A Self-Adaptive Evolutionary Multi-Task Based Constrained Multi-Objective Evolutionary Algorithm

Constrained multi-objective optimization problems (CMOPs) are difficult to solve since they involve the optimization of multiple objectives and the satisfaction of various constraints. Most constrained multi-objective evolutionary algorithms (CMOEAs) are prone to fall into the local optima due to th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on emerging topics in computational intelligence Ročník 7; číslo 4; s. 1 - 15
Hlavní autori: Qiao, Kangjia, Liang, Jing, Yu, Kunjie, Wang, Minghui, Qu, Boyang, Yue, Caitong, Guo, Yinan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2471-285X, 2471-285X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Constrained multi-objective optimization problems (CMOPs) are difficult to solve since they involve the optimization of multiple objectives and the satisfaction of various constraints. Most constrained multi-objective evolutionary algorithms (CMOEAs) are prone to fall into the local optima due to the imbalance between objectives and constraints as well as the poor search ability of the population. To better solve CMOPs, this paper proposes a double-balanced evolutionary multi-task optimization (DBEMTO) algorithm, which evolves two populations to respectively solve the main task (CMOP) and the auxiliary task (MOP extracted from the CMOP). In DBEMTO, three evolutionary strategies are assigned to each population for offspring generation. The three evolutionary strategies include an individual transfer-based inter-task strategy and two intra-task strategies, not only utilizing the information of inter-task but also providing diverse search abilities of intra-task. Moreover, a self-adaptive scheme is developed to self-adaptively employ three strategies, so that the population can balance the information utilization of both intra-task and inter-task. Then, in the environmental selection, the performance of the three strategies is adopted to guide the sharing of the two offspring populations. Compared with several other state-of-the-art CMOEAs, DBEMTO has performed more competitively according to the final results.
AbstractList Constrained multi-objective optimization problems (CMOPs) are difficult to solve since they involve the optimization of multiple objectives and the satisfaction of various constraints. Most constrained multi-objective evolutionary algorithms (CMOEAs) are prone to fall into the local optima due to the imbalance between objectives and constraints as well as the poor search ability of the population. To better solve CMOPs, this paper proposes a double-balanced evolutionary multi-task optimization (DBEMTO) algorithm, which evolves two populations to respectively solve the main task (CMOP) and the auxiliary task (MOP extracted from the CMOP). In DBEMTO, three evolutionary strategies are assigned to each population for offspring generation. The three evolutionary strategies include an individual transfer-based inter-task strategy and two intra-task strategies, not only utilizing the information of inter-task but also providing diverse search abilities of intra-task. Moreover, a self-adaptive scheme is developed to self-adaptively employ three strategies, so that the population can balance the information utilization of both intra-task and inter-task. Then, in the environmental selection, the performance of the three strategies is adopted to guide the sharing of the two offspring populations. Compared with several other state-of-the-art CMOEAs, DBEMTO has performed more competitively according to the final results.
Author Yue, Caitong
Qu, Boyang
Liang, Jing
Guo, Yinan
Qiao, Kangjia
Yu, Kunjie
Wang, Minghui
Author_xml – sequence: 1
  givenname: Kangjia
  orcidid: 0000-0003-1713-7700
  surname: Qiao
  fullname: Qiao, Kangjia
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 2
  givenname: Jing
  orcidid: 0000-0003-0811-0223
  surname: Liang
  fullname: Liang, Jing
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 3
  givenname: Kunjie
  orcidid: 0000-0001-9945-1976
  surname: Yu
  fullname: Yu, Kunjie
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 4
  givenname: Minghui
  surname: Wang
  fullname: Wang, Minghui
  organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 5
  givenname: Boyang
  orcidid: 0000-0001-7539-3927
  surname: Qu
  fullname: Qu, Boyang
  organization: School of Electrical and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China
– sequence: 6
  givenname: Caitong
  orcidid: 0000-0002-3362-0703
  surname: Yue
  fullname: Yue, Caitong
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 7
  givenname: Yinan
  orcidid: 0000-0002-4276-5410
  surname: Guo
  fullname: Guo, Yinan
  organization: China University of Mining and Technology, Beijing, China
BookMark eNp9kE1Lw0AQhhepYK39A-Ih4Dl1djfZ7B5jqVqo9GAFb3GbTHRrmtTspuC_NzE9FAVP8zIzz3y852RQViUScklhQimom9VsNZ1PGDA-4YwLwfkJGbIgoj6T4cvgSJ-RsbUbAGAqpDwMhuQ19p6wyP040ztn9ujN9lXROFOVuv7yHpvCGX-l7Yd3qy1m3rQqrau1KVvdF5frDaZ_ybh4q2rj3rcX5DTXhcXxIY7I811774O_WN7Pp_HCT5kSzk9zBAGCcpBinUOoGGreJrMgUgIyJlGxNBKZAIWYM5oqkOtMSq1DlBgpPiLX_dxdXX02aF2yqZq6bFcmTAbApYpC2XbJviutK2trzJPUON0d3X1VJBSSztLkx9KkszQ5WNqi7Be6q822_fV_6KqHDCIeAcAZhMC_AbtDhSU
CODEN ITETCU
CitedBy_id crossref_primary_10_1016_j_ins_2024_120879
crossref_primary_10_1109_TETCI_2024_3515013
crossref_primary_10_1016_j_swevo_2024_101682
crossref_primary_10_1007_s12293_025_00471_5
crossref_primary_10_1007_s13042_025_02768_w
crossref_primary_10_1016_j_eswa_2023_121707
crossref_primary_10_1109_TII_2024_3399909
crossref_primary_10_1016_j_est_2025_115914
crossref_primary_10_1109_JIOT_2024_3366889
crossref_primary_10_1109_TCYB_2025_3531449
crossref_primary_10_1109_TSMC_2024_3427864
crossref_primary_10_1080_0305215X_2024_2335552
crossref_primary_10_1016_j_ins_2024_121214
crossref_primary_10_1016_j_swevo_2025_102006
crossref_primary_10_1109_JAS_2024_124545
crossref_primary_10_1016_j_swevo_2025_102021
crossref_primary_10_1007_s12293_025_00448_4
crossref_primary_10_1016_j_knosys_2024_111998
crossref_primary_10_1016_j_future_2024_04_004
crossref_primary_10_1111_exsy_70046
crossref_primary_10_1007_s10586_025_05169_4
crossref_primary_10_1016_j_swevo_2024_101504
crossref_primary_10_1016_j_swevo_2024_101746
crossref_primary_10_1016_j_swevo_2025_101925
crossref_primary_10_1016_j_swevo_2024_101744
crossref_primary_10_1016_j_swevo_2025_102137
crossref_primary_10_1016_j_eswa_2025_127862
crossref_primary_10_1016_j_ins_2024_121700
crossref_primary_10_1109_JIOT_2024_3395296
crossref_primary_10_1016_j_swevo_2025_102059
crossref_primary_10_1016_j_ins_2023_119547
crossref_primary_10_1109_TETCI_2024_3353615
crossref_primary_10_1016_j_swevo_2025_102070
crossref_primary_10_1016_j_asoc_2024_112560
crossref_primary_10_1109_TEVC_2024_3376729
crossref_primary_10_1016_j_matcom_2024_02_012
crossref_primary_10_1016_j_ins_2024_121033
crossref_primary_10_1016_j_swevo_2025_101937
crossref_primary_10_1109_ACCESS_2024_3354384
crossref_primary_10_1016_j_swevo_2024_101732
crossref_primary_10_1109_TETCI_2023_3313412
crossref_primary_10_1016_j_neucom_2024_129296
crossref_primary_10_1016_j_swevo_2024_101531
crossref_primary_10_3390_math11122680
crossref_primary_10_1109_TEVC_2024_3358854
crossref_primary_10_3390_en17133295
crossref_primary_10_1007_s44336_024_00006_5
crossref_primary_10_3390_computers14080316
crossref_primary_10_1007_s12293_025_00464_4
crossref_primary_10_1007_s43681_025_00759_9
crossref_primary_10_1109_TEVC_2024_3398436
crossref_primary_10_1007_s10462_025_11314_7
crossref_primary_10_1016_j_swevo_2024_101683
crossref_primary_10_1016_j_swevo_2025_101862
Cites_doi 10.1109/TAI.2022.3168038
10.1007/s10462-021-10042-y
10.1016/j.enconman.2020.112509
10.1109/TETCI.2019.2916051
10.1109/TEVC.2013.2281534
10.1109/TCYB.2022.3163759
10.1109/MCI.2017.2742868
10.1109/CEC.2013.6557555
10.1109/CEC.2016.7743992
10.1016/j.eswa.2022.116499
10.1109/TEVC.2022.3160196
10.1109/TEVC.2018.2855411
10.1109/TEVC.2020.2981949
10.1109/TEVC.2022.3155533
10.1109/TEVC.2015.2458037
10.1016/j.ins.2019.10.066
10.1109/TSMC.2019.2943973
10.1109/TEVC.2022.3175065
10.1109/TEVC.2019.2904696
10.1109/4235.797969
10.1109/CEC.2019.8790172
10.1007/s00500-019-03794-x
10.1109/TSMC.2021.3061698
10.1109/TETCI.2017.2769104
10.1109/TEVC.2019.2894743
10.1016/j.asoc.2019.02.041
10.1109/SSCI.2016.7850038
10.1080/0305215X.2016.1271661
10.1109/4235.996017
10.1109/MCI.2022.3155332
10.1109/TEVC.2021.3131236
10.1109/TEVC.2021.3066301
10.1109/TCYB.2015.2461651
10.1109/CEC.2016.7744320
10.1016/j.ins.2015.09.009
10.1080/0305215X.2010.493937
10.1109/TEVC.2021.3100056
10.1109/TEVC.2022.3145582
10.1109/TEVC.2003.810761
10.1109/TCYB.2018.2819208
10.1109/TEVC.2019.2896967
10.1109/4235.873238
10.1016/j.swevo.2021.100961
10.1016/j.asoc.2020.106104
10.1016/j.swevo.2018.08.017
10.1016/j.knosys.2021.107653
10.1109/TEVC.2022.3186667
10.1109/TETCI.2018.2849380
10.1109/TCYB.2020.3031642
10.1109/TEVC.2008.2009032
10.1109/TEVC.2020.3004012
10.1016/j.swevo.2020.100799
10.1016/j.neucom.2017.02.065
10.1109/TCYB.2021.3089633
10.1007/s40747-021-00273-5
10.1007/s40747-016-0011-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2023.3236633
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2471-285X
EndPage 15
ExternalDocumentID 10_1109_TETCI_2023_3236633
10032050
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2020M682347
  funderid: 10.13039/501100002858
– fundername: Henan Provincial Young Talents Lifting Project
  grantid: 2021HYTP007
– fundername: National Natural Science Foundation of China
  grantid: 62176238; 61806179; 61876169; 61976237
  funderid: 10.13039/501100001809
– fundername: National Natural Science Fund for Outstanding Young Scholars of China
  grantid: 61922072
– fundername: Training Program of Young Backbone teachers in Colleges and universities in Henan Province
  grantid: 2020GGJS006
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
EJD
7SP
8FD
L7M
ID FETCH-LOGICAL-c296t-cfe060613086bf0592ea3cfed47960d28e92c76d609eef21c908bd88aa5e8e793
IEDL.DBID RIE
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932866000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Sun Nov 30 04:45:08 EST 2025
Sat Nov 29 05:12:08 EST 2025
Tue Nov 18 22:37:09 EST 2025
Wed Aug 27 02:18:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-cfe060613086bf0592ea3cfed47960d28e92c76d609eef21c908bd88aa5e8e793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7539-3927
0000-0002-3362-0703
0000-0003-1713-7700
0000-0003-0811-0223
0000-0002-4276-5410
0000-0001-9945-1976
PQID 2840389758
PQPubID 4437216
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TETCI_2023_3236633
crossref_primary_10_1109_TETCI_2023_3236633
proquest_journals_2840389758
ieee_primary_10032050
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref59
ref14
ref58
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
tian (ref15) 2021
ref49
ref8
ref7
ref9
ref4
ref3
zhang (ref52) 2008
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
ding (ref2) 2019; 3
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – year: 2021
  ident: ref15
  article-title: Principled design of translation, scale, and rotation invariant variation operators for metaheuristics
– ident: ref43
  doi: 10.1109/TAI.2022.3168038
– ident: ref4
  doi: 10.1007/s10462-021-10042-y
– start-page: 1
  year: 2008
  ident: ref52
  article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
– ident: ref23
  doi: 10.1016/j.enconman.2020.112509
– ident: ref11
  doi: 10.1109/TETCI.2019.2916051
– ident: ref50
  doi: 10.1109/TEVC.2013.2281534
– ident: ref40
  doi: 10.1109/TCYB.2022.3163759
– ident: ref54
  doi: 10.1109/MCI.2017.2742868
– ident: ref58
  doi: 10.1109/CEC.2013.6557555
– ident: ref27
  doi: 10.1109/CEC.2016.7743992
– ident: ref39
  doi: 10.1016/j.eswa.2022.116499
– ident: ref14
  doi: 10.1109/TEVC.2022.3160196
– ident: ref51
  doi: 10.1109/TEVC.2018.2855411
– ident: ref53
  doi: 10.1109/TEVC.2020.2981949
– ident: ref31
  doi: 10.1109/TEVC.2022.3155533
– ident: ref10
  doi: 10.1109/TEVC.2015.2458037
– ident: ref25
  doi: 10.1016/j.ins.2019.10.066
– ident: ref19
  doi: 10.1109/TSMC.2019.2943973
– ident: ref44
  doi: 10.1109/TEVC.2022.3175065
– ident: ref24
  doi: 10.1109/TEVC.2019.2904696
– ident: ref56
  doi: 10.1109/4235.797969
– ident: ref35
  doi: 10.1109/CEC.2019.8790172
– ident: ref48
  doi: 10.1007/s00500-019-03794-x
– ident: ref34
  doi: 10.1109/TSMC.2021.3061698
– ident: ref20
  doi: 10.1109/TETCI.2017.2769104
– ident: ref17
  doi: 10.1109/TEVC.2019.2894743
– ident: ref6
  doi: 10.1016/j.asoc.2019.02.041
– ident: ref21
  doi: 10.1109/SSCI.2016.7850038
– volume: 3
  start-page: 36
  year: 2019
  ident: ref2
  article-title: Dynamic evolutionary multiobjective optimization for raw ore allocation in mineral processing
  publication-title: IEEE Trans Emerg Topics Comput Intell
– ident: ref33
  doi: 10.1080/0305215X.2016.1271661
– ident: ref5
  doi: 10.1109/4235.996017
– ident: ref28
  doi: 10.1109/MCI.2022.3155332
– ident: ref13
  doi: 10.1109/TEVC.2021.3131236
– ident: ref7
  doi: 10.1109/TEVC.2021.3066301
– ident: ref9
  doi: 10.1109/TCYB.2015.2461651
– ident: ref57
  doi: 10.1109/CEC.2016.7744320
– ident: ref47
  doi: 10.1016/j.ins.2015.09.009
– ident: ref8
  doi: 10.1080/0305215X.2010.493937
– ident: ref26
  doi: 10.1109/TEVC.2021.3100056
– ident: ref12
  doi: 10.1109/TEVC.2022.3145582
– ident: ref55
  doi: 10.1109/TEVC.2003.810761
– ident: ref42
  doi: 10.1109/TCYB.2018.2819208
– ident: ref49
  doi: 10.1109/TEVC.2019.2896967
– ident: ref59
  doi: 10.1109/4235.873238
– ident: ref1
  doi: 10.1016/j.swevo.2021.100961
– ident: ref38
  doi: 10.1016/j.asoc.2020.106104
– ident: ref16
  doi: 10.1016/j.swevo.2018.08.017
– ident: ref46
  doi: 10.1016/j.knosys.2021.107653
– ident: ref45
  doi: 10.1109/TEVC.2022.3186667
– ident: ref3
  doi: 10.1109/TETCI.2018.2849380
– ident: ref36
  doi: 10.1109/TCYB.2020.3031642
– ident: ref32
  doi: 10.1109/TEVC.2008.2009032
– ident: ref18
  doi: 10.1109/TEVC.2020.3004012
– ident: ref37
  doi: 10.1016/j.swevo.2020.100799
– ident: ref22
  doi: 10.1016/j.neucom.2017.02.065
– ident: ref41
  doi: 10.1109/TCYB.2021.3089633
– ident: ref29
  doi: 10.1007/s40747-021-00273-5
– ident: ref30
  doi: 10.1007/s40747-016-0011-y
SSID ssj0002951354
Score 2.4949124
Snippet Constrained multi-objective optimization problems (CMOPs) are difficult to solve since they involve the optimization of multiple objectives and the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Constrained multi-objective optimization
Constraints
Evolutionary algorithms
evolutionary multi-task optimization
Genetic algorithms
inter-task
intra-task
Knowledge transfer
Multiple objective analysis
Multitasking
Optimization
Populations
self-adaptive
Sociology
Statistics
Task analysis
Title A Self-Adaptive Evolutionary Multi-Task Based Constrained Multi-Objective Evolutionary Algorithm
URI https://ieeexplore.ieee.org/document/10032050
https://www.proquest.com/docview/2840389758
Volume 7
WOSCitedRecordID wos000932866000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86fNiLnxOnU_rgm2R2adomj1M2FGQKTthbTZOLX3Mb3Qf435uPbiii4Ftoc6XpL5e7S_O7Q-iUQKyobnGsgShME0KxAK6xigmVxk3STDii8E3a67HBgN-VZHXHhQEAd_gMmrbp_uWrsZzbrTKj4bbct43Q19M09WSt1YYKMb5CFNMlMSbk5_1O__K6aeuDNyMSGdMafTM-rprKjyXY2ZXu1j_faBttlg5k0PaI76A1GO2iqvUZfcrlPfTYDu5hqHFbiYldzILOopxfovgIHOMW98X0LbgwFkwFtmSnKxRh2v7mbf7ql8Hvku3h07h4mT2_19BD1wz6CpeFFLAkPJlhqSFMrOE28UuujUNFQETmoqKpCWAUYcCJTBOVhBxAk5bkIcsVY0LEwMBo8D6qjMYjOEBBSLUGbgm4wCiNOYtz4wFxEDriMU_yOmotv3AmyyzjdgzDzEUbIc8cKplFJStRqaOzlczE59j4s3fN4vClp4egjhpLJLNSD6eZMb42g6AJig5_ETtCVft0f6avgSqzYg7HaEMuDGrFiZtin70U0A8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yBffi58Tp1D74JpltmnbJ45SNDecUrLC3mjYXv-Y29gX-9yZpNxyi4Ftoc7TpL5e7S_O7Q-icQCCp8jhWQCSmIaFYAFdYBoSm2k1STFiicKfW7bJej9_nZHXLhQEAe_gMqqZp_-XLYTozW2Vaw025bxOhrweUEi-jay23VIj2FvyALqgxLr-MGtF1u2oqhFd94mvj6q-YH1tP5ccibC1Lc_uf77SDtnIX0qlnmO-iNRjsoaLxGrOky_voqe48QF_huhQjs5w5jXk-w8T407GcWxyJybtzpW2YdEzRTlsqQrezm3fJW7YQrkrW-8_D8ev05aOEHpt60C2cl1LAKeHhFKcK3NCYbh3BJEq7VASEry9KWtMhjCQMOElroQxdDqCIl3KXJZIxIQJgoHX4ABUGwwEcIselSgE3FFxglAacBYn2gTgI5fOAh0kZeYsvHKd5nnEzhn5s4w2XxxaV2KAS56iU0cVSZpRl2fizd8ng8K1nBkEZVRZIxrkmTmJtfk0OQR0WHf0idoY2W9FtJ-60uzfHqGielJ3wq6DCdDyDE7SRzjWC41M73b4At-zTVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Self-Adaptive+Evolutionary+Multi-Task+Based+Constrained+Multi-Objective+Evolutionary+Algorithm&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Qiao%2C+Kangjia&rft.au=Liang%2C+Jing&rft.au=Yu%2C+Kunjie&rft.au=Wang%2C+Minghui&rft.date=2023-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2471-285X&rft.volume=7&rft.issue=4&rft.spage=1098&rft_id=info:doi/10.1109%2FTETCI.2023.3236633&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon