Deep Learning Based Joint Hybrid Precoding and Combining Design for mmWave MIMO Systems

To maximally enhance the hybrid precoding performance, an innovative deep learning-based optimization algorithm is given for a multiuser fully connected (MUFC) structure in this article. First, a joint optimization framework based on convolutional neural network (CNN) is suggested, namely, JOCNN, wh...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE systems journal Ročník 18; číslo 1; s. 560 - 567
Hlavní autori: Liu, Fulai, Li, Xiaoyu, Yang, Xianghuan, Shi, Huiyang, Shi, Baozhu, Du, Ruiyan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1932-8184, 1937-9234
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:To maximally enhance the hybrid precoding performance, an innovative deep learning-based optimization algorithm is given for a multiuser fully connected (MUFC) structure in this article. First, a joint optimization framework based on convolutional neural network (CNN) is suggested, namely, JOCNN, which can synchronously optimize the hybrid precoder and combiner. In the JOCNN, analog precoding neural network (AP-NN), digital precoding neural network (DP-NN), analog combining neural network (AC-NN), and digital combining neural network (DC-NN) are designed to satisfy the nonconvex constant modulus constraint and the power constraint. Then, using a training strategy based on unsupervised learning, the developed JOCNN can be trained to maximize the spectral efficiency (SE). At last, the thoroughly trained JOCNN model can take in the estimated channel matrix as the input and immediately output the analog precoding matrix, the digital precoding matrix, the analog combining matrix, and the digital combining matrix. Simulation results demonstrate that the suggested method can outperform the previous works in terms of SE while requiring less computation time.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1932-8184
1937-9234
DOI:10.1109/JSYST.2024.3357712