Learned Two-Step Iterative Shrinkage Thresholding Algorithm for Deep Compressive Sensing

Deep unrolling architectures have revitalized compressive sensing (CS) by seamlessly blending deep neural networks with traditional optimization-based reconstruction algorithms. In pursuit of an efficient and deep interpretable approach, we propose LTwIST for CS problem, a novel deep unrolling frame...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on circuits and systems for video technology Ročník 34; číslo 5; s. 3943 - 3956
Hlavní autori: Gan, Hongping, Wang, Xiaoyang, He, Lijun, Liu, Jie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1051-8215, 1558-2205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deep unrolling architectures have revitalized compressive sensing (CS) by seamlessly blending deep neural networks with traditional optimization-based reconstruction algorithms. In pursuit of an efficient and deep interpretable approach, we propose LTwIST for CS problem, a novel deep unrolling framework that draws inspiration from the well-known two-step iterative shrinkage thresholding (TwIST) algorithm. LTwIST uses a trainable sensing matrix to adaptively learn structural information in images, and introduces a customized U-block architecture to solve the proximal mapping of nonlinear transformations connected with the sparsity-inducing regularizer. Specifically, each iteration recovery step of LTwIST corresponds to an iterative update step of the traditional TwIST algorithm. Moreover, the proposed method is designed to learn all the parameters end-to-end without manual tuning such as shrinkable thresholds, step sizes, etc. As a result, LTwIST obviates the need for manual parameter optimization, allows for high-quality image recovery and provides unambiguous interpretability. Moreover, our proposed LTwIST is also applicable to CS-based magnetic resonance imaging and exhibits a strong reconstruction performance. Extensive experiments on several public benchmark datasets demonstrate that the proposed LTwIST outperforms existing state-of-the-art deep CS methods by considerable margins in terms of quality evaluation metrics and visual performance. Our code is available on LTwIST.
AbstractList Deep unrolling architectures have revitalized compressive sensing (CS) by seamlessly blending deep neural networks with traditional optimization-based reconstruction algorithms. In pursuit of an efficient and deep interpretable approach, we propose LTwIST for CS problem, a novel deep unrolling framework that draws inspiration from the well-known two-step iterative shrinkage thresholding (TwIST) algorithm. LTwIST uses a trainable sensing matrix to adaptively learn structural information in images, and introduces a customized U-block architecture to solve the proximal mapping of nonlinear transformations connected with the sparsity-inducing regularizer. Specifically, each iteration recovery step of LTwIST corresponds to an iterative update step of the traditional TwIST algorithm. Moreover, the proposed method is designed to learn all the parameters end-to-end without manual tuning such as shrinkable thresholds, step sizes, etc. As a result, LTwIST obviates the need for manual parameter optimization, allows for high-quality image recovery and provides unambiguous interpretability. Moreover, our proposed LTwIST is also applicable to CS-based magnetic resonance imaging and exhibits a strong reconstruction performance. Extensive experiments on several public benchmark datasets demonstrate that the proposed LTwIST outperforms existing state-of-the-art deep CS methods by considerable margins in terms of quality evaluation metrics and visual performance. Our code is available on LTwIST.
Author Liu, Jie
Wang, Xiaoyang
He, Lijun
Gan, Hongping
Author_xml – sequence: 1
  givenname: Hongping
  orcidid: 0000-0002-4853-5077
  surname: Gan
  fullname: Gan, Hongping
  email: ganhongping@nwpu.edu.cn
  organization: School of Software, Northwestern Polytechnical University (NPU), Xi'an, China
– sequence: 2
  givenname: Xiaoyang
  orcidid: 0009-0001-5599-1740
  surname: Wang
  fullname: Wang, Xiaoyang
  email: wxyang@mail.nwpu.edu.cn
  organization: School of Software, Northwestern Polytechnical University (NPU), Xi'an, China
– sequence: 3
  givenname: Lijun
  orcidid: 0000-0001-9000-845X
  surname: He
  fullname: He, Lijun
  email: lijunhe@nwpu.edu.cn
  organization: School of Software, Northwestern Polytechnical University (NPU), Xi'an, China
– sequence: 4
  givenname: Jie
  orcidid: 0000-0003-2587-9210
  surname: Liu
  fullname: Liu, Jie
  email: lucky_jiel@nwpu.edu.cn
  organization: School of Software, Northwestern Polytechnical University (NPU), Xi'an, China
BookMark eNp9kLtOw0AQRVcIJJLADyAKS9QO-7R3y8i8IkWiiEF01toexw6O1-w6IP6ezaNAFFRzi3tmNGeMTjvTAUJXBE8Jweo2TZav6ZRiyqaMUcE4PkEjIoQMKcXi1GcsSCgpEedo7NwaY8Ilj0fobQHadlAG6ZcJlwP0wXwAq4fmE4JlbZvuXa8gSGsLrjZt2XSrYNaujG2GehNUxgZ34JnEbHrfcHsKOudrF-is0q2Dy-OcoJeH-zR5ChfPj_NktggLqqIhVAVQlTNKS6lFXBWKMx4xDVEeF5znERY-lFBwwVUOXGMsNeFQMVGRmBPOJujmsLe35mMLbsjWZms7fzJjWDCqpJLMt-ShVVjjnIUqK5rBf2m6weqmzQjOdh6zvcds5zE7evQo_YP2ttlo-_0_dH2AGgD4BVAZiYixH0zxgS8
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_patcog_2025_111974
crossref_primary_10_1109_JSEN_2025_3565292
crossref_primary_10_1109_TCSVT_2024_3399764
crossref_primary_10_1109_TCSVT_2024_3397012
crossref_primary_10_1007_s40747_025_01963_0
crossref_primary_10_1109_JSEN_2025_3583291
crossref_primary_10_1109_LGRS_2025_3547408
crossref_primary_10_1016_j_dsp_2025_105002
crossref_primary_10_1109_TCSVT_2025_3543824
crossref_primary_10_1016_j_dsp_2025_105413
crossref_primary_10_1109_TETCI_2024_3437171
crossref_primary_10_1109_TIM_2025_3554865
crossref_primary_10_1016_j_cmpb_2025_108995
crossref_primary_10_1109_TCI_2025_3572286
crossref_primary_10_1109_LSP_2025_3547666
crossref_primary_10_1109_JIOT_2025_3580548
crossref_primary_10_1016_j_patcog_2025_112022
crossref_primary_10_1109_TIP_2025_3533198
crossref_primary_10_3390_jimaging11050139
Cites_doi 10.1109/TCSVT.2016.2587398
10.1109/MSP.2007.914728
10.1109/TCSVT.2018.2879983
10.1109/TCSVT.2016.2540073
10.1109/ACSSC.2008.5074472
10.1109/ICASSP.2008.4518498
10.1007/978-3-319-10602-1_48
10.1109/TCSVT.2018.2886310
10.1109/CVPR.2018.00196
10.1109/CVPR52688.2022.01688
10.1145/3065386
10.1109/TCSVT.2023.3261542
10.1109/TIP.2020.3015545
10.1109/TCI.2019.2948732
10.1109/TIP.2019.2928136
10.1109/TIP.2020.3044472
10.1109/ICCV.2001.937655
10.1007/978-3-319-46475-6_25
10.1109/TIT.2016.2556683
10.1109/TIP.2006.881959
10.1137/080716542
10.1109/TIT.2006.871582
10.1007/978-3-319-24574-4_28
10.1016/j.neucom.2019.05.006
10.1109/CVPR.2016.55
10.1109/JSTSP.2020.2977507
10.1109/TCI.2023.3244396
10.1117/1.3600632
10.1109/TCSVT.2019.2898908
10.1109/CVPR.2018.00070
10.1109/TIT.2011.2177632
10.5244/C.26.135
10.1109/TIP.2007.909319
10.1109/TIP.2015.2419084
10.1109/MSP.2022.3217936
10.1109/TCSVT.2017.2697972
10.1137/S003614450037906X
10.1109/MSP.2019.2953993
10.1109/TIP.2010.2076294
10.1109/TMI.2017.2760978
10.1109/TCYB.2021.3127657
10.1109/TIP.2020.3023629
10.1002/jmri.1183
10.1109/TPAMI.2018.2883941
10.1609/aaai.v32i1.11869
10.1109/TCI.2023.3241551
10.1109/TCSVT.2016.2527181
10.1109/TIP.2023.3263100
10.1109/TIP.2021.3086049
10.48550/ARXIV.1706.03762
10.1109/TIP.2020.3005515
10.1109/TIP.2022.3217365
10.1109/TCSVT.2019.2935127
10.1109/TCSVT.2019.2939370
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2023.3325340
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 3956
ExternalDocumentID 10_1109_TCSVT_2023_3325340
10286563
Genre orig-research
GrantInformation_xml – fundername: Basic Research Programs of Taicang
  grantid: TC2022JC19
– fundername: National Natural Science Foundation of China
  grantid: 62101455; 62201463
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: G2022WD01007
  funderid: 10.13039/501100012226
– fundername: Natural Science Basic Research Program of Shaanxi Province
  grantid: 2022JQ-615
  funderid: 10.13039/501100017596
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-9ce29b322d8a57fc943463ae6b7c44b605b7cdec4549be4a008a14ef35f174143
IEDL.DBID RIE
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221132000060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Mon Sep 01 14:14:55 EDT 2025
Sat Nov 29 01:44:25 EST 2025
Tue Nov 18 21:37:44 EST 2025
Wed Aug 27 02:05:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-9ce29b322d8a57fc943463ae6b7c44b605b7cdec4549be4a008a14ef35f174143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9000-845X
0000-0003-2587-9210
0009-0001-5599-1740
0000-0002-4853-5077
PQID 3053298983
PQPubID 85433
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2023_3325340
crossref_primary_10_1109_TCSVT_2023_3325340
ieee_primary_10286563
proquest_journals_3053298983
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Zbontar (ref59) 2018
ref17
ref16
ref19
ref18
Metzler (ref47); 30
ref51
ref50
ref46
ref45
ref48
ref41
ref44
ref43
ref49
ref8
Wu (ref42); 97
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
Babacan (ref24)
ref39
ref38
ref23
Li (ref2) 2010
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref15
  doi: 10.1109/TCSVT.2016.2587398
– ident: ref40
  doi: 10.1109/MSP.2007.914728
– ident: ref4
  doi: 10.1109/TCSVT.2018.2879983
– ident: ref12
  doi: 10.1109/TCSVT.2016.2540073
– ident: ref22
  doi: 10.1109/ACSSC.2008.5074472
– ident: ref25
  doi: 10.1109/ICASSP.2008.4518498
– ident: ref51
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref13
  doi: 10.1109/TCSVT.2018.2886310
– ident: ref33
  doi: 10.1109/CVPR.2018.00196
– ident: ref49
  doi: 10.1109/CVPR52688.2022.01688
– ident: ref58
  doi: 10.1145/3065386
– ident: ref7
  doi: 10.1109/TCSVT.2023.3261542
– ident: ref10
  doi: 10.1109/TIP.2020.3015545
– volume: 97
  start-page: 6850
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref42
  article-title: Deep compressed sensing
– ident: ref34
  doi: 10.1109/TCI.2019.2948732
– ident: ref31
  doi: 10.1109/TIP.2019.2928136
– ident: ref45
  doi: 10.1109/TIP.2020.3044472
– volume: 30
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref47
  article-title: Learned D-AMP: Principled neural network based compressive image recovery
– ident: ref55
  doi: 10.1109/ICCV.2001.937655
– ident: ref56
  doi: 10.1007/978-3-319-46475-6_25
– volume-title: An Efficient Algorithm for Total Variation Regularization With Applications to the Single Pixel Camera and Compressive Sensing
  year: 2010
  ident: ref2
– ident: ref20
  doi: 10.1109/TIT.2016.2556683
– ident: ref54
  doi: 10.1109/TIP.2006.881959
– ident: ref19
  doi: 10.1137/080716542
– ident: ref1
  doi: 10.1109/TIT.2006.871582
– ident: ref50
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref41
  doi: 10.1016/j.neucom.2019.05.006
– ident: ref30
  doi: 10.1109/CVPR.2016.55
– ident: ref35
  doi: 10.1109/JSTSP.2020.2977507
– ident: ref32
  doi: 10.1109/TCI.2023.3244396
– ident: ref53
  doi: 10.1117/1.3600632
– ident: ref9
  doi: 10.1109/TCSVT.2019.2898908
– ident: ref57
  doi: 10.1109/CVPR.2018.00070
– ident: ref23
  doi: 10.1109/TIT.2011.2177632
– ident: ref52
  doi: 10.5244/C.26.135
– ident: ref28
  doi: 10.1109/TIP.2007.909319
– ident: ref26
  doi: 10.1109/TIP.2015.2419084
– ident: ref17
  doi: 10.1109/MSP.2022.3217936
– ident: ref27
  doi: 10.1109/TCSVT.2017.2697972
– ident: ref18
  doi: 10.1137/S003614450037906X
– ident: ref6
  doi: 10.1109/MSP.2019.2953993
– ident: ref21
  doi: 10.1109/TIP.2010.2076294
– start-page: 110
  volume-title: Proc. 17th Eur. Signal Process. Conf.
  ident: ref24
  article-title: Non-convex priors in Bayesian compressed sensing
– ident: ref36
  doi: 10.1109/TMI.2017.2760978
– ident: ref44
  doi: 10.1109/TCYB.2021.3127657
– ident: ref43
  doi: 10.1109/TIP.2020.3023629
– ident: ref39
  doi: 10.1002/jmri.1183
– ident: ref37
  doi: 10.1109/TPAMI.2018.2883941
– ident: ref38
  doi: 10.1609/aaai.v32i1.11869
– ident: ref3
  doi: 10.1109/TCI.2023.3241551
– ident: ref11
  doi: 10.1109/TCSVT.2016.2527181
– ident: ref48
  doi: 10.1109/TIP.2023.3263100
– ident: ref16
  doi: 10.1109/TIP.2021.3086049
– ident: ref29
  doi: 10.48550/ARXIV.1706.03762
– ident: ref8
  doi: 10.1109/TIP.2020.3005515
– ident: ref46
  doi: 10.1109/TIP.2022.3217365
– year: 2018
  ident: ref59
  article-title: FastMRI: An open dataset and benchmarks for accelerated MRI
  publication-title: arXiv:1811.08839
– ident: ref5
  doi: 10.1109/TCSVT.2019.2935127
– ident: ref14
  doi: 10.1109/TCSVT.2019.2939370
SSID ssj0014847
Score 2.552114
Snippet Deep unrolling architectures have revitalized compressive sensing (CS) by seamlessly blending deep neural networks with traditional optimization-based...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3943
SubjectTerms Algorithms
Artificial neural networks
Compressive sensing
deep learning
Image quality
Image reconstruction
Iterative algorithms
Magnetic resonance imaging
Matching pursuit algorithms
Optimization
Parameters
Quality assessment
Recovery
Regeneration
Sensors
Transformers
TwIST
Title Learned Two-Step Iterative Shrinkage Thresholding Algorithm for Deep Compressive Sensing
URI https://ieeexplore.ieee.org/document/10286563
https://www.proquest.com/docview/3053298983
Volume 34
WOSCitedRecordID wos001221132000060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62eNCDz4rVKjl4k_Sxye5mj6VaFKQIXaW3ZTc7fWDdSh_6953JbktBFLzlkAlLvmQem5lvGLvBKEPFsYlFql1HKDxTIkFDJnyH2NGM1kliSVyf_F5PDwbBc1GsbmthAMAmn0GdhvYtP52ZFf0qa5AxRP9DlljJ9728WGvzZKC07SaG_kJLaDRk6wqZZtAIO_3XsE6NwutSOq6kPx1bVsi2Vfmhi62B6R7-89OO2EHhSfJ2Dv0x24HshO1v8QuesoFlT4WUh18zQflc_NGSKKOG4_0xznlDbcJDhHNRvELx9nQ0m0-W43eO3iy_A5QhlWGzZUmK8t2zUYW9dO_DzoMoWikI4wTeUgQGnCDBy5vq2PWHhljhPBmDl_hGqQRjGhykYBSGiwmoGD2DuKVgKN0hhizoU52xcjbL4JxxpTGeBumAp-j268Q4Xpriuk3XBNBSVdZab21kCp5xancxjWy80QwiC0dEcEQFHFV2u5H5yFk2_pxdIQC2ZuZ7X2W1NYRRcRMXkaTWF9QkU178InbJ9nB1lWcx1lh5OV_BFds1n8vJYn5tD9k3HLHNng
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCB5xCDATlwQxlbk3bpEQETiDEhUdBuVZt6DzE2tA34-9hZhyYhkLj1ELdVnPiR2N8HcEpZhk4Sm8jM-J7UtKZkSo5M1jxGR7PGpKkDcW3Umk3TaoUPebO664VBRFd8hmV-dHf52dC-81HZOTtDij_UIiwzdVbervV9aaCN4xOjiKEqDbmyWY9MJTyPLh-fozJThZeV8nzFZx1zfsgRq_ywxs7F1Df_-XNbsJHHkuJiqvxtWMDBDqzPIQzuQsvhp2Imos-h5IoucetglMnGiccujXkheyIiUug4v4cSF_3OcNSbdF8FxbPiCkmGjYarl2UprngfdArwVL-OLm9kTqYgrRcGExla9MKUtm9mEr_WtowLF6gEg7RmtU4pq6GHDK2mhDFFnVBskFQ1tpXfpqSFoqo9WBoMB7gPQhvKqFF5GGje_ya1XpBl9N6Kb0Os6iJUZ1Mb2xxpnAkv-rHLOCph7NQRszriXB1FOPuWeZvibPw5usAKmBs5nfsilGYqjPO9OI4Vk18wTaY6-EXsBFZvovtG3Lht3h3CGn1JT2saS7A0Gb3jEazYj0lvPDp2C-4L_ZvQ5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learned+Two-Step+Iterative+Shrinkage+Thresholding+Algorithm+for+Deep+Compressive+Sensing&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Gan%2C+Hongping&rft.au=Wang%2C+Xiaoyang&rft.au=He%2C+Lijun&rft.au=Liu%2C+Jie&rft.date=2024-05-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=34&rft.issue=5&rft.spage=3943&rft.epage=3956&rft_id=info:doi/10.1109%2FTCSVT.2023.3325340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2023_3325340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon