Double chebyshev solution of eigenvalue problems for partial differential equations
Particular spectral method based on an expansion in double Chebyshev polynomials is proposed to solve a number of eigenvalue problems defined by partial differential equations with constant and variable coefficients. We obtain comparable results with those computed by Liu and Ortiz [3] by using Tau-...
Uloženo v:
| Vydáno v: | International journal of computer mathematics Ročník 54; číslo 3-4; s. 197 - 206 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Gordon and Breach Science Publishers S.A
01.01.1994
|
| Témata: | |
| ISSN: | 0020-7160, 1029-0265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Particular spectral method based on an expansion in double Chebyshev polynomials is proposed to solve a number of eigenvalue problems defined by partial differential equations with constant and variable coefficients. We obtain comparable results with those computed by Liu and Ortiz [3] by using Tau-Lines method and El-Hawary [4] by using El-Gendi-Lines method and Brandt et al. [5] by using multigrid methods. |
|---|---|
| ISSN: | 0020-7160 1029-0265 |
| DOI: | 10.1080/00207169408804351 |