Linear operator theory of phase mixing

ABSTRACT We study solutions of the collisionless Boltzmann equation (CBE) in a functional Koopman representation. This facilitates the use of linear spectral techniques characteristic of the analysis of Schrödinger-type equations. For illustrative purposes, we consider the classical phase mixing of...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society Vol. 533; no. 1; pp. 79 - 92
Main Authors: Darling, Keir, Widrow, Lawrence M
Format: Journal Article
Language:English
Published: London Oxford University Press 01.09.2024
Subjects:
ISSN:0035-8711, 1365-2966
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT We study solutions of the collisionless Boltzmann equation (CBE) in a functional Koopman representation. This facilitates the use of linear spectral techniques characteristic of the analysis of Schrödinger-type equations. For illustrative purposes, we consider the classical phase mixing of a non-interacting distribution function in a quartic potential. Solutions are determined perturbatively relative to a harmonic oscillator. We impose a form of coarse-graining by choosing a finite-dimensional basis to represent the distribution function and time evolution operators, which sets a minimum length-scale on phase space structure. We observe a relationship between the dimension of the representation and the multiplicity of the harmonic oscillator eigenvalues. System dynamics are understood in terms of degenerate subspaces of the linear operator spectra. Each subspace is associated with a mode of the harmonic oscillator, the first two being bending and breathing structures. The quartic potential splits the degenerate eigenvalues within each subspace. This facilitates the formation of spiral structure as deformations from the harmonic oscillator modes. We ultimately argue that this construction provides a promising avenue for study of self-interacting systems experiencing phase mixing, which is an outstanding problem in the context of the Gaia DR2 vertical phase space spirals.
AbstractList We study solutions of the collisionless Boltzmann equation (CBE) in a functional Koopman representation. This facilitates the use of linear spectral techniques characteristic of the analysis of Schrödinger-type equations. For illustrative purposes, we consider the classical phase mixing of a non-interacting distribution function in a quartic potential. Solutions are determined perturbatively relative to a harmonic oscillator. We impose a form of coarse-graining by choosing a finite-dimensional basis to represent the distribution function and time evolution operators, which sets a minimum length-scale on phase space structure. We observe a relationship between the dimension of the representation and the multiplicity of the harmonic oscillator eigenvalues. System dynamics are understood in terms of degenerate subspaces of the linear operator spectra. Each subspace is associated with a mode of the harmonic oscillator, the first two being bending and breathing structures. The quartic potential splits the degenerate eigenvalues within each subspace. This facilitates the formation of spiral structure as deformations from the harmonic oscillator modes. We ultimately argue that this construction provides a promising avenue for study of self-interacting systems experiencing phase mixing, which is an outstanding problem in the context of the Gaia DR2 vertical phase space spirals.
We study solutions of the collisionless Boltzmann equation (CBE) in a functional Koopman representation. This facilitates the use of linear spectral techniques characteristic of the analysis of Schrödinger-type equations. For illustrative purposes, we consider the classical phase mixing of a non-interacting distribution function in a quartic potential. Solutions are determined perturbatively relative to a harmonic oscillator. We impose a form of coarse-graining by choosing a finite-dimensional basis to represent the distribution function and time evolution operators, which sets a minimum length-scale on phase space structure. We observe a relationship between the dimension of the representation and the multiplicity of the harmonic oscillator eigenvalues. System dynamics are understood in terms of degenerate subspaces of the linear operator spectra. Each subspace is associated with a mode of the harmonic oscillator, the first two being bending and breathing structures. The quartic potential splits the degenerate eigenvalues within each subspace. This facilitates the formation of spiral structure as deformations from the harmonic oscillator modes. We ultimately argue that this construction provides a promising avenue for study of self-interacting systems experiencing phase mixing, which is an outstanding problem in the context of the Gaia DR2 vertical phase space spirals.
ABSTRACT We study solutions of the collisionless Boltzmann equation (CBE) in a functional Koopman representation. This facilitates the use of linear spectral techniques characteristic of the analysis of Schrödinger-type equations. For illustrative purposes, we consider the classical phase mixing of a non-interacting distribution function in a quartic potential. Solutions are determined perturbatively relative to a harmonic oscillator. We impose a form of coarse-graining by choosing a finite-dimensional basis to represent the distribution function and time evolution operators, which sets a minimum length-scale on phase space structure. We observe a relationship between the dimension of the representation and the multiplicity of the harmonic oscillator eigenvalues. System dynamics are understood in terms of degenerate subspaces of the linear operator spectra. Each subspace is associated with a mode of the harmonic oscillator, the first two being bending and breathing structures. The quartic potential splits the degenerate eigenvalues within each subspace. This facilitates the formation of spiral structure as deformations from the harmonic oscillator modes. We ultimately argue that this construction provides a promising avenue for study of self-interacting systems experiencing phase mixing, which is an outstanding problem in the context of the Gaia DR2 vertical phase space spirals.
Author Widrow, Lawrence M
Darling, Keir
Author_xml – sequence: 1
  givenname: Keir
  surname: Darling
  fullname: Darling, Keir
  email: keir.darling@queensu.ca
– sequence: 2
  givenname: Lawrence M
  surname: Widrow
  fullname: Widrow, Lawrence M
BookMark eNqFkM1Lw0AQRxepYFu9eg4Igoe0M9lskj1K8QsKXvS87MesTbHZuJuC_e-NVs-e5vLe_ODN2KQLHTF2ibBAkHy566JOyzRowroWJ2yKvBJ5IatqwqYAXORNjXjGZiltAaDkRTVl1-u2Ix2z0FPUQ4jZsKEQD1nwWb_RibJd-9l2b-fs1Ov3RBe_d85e7-9eVo_5-vnhaXW7zu24M-TGlUKDl76ERgjp0KAjSwZ9aRoSVqOXvLYAVEnjTO2cLQtDbvS89WT5nF0d__YxfOwpDWob9rEbJxUHKXkhscGRWhwpG0NKkbzqY7vT8aAQ1HcL9dNC_bUYhZujEPb9f-wXKB5lAw
Cites_doi 10.1046/j.1365-8711.1999.02690.x
10.1038/s41586-018-0510-7
10.1093/mnras/sty3508
10.1093/mnras/sty2813
10.1086/170059
10.5670/oceanog.2016.66
10.1093/mnras/stab2580
10.1093/mnras/stab524
10.1086/177977
10.1093/mnras/staa3997
10.1017/S0022112009992059
10.1017/9781108499996
10.1016/0375-9601(80)90776-8
10.1093/mnras/sty2378
10.1051/0004-6361/201832865
10.1051/0004-6361:20041462
10.1080/00411450500274691
10.1093/mnras/stz2539
10.1007/BF01079464
10.1515/9781400828722
10.1007/978-1-4757-2063-1
10.1073/pnas.17.5.315
10.1063/5.0011470
10.1086/374734
10.3847/1538-4357/ac7ff9
10.1093/mnras/stad485
10.1007/s11071-005-2824-x
10.1111/j.1365-2966.2012.21754.x
10.1017/9781316995433
10.1137/1.9781611974508
10.1093/mnras/stx2165
10.1017/S1743921319009049
10.1093/mnras/stab1919
ContentType Journal Article
Copyright 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2024
2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.
Copyright_xml – notice: 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2024
– notice: 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.
DBID TOX
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1093/mnras/stae1775
DatabaseName Oxford Journals Open Access Collection
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef

Database_xml – sequence: 1
  dbid: TOX
  name: Access via Oxford University Press (Open Access Collection)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 92
ExternalDocumentID 10_1093_mnras_stae1775
10.1093/mnras/stae1775
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
8FD
ABAZT
H8D
L7M
ID FETCH-LOGICAL-c296t-bd45a0f9f408559d1b1deceb1f4b8e5ca1f937c00e69bdb7ddc42bedbd4fcfec3
IEDL.DBID TOX
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001285416400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-8711
IngestDate Mon Jun 30 13:14:46 EDT 2025
Sat Nov 29 05:37:55 EST 2025
Thu Oct 10 23:24:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Galaxy: structure
Galaxy: kinematics and dynamics
Galaxy: disc
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-bd45a0f9f408559d1b1deceb1f4b8e5ca1f937c00e69bdb7ddc42bedbd4fcfec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://dx.doi.org/10.1093/mnras/stae1775
PQID 3099329181
PQPubID 42411
PageCount 14
ParticipantIDs proquest_journals_3099329181
crossref_primary_10_1093_mnras_stae1775
oup_primary_10_1093_mnras_stae1775
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Conway (2024080716164187500_bib11) 1994
Morrison (2024080716164187500_bib26) 1980; 80
Nakao (2024080716164187500_bib27) 2020; 30
Darling (2024080716164187500_bib14) 2019; 490
Widrow (2024080716164187500_bib38) 2020
Banik (2024080716164187500_bib4) 2022; 935
Darling (2024080716164187500_bib13) 2019; 484
Darling (2024080716164187500_bib12) 2024
Sethna (2024080716164187500_bib33) 2006
Tremaine (2024080716164187500_bib35) 1999; 307
Chavanis (2024080716164187500_bib9) 1996; 471
Griffiths (2024080716164187500_bib17) 2018
Hunt (2024080716164187500_bib18) 2021; 508
Weinberg (2024080716164187500_bib36) 1991; 373
Mathur (2024080716164187500_bib24) 1990; 243
Bennett (2024080716164187500_bib5) 2018; 482
Mezić (2024080716164187500_bib25) 2005; 41
Binney (2024080716164187500_bib7) 2008
Chavanis (2024080716164187500_bib8) 2005; 430
Schönrich (2024080716164187500_bib32) 2018; 481
Weinberg (2024080716164187500_bib37) 2021; 501
Kupershmidt (2024080716164187500_bib22) 1978; 11
Perrett (2024080716164187500_bib29) 2003; 589
Sakurai (2024080716164187500_bib31) 2017
Antoja (2024080716164187500_bib2) 2018; 561
Rowley (2024080716164187500_bib30) 2009; 641
Gaia Collaboration (2024080716164187500_bib16) 2018; 616
Koopman (2024080716164187500_bib21) 1931; 17
Inagaki (2024080716164187500_bib19) 1993; 45
Arnold (2024080716164187500_bib3) 1989
Bennett (2024080716164187500_bib6) 2021; 503
Chequers (2024080716164187500_bib10) 2017; 472
Abel (2024080716164187500_bib1) 2012; 427
Perez (2024080716164187500_bib28) 2005; 34
Thyng (2024080716164187500_bib34) 2016; 29
Darling (2024080716164187500_bib15) 2021; 506
Johnson (2024080716164187500_bib20) 2023; 521
Kutz (2024080716164187500_bib23) 2016
References_xml – volume: 307
  start-page: 877
  year: 1999
  ident: 2024080716164187500_bib35
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02690.x
– volume: 561
  start-page: 360
  year: 2018
  ident: 2024080716164187500_bib2
  publication-title: Nature
  doi: 10.1038/s41586-018-0510-7
– volume: 484
  start-page: 1050
  year: 2019
  ident: 2024080716164187500_bib13
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3508
– volume: 482
  start-page: 1417
  year: 2018
  ident: 2024080716164187500_bib5
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2813
– volume: 373
  start-page: 391
  year: 1991
  ident: 2024080716164187500_bib36
  publication-title: ApJ
  doi: 10.1086/170059
– volume: 29
  start-page: 9
  year: 2016
  ident: 2024080716164187500_bib34
  publication-title: Oceanography
  doi: 10.5670/oceanog.2016.66
– volume: 508
  start-page: 1459
  year: 2021
  ident: 2024080716164187500_bib18
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2580
– volume: 503
  start-page: 376
  year: 2021
  ident: 2024080716164187500_bib6
  publication-title: MNRAS
  doi: 10.1093/mnras/stab524
– volume-title: A Course in Functional Analysis, Graduate Texts in Mathematics
  year: 1994
  ident: 2024080716164187500_bib11
– volume: 471
  start-page: 385
  year: 1996
  ident: 2024080716164187500_bib9
  publication-title: ApJ
  doi: 10.1086/177977
– volume: 501
  start-page: 5408
  year: 2021
  ident: 2024080716164187500_bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3997
– volume: 641
  start-page: 115
  year: 2009
  ident: 2024080716164187500_bib30
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009992059
– volume-title: Modern Quantum Mechanics
  year: 2017
  ident: 2024080716164187500_bib31
  doi: 10.1017/9781108499996
– volume: 80
  start-page: 383
  year: 1980
  ident: 2024080716164187500_bib26
  publication-title: Phys. lett.. A
  doi: 10.1016/0375-9601(80)90776-8
– volume: 481
  start-page: 1501
  year: 2018
  ident: 2024080716164187500_bib32
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2378
– volume: 616
  start-page: A11
  year: 2018
  ident: 2024080716164187500_bib16
  publication-title: A&A
  doi: 10.1051/0004-6361/201832865
– volume: 430
  start-page: 771
  year: 2005
  ident: 2024080716164187500_bib8
  publication-title: A&A
  doi: 10.1051/0004-6361:20041462
– volume: 34
  start-page: 391
  year: 2005
  ident: 2024080716164187500_bib28
  publication-title: Transport Theor. Stat. Phys.
  doi: 10.1080/00411450500274691
– volume: 490
  start-page: 114
  year: 2019
  ident: 2024080716164187500_bib14
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2539
– volume: 11
  start-page: 188
  year: 1978
  ident: 2024080716164187500_bib22
  publication-title: Funct. Anal. Appl.
  doi: 10.1007/BF01079464
– volume-title: Galactic Dynamics: Second Edition
  year: 2008
  ident: 2024080716164187500_bib7
  doi: 10.1515/9781400828722
– volume: 243
  start-page: 529
  year: 1990
  ident: 2024080716164187500_bib24
  publication-title: MNRAS
– volume: 45
  start-page: 733
  year: 1993
  ident: 2024080716164187500_bib19
  publication-title: PASJ
– volume-title: Mathematical Methods of Classical Mechanics, Vol. 60
  year: 1989
  ident: 2024080716164187500_bib3
  doi: 10.1007/978-1-4757-2063-1
– volume: 17
  start-page: 315
  year: 1931
  ident: 2024080716164187500_bib21
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.17.5.315
– volume: 30
  start-page: 113131
  year: 2020
  ident: 2024080716164187500_bib27
  publication-title: Chaos
  doi: 10.1063/5.0011470
– volume: 589
  start-page: 790
  year: 2003
  ident: 2024080716164187500_bib29
  publication-title: ApJ
  doi: 10.1086/374734
– volume: 935
  start-page: 135
  year: 2022
  ident: 2024080716164187500_bib4
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac7ff9
– volume: 521
  start-page: 1757
  year: 2023
  ident: 2024080716164187500_bib20
  publication-title: MNRAS
  doi: 10.1093/mnras/stad485
– volume: 41
  start-page: 309
  year: 2005
  ident: 2024080716164187500_bib25
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-005-2824-x
– volume: 427
  start-page: 61
  year: 2012
  ident: 2024080716164187500_bib1
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21754.x
– volume-title: Introduction to Quantum Mechanics
  year: 2018
  ident: 2024080716164187500_bib17
  doi: 10.1017/9781316995433
– volume-title: Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
  year: 2016
  ident: 2024080716164187500_bib23
  doi: 10.1137/1.9781611974508
– volume-title: Linear Operator Theory of Phase Mixing in Collisionless Systems
  year: 2024
  ident: 2024080716164187500_bib12
– volume: 472
  start-page: 2751
  year: 2017
  ident: 2024080716164187500_bib10
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2165
– volume-title: Statistical Mechanics: Entropy, Order Parameters and Complexity
  year: 2006
  ident: 2024080716164187500_bib33
– start-page: 65
  volume-title: Proc. of the International Astronomical Union, Vol. 353, Galactic Dynamics in the Era of Large Surveys
  year: 2020
  ident: 2024080716164187500_bib38
  doi: 10.1017/S1743921319009049
– volume: 506
  start-page: 3098
  year: 2021
  ident: 2024080716164187500_bib15
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1919
SSID ssj0004326
Score 2.4602382
Snippet ABSTRACT We study solutions of the collisionless Boltzmann equation (CBE) in a functional Koopman representation. This facilitates the use of linear spectral...
We study solutions of the collisionless Boltzmann equation (CBE) in a functional Koopman representation. This facilitates the use of linear spectral techniques...
We study solutions of the collisionless Boltzmann equation (CBE) in a functional Koopman representation. This facilitates the use of linear spectral techniques...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Index Database
Publisher
StartPage 79
SubjectTerms Boltzmann transport equation
Distribution functions
Eigenvalues
Harmonic oscillators
Linear operators
Representations
Schrodinger equation
Spectral methods
Subspaces
System dynamics
Title Linear operator theory of phase mixing
URI https://www.proquest.com/docview/3099329181
Volume 533
WOSCitedRecordID wos001285416400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Access via Oxford University Press (Open Access Collection)
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EPHjxUZVWa1lE6im0u5s02WMpFg9aPVTpLewTCzYpSRX7751sEqUiqLcsyYYwuzvzzUzmG4QuQRtqygfgnchQeL6UyotIQeTKooGRQlnryqOfbsPJJJrN-ENFFp3_kMLnrLdIMpH3ACsZEoZFOTkJoqJXwfR-9lUByVxjNUfACC4A-aRn_D59w_xslLTVOtgZlvH-Pz7pAO1V6BEPy-U-RFsmaaDmMC_i2elijbvYXZfhiryBWneAidPMhc7h5uhlDgDVjY5QF9xQ2OY4XRqXaseupnGNU4uXz2Db8GL-DnbtGD2Or6ejG6_qmuApEPrKk9oPRN9yW3CXBVwTSbRRoJKtLyMTKEEsQBLV75sBl1qGWiufSqNhnlXWKHaCtpM0MU2EA00F-DOC-772ASgKyYimLvsphaFBC13VwoyXJTlGXCa1WexEFNciaqELkPWvD7XrpYirk5THDCAsoxyAyOlf3nGGdinAjvIvsDbaXmWv5hztqLfVPM86zuPuuK3zAf89w2Y
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+operator+theory+of+phase+mixing&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Darling%2C+Keir&rft.au=Widrow%2C+Lawrence+M&rft.date=2024-09-01&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=533&rft.issue=1&rft.spage=79&rft.epage=92&rft_id=info:doi/10.1093%2Fmnras%2Fstae1775&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon