 2938
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref24
  article-title: How to backdoor federated learning
– ident: ref6
  doi: 10.1016/j.apenergy.2017.03.034
– start-page: 1273
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  ident: ref18
  article-title: Communication-efficient learning of deep networks from decentralized data
– volume: 7
  start-page: 1
  issue: 7
  year: 2016
  ident: ref12
  article-title: COMPAS risk scales: Demonstrating accuracy equity and predictive parity
  publication-title: Northpointe Inc.
– ident: ref26
  doi: 10.1145/3375627.3375840
– ident: ref4
  doi: 10.1016/j.eswa.2010.11.033
– ident: ref19
  doi: 10.1109/TSG.2020.3031007
– ident: ref5
  doi: 10.1016/j.asoc.2019.105616
– ident: ref14
  doi: 10.1109/TII.2021.3055283
– ident: ref30
  doi: 10.1137/1.9781611976700.21
– ident: ref13
  doi: 10.1109/TSG.2021.3125677
– ident: ref10
  doi: 10.1561/9781680837896
– volume-title: arXiv:1905.10497
  ident: ref28
  article-title: Fair resource allocation in federated learning
– ident: ref25
  doi: 10.1109/TPWRS.2018.2868167
– ident: ref31
  doi: 10.1109/tnnls.2022.3216981
– ident: ref3
  doi: 10.1109/TPWRS.2007.907583
– ident: ref9
  doi: 10.1016/j.apenergy.2022.119915
– year: 2023
  ident: ref16
  article-title: The urban power consumption monitoring project in Eastern China
– ident: ref8
  doi: 10.1109/TSG.2022.3215742
– ident: ref2
  doi: 10.1016/j.neucom.2008.10.017
– start-page: 6357
  volume-title: Proc. 38th Int. Conf. Mach. Learn.
  ident: ref17
  article-title: Ditto: Fair and robust federated learning through personalization
– ident: ref20
  doi: 10.17775/CSEEJPES.2021.07350
– ident: ref21
  doi: 10.1109/TSG.2023.3253855
– ident: ref15
  doi: 10.1080/02331934.2010.522710
– ident: ref22
  doi: 10.1049/enc2.12055
– ident: ref23
  doi: 10.1109/TSG.2019.2933413
– ident: ref7
  doi: 10.1109/TSG.2017.2753802
– ident: ref1
  doi: 10.1109/JSYST.2016.2594208
– ident: ref27
  doi: 10.1109/tnnls.2023.3263594
SSID ssj0006679
Score 2.4818442
Snippet Short-term load forecasting (STLF) is essential in power system research. In scenarios where multiple distribution system operators are involved in cooperative...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1199
SubjectTerms Accuracy
Algorithms
Cooperative STLF
Data models
Federated learning
Forecasting
Kuhn-Tucker method
Load forecasting
Load modeling
Long short term memory
multi-gradient-descent
Multiple objective analysis
Parity
performance parity
Privacy
privacy-preserving
Title Multi-Gradient-Descent Federated Learning With Parity for Cooperative Short-Term Load Forecasting
URI https://ieeexplore.ieee.org/document/10577590
https://www.proquest.com/docview/3169237034
Volume 40
WOSCitedRecordID wos001468243700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-0679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006679
  issn: 0885-8950
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEA0qHvTgt7i6Sg7eJLtJP_JxFHX1IMuiK3oraTJRQbayW_39JmlXFFHwVmgCpS-dvGlm3kPo2GbGiNJSUhqXkExZSSQHQxinVga-AC42Cl-L4VA-PKhR26wee2EAIBafQS9cxrN8W5m38KusHzxpRa58hr4oBG-atT7DLueNsJ6UOZEqp_MOGar649H9za3PBZOsl4bjZMa-7ULRVuVHLI4bzGD9n4-2gdZaJolPG-g30QJMttDqF33BbaRjey25nMa6rpqcN9pNeBAUJDzJtLiVV33E98_1Ex7pYGWHPY_FZ1X1Co0qOL598hydjH0Mx9eVtjjYeRo9CwXTO-hucDE-uyKtpwIxieI1sRSEsHmipGTOCC4cTXSa5iXl2oZsy_l8OdNQGuZTiRJsbhwVWlrnPJVSkO6ipUk1gT2EtdIGNON5Clmmrb8rwDmdsmBGDyLtIDZ_x4VpBceD78VLERMPqoqISxFwKVpcOujkc85rI7fx5-idgMSXkQ0IHdSdY1m0n-SsSBn3ZNYHuGz_l2kHaCUJ7r6xwqyLlurpGxyiZfNeP8-mR3G1fQCcl9La
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dSxwxFA1ihdaHalvFba3Ng28lu8l85OOxWFel02XRLfoWMsmNCrIju6O_3yQzK5bSQt8GJoFhTubm3Mm95yB06AprRe0oqa3PSKGcJJKDJYxTJyNfAJ8ahSsxmcirKzXtm9VTLwwApOIzGMbLdJbvGvsQf5WNoietKFXI0F9F66y-Xes58HLeSetJWRKpSrrqkaFqNJtenl-EbDArhnk8UGbst30oGav8EY3TFjPe-s-H20Zvey6Jv3Xgv0NrMH-PNl8oDH5AJjXYkpNFquxqyfdOvQmPo4ZEoJkO9wKr1_jytr3BUxPN7HBgsvioae6h0wXHFzeBpZNZiOK4aozD0dDTmmUsmd5Bv8bHs6NT0rsqEJsp3hJHQQhXZkpK5q3gwtPM5HlZU25czLd8yJgLA7VlIZmowZXWU2Gk8z6QKQX5LlqfN3PYQ9goY8EwXuZQFMaFuwK8NzmLdvQg8gFiq3esbS85Hp0v7nRKPajSCRcdcdE9LgP09XnOfSe48c_ROxGJFyM7EAZof4Wl7j_Kpc4ZD3Q2hLji41-mfUGvT2c_K12dTX58Qm-y6PWb6s320Xq7eIDPaMM-trfLxUFaeU_CS9Yj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Gradient-Descent+Federated+Learning+With+Parity+for+Cooperative+Short-Term+Load+Forecasting&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Wang%2C+Haijin&rft.au=Xing%2C+Shuangshuang&rft.au=Si%2C+Caomingzhe&rft.au=Pan%2C+Zibin&rft.date=2025-03-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=40&rft.issue=2&rft.spage=1199&rft.epage=1213&rft_id=info:doi/10.1109%2FTPWRS.2024.3420811&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2024_3420811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon