On polynomials associated to Voronoi diagrams of point sets and crossing numbers

Three polynomials are defined for given sets $S$ of $n$ points in general position in the plane: The Voronoi polynomial with coefficients the numbers of vertices of the order-$k$ Voronoi diagrams of $S$, the circle polynomial with coefficients the numbers of circles through three points of $S$ enclo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník 26:2; číslo Combinatorics
Hlavní autoři: Claverol, Mercè, Heras-Parrilla, Andrea de las, Flores-Peñaloza, David, Huemer, Clemens, Orden, David
Médium: Journal Article
Jazyk:angličtina
Vydáno: Discrete Mathematics & Theoretical Computer Science 01.01.2024
Témata:
ISSN:1365-8050, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Three polynomials are defined for given sets $S$ of $n$ points in general position in the plane: The Voronoi polynomial with coefficients the numbers of vertices of the order-$k$ Voronoi diagrams of $S$, the circle polynomial with coefficients the numbers of circles through three points of $S$ enclosing $k$ points of $S$, and the $E_{\leq k}$ polynomial with coefficients the numbers of (at most $k$)-edges of $S$. We present several formulas for the rectilinear crossing number of $S$ in terms of these polynomials and their roots. We also prove that the roots of the Voronoi polynomial lie on the unit circle if, and only if, $S$ is in convex position. Further, we present bounds on the location of the roots of these polynomials.
ISSN:1365-8050
1365-8050
DOI:10.46298/dmtcs.12443