FSpGEMM: A Framework for Accelerating Sparse General Matrix-Matrix Multiplication Using Gustavson's Algorithm on FPGAs
General sparse matrix-matrix multiplication (SpGEMM) is integral to many high-performance computing (HPC) and machine learning applications. However, prior field-programmable gate array (FPGA)-based SpGEMM accelerators either use the inner product algorithm with wasted and costly operations or Gusta...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems Jg. 32; H. 4; S. 1 - 0 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1063-8210, 1557-9999 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | General sparse matrix-matrix multiplication (SpGEMM) is integral to many high-performance computing (HPC) and machine learning applications. However, prior field-programmable gate array (FPGA)-based SpGEMM accelerators either use the inner product algorithm with wasted and costly operations or Gustavson's algorithm with a cache-based hardware architecture suffering from long-latency cache miss penalties and limited to embedded devices. In this work, we propose framework for accelerating SpGEMM (FSpGEMM), an OpenCL-based SpGEMM framework for accelerating Gustvason's algorithm that includes an FPGA kernel implementing a throughput-optimized and scalable hardware architecture compatible with high-bandwidth memory (HBM) or traditional DDR-based memory. In addition, to address the irregular memory access patterns incurred by Gustavson's algorithm, we propose a new buffering scheme tailored to Gustavson's algorithm enabled by a new compressed sparse vector (CSV) format for representing sparse matrices and a row reordering technique as a preprocessing step to improve data reuse, and consequently, resource utilization. The proposed framework includes a host program implementing preprocessing functions for reordering input matrices and storing them in the proposed CSV format for further use. We implemented FSpGEMM using Intel FPGA SDK for OpenCL and experimented with a benchmark of sparse matrices selected from the SuiteSparse Matrix Collection on a Bittware 520N-MX FPGA board. The results show that the reordering technique improves the performance on average by 20.3% compared with the baseline. Finally, FSpGEMM outperforms the state-of-the-art (SOTA) FPGA implementation by an average of 2.23<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> in terms of execution cycles with the same benchmark and memory system configuration for a fair comparison. |
|---|---|
| AbstractList | General sparse matrix–matrix multiplication (SpGEMM) is integral to many high-performance computing (HPC) and machine learning applications. However, prior field-programmable gate array (FPGA)-based SpGEMM accelerators either use the inner product algorithm with wasted and costly operations or Gustavson’s algorithm with a cache-based hardware architecture suffering from long-latency cache miss penalties and limited to embedded devices. In this work, we propose framework for accelerating SpGEMM (FSpGEMM), an OpenCL-based SpGEMM framework for accelerating Gustvason’s algorithm that includes an FPGA kernel implementing a throughput-optimized and scalable hardware architecture compatible with high-bandwidth memory (HBM) or traditional DDR-based memory. In addition, to address the irregular memory access patterns incurred by Gustavson’s algorithm, we propose a new buffering scheme tailored to Gustavson’s algorithm enabled by a new compressed sparse vector (CSV) format for representing sparse matrices and a row reordering technique as a preprocessing step to improve data reuse, and consequently, resource utilization. The proposed framework includes a host program implementing preprocessing functions for reordering input matrices and storing them in the proposed CSV format for further use. We implemented FSpGEMM using Intel FPGA SDK for OpenCL and experimented with a benchmark of sparse matrices selected from the SuiteSparse Matrix Collection on a Bittware 520N-MX FPGA board. The results show that the reordering technique improves the performance on average by 20.3% compared with the baseline. Finally, FSpGEMM outperforms the state-of-the-art (SOTA) FPGA implementation by an average of [Formula Omitted] in terms of execution cycles with the same benchmark and memory system configuration for a fair comparison. General sparse matrix-matrix multiplication (SpGEMM) is integral to many high-performance computing (HPC) and machine learning applications. However, prior field-programmable gate array (FPGA)-based SpGEMM accelerators either use the inner product algorithm with wasted and costly operations or Gustavson's algorithm with a cache-based hardware architecture suffering from long-latency cache miss penalties and limited to embedded devices. In this work, we propose framework for accelerating SpGEMM (FSpGEMM), an OpenCL-based SpGEMM framework for accelerating Gustvason's algorithm that includes an FPGA kernel implementing a throughput-optimized and scalable hardware architecture compatible with high-bandwidth memory (HBM) or traditional DDR-based memory. In addition, to address the irregular memory access patterns incurred by Gustavson's algorithm, we propose a new buffering scheme tailored to Gustavson's algorithm enabled by a new compressed sparse vector (CSV) format for representing sparse matrices and a row reordering technique as a preprocessing step to improve data reuse, and consequently, resource utilization. The proposed framework includes a host program implementing preprocessing functions for reordering input matrices and storing them in the proposed CSV format for further use. We implemented FSpGEMM using Intel FPGA SDK for OpenCL and experimented with a benchmark of sparse matrices selected from the SuiteSparse Matrix Collection on a Bittware 520N-MX FPGA board. The results show that the reordering technique improves the performance on average by 20.3% compared with the baseline. Finally, FSpGEMM outperforms the state-of-the-art (SOTA) FPGA implementation by an average of 2.23<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> in terms of execution cycles with the same benchmark and memory system configuration for a fair comparison. |
| Author | Quraishi, Masudul Hassan Riera, Michael Tavakoli, Erfan Bank Ren, Fengbo |
| Author_xml | – sequence: 1 givenname: Erfan Bank orcidid: 0000-0002-3248-9301 surname: Tavakoli fullname: Tavakoli, Erfan Bank organization: Arizona State University, Tempe, AZ, USA – sequence: 2 givenname: Michael surname: Riera fullname: Riera, Michael organization: Arizona State University, Tempe, AZ, USA – sequence: 3 givenname: Masudul Hassan orcidid: 0000-0001-6939-1669 surname: Quraishi fullname: Quraishi, Masudul Hassan organization: Arizona State University, Tempe, AZ, USA – sequence: 4 givenname: Fengbo orcidid: 0000-0002-6509-8753 surname: Ren fullname: Ren, Fengbo organization: Arizona State University, Tempe, AZ, USA |
| BookMark | eNp9kE1PxCAQhonRxM8_YDyQePDUFSiU4q0xu9VkN5qsem1YCop2SwXWj38v63owHuQyZOZ9ZpJnH2z3rtcAHGM0whiJ87uH6fx6RBChozxnjAqxBfYwYzwT6W2nPyryrCQY7YL9EJ4RwpQKtAfeJvOhHs9mF7CCEy-X-t35F2ich5VSutNeRts_wvkgfdCw1n3qdHAmo7cf2abA2aqLduisSlnXw_uwJupViPItuP4swKp7dN7GpyVM48ltXYVDsGNkF_TRTz0A95Px3eVVNr2pry-raaaIKGImZLvARmlJaVG0SPCclYZzrgmhWFJjUgrhkrZcLQrFeEsXZSsEXRjMuGlJfgBON3sH715XOsTm2a18n042JG0jDCMmUopsUsq7ELw2zeDtUvrPBqNm7bf59tus_TY_fhNU_oGUjd8Gope2-x892aBWa_3rFsUClzz_AjRGi1Y |
| CODEN | IEVSE9 |
| CitedBy_id | crossref_primary_10_1109_TVLSI_2024_3497166 crossref_primary_10_1109_TVLSI_2025_3558895 crossref_primary_10_1145_3687480 crossref_primary_10_3390_mi16010101 |
| Cites_doi | 10.1109/HPCC.2008.96 10.1109/HPCA.2018.00067 10.1145/3332466.3374546 10.1137/1.9780898719505 10.1145/3582016.3582047 10.1145/3445814.3446702 10.1016/0196-6774(89)90005-9 10.1007/s11265-022-01821-z 10.1002/9781119079231 10.1109/HPCA47549.2020.00030 10.1145/3503221.3508431 10.1145/3293883.3295712 10.1137/S0895479894278952 10.1109/TCAD.2023.3281719 10.1137/130948811 10.1109/ICPP.2017.19 10.1145/3140659.3080254 10.1109/IPDPS.2014.47 10.1109/FCCM48280.2020.00028 10.1109/IPDPS.2008.4536313 10.1145/3208040.3208062 10.1145/3293883.3295701 10.1109/ICPR.2018.8545462 10.1109/ASAP.2017.7995254 10.1007/978-1-4615-8675-3_14 10.1145/3332466.3374521 10.1145/3458744.3473352 10.1109/MM.2019.2930057 10.1016/j.micpro.2011.05.005 10.1002/cta.796 10.1109/IPDPS.2014.125 10.1145/2049662.2049663 10.1109/JSSC.2019.2960480 10.1145/1583991.1584053 10.1145/331532.331562 10.1109/CIT.2010.208 10.23919/DATE56975.2023.10136958 10.1109/MICRO50266.2020.00068 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TVLSI.2024.3355499 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9999 |
| EndPage | 0 |
| ExternalDocumentID | 10_1109_TVLSI_2024_3355499 10419187 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: IIS/CPS-1652038 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 3EH 5VS AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 ICLAB IFJZH VH1 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c296t-9adb1fcea4466d097358f777e2241a4ff2960184d7cb6c57d4b8d994bf157fd23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001168601500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-8210 |
| IngestDate | Sun Nov 30 05:23:11 EST 2025 Sat Nov 29 03:36:21 EST 2025 Tue Nov 18 22:11:35 EST 2025 Wed Aug 27 02:17:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-9adb1fcea4466d097358f777e2241a4ff2960184d7cb6c57d4b8d994bf157fd23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6939-1669 0000-0002-6509-8753 0000-0002-3248-9301 |
| PQID | 2973251059 |
| PQPubID | 85424 |
| PageCount | 0 |
| ParticipantIDs | crossref_primary_10_1109_TVLSI_2024_3355499 proquest_journals_2973251059 crossref_citationtrail_10_1109_TVLSI_2024_3355499 ieee_primary_10419187 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on very large scale integration (VLSI) systems |
| PublicationTitleAbbrev | TVLSI |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 Anzt (ref42) ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref39 ref38 ref19 ref18 Naumov (ref16) ref24 Briggs (ref1) 2000 ref23 ref45 ref26 ref25 ref20 ref41 ref22 ref21 ref43 (ref44) 2022 ref28 ref27 ref29 ref8 Dalton (ref17) 2014 ref9 ref4 ref3 Biookaghazadeh (ref5) ref6 Karypis (ref37) 1998 ref40 Jamro (ref7) 2014; 33 |
| References_xml | – volume-title: Intel FPGA SDK for Opencl Pro Edition: Programming Guide year: 2022 ident: ref44 – ident: ref35 doi: 10.1109/HPCC.2008.96 – ident: ref12 doi: 10.1109/HPCA.2018.00067 – ident: ref29 doi: 10.1145/3332466.3374546 – volume-title: A Multigrid Tutorial year: 2000 ident: ref1 doi: 10.1137/1.9780898719505 – ident: ref27 doi: 10.1145/3582016.3582047 – ident: ref15 doi: 10.1145/3445814.3446702 – start-page: 1 volume-title: Proc. USENIX Workshop Hot Topics Edge Comput. ident: ref5 article-title: Are FPGAs suitable for edge computing? – ident: ref2 doi: 10.1016/0196-6774(89)90005-9 – ident: ref32 doi: 10.1007/s11265-022-01821-z – ident: ref4 doi: 10.1002/9781119079231 – start-page: 7–1 volume-title: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices year: 1998 ident: ref37 – ident: ref13 doi: 10.1109/HPCA47549.2020.00030 – ident: ref23 doi: 10.1145/3503221.3508431 – ident: ref30 doi: 10.1145/3293883.3295712 – ident: ref34 doi: 10.1137/S0895479894278952 – ident: ref9 doi: 10.1109/TCAD.2023.3281719 – ident: ref19 doi: 10.1137/130948811 – volume: 33 start-page: 667 issue: 3 year: 2014 ident: ref7 article-title: The algorithms for FPGA implementation of sparse matrices multiplication publication-title: Comput. Informat. – ident: ref18 doi: 10.1109/ICPP.2017.19 – ident: ref3 doi: 10.1145/3140659.3080254 – ident: ref21 doi: 10.1109/IPDPS.2014.47 – ident: ref8 doi: 10.1109/FCCM48280.2020.00028 – ident: ref40 doi: 10.1109/IPDPS.2008.4536313 – ident: ref39 doi: 10.1145/3208040.3208062 – volume-title: CUSP: Generic Parallel Algorithms for Sparse Matrix and Graph Computations, Version 0.5.0 year: 2014 ident: ref17 – ident: ref20 doi: 10.1145/3293883.3295701 – ident: ref25 doi: 10.1109/ICPR.2018.8545462 – ident: ref26 doi: 10.1109/ASAP.2017.7995254 – ident: ref36 doi: 10.1007/978-1-4615-8675-3_14 – ident: ref22 doi: 10.1145/3332466.3374521 – ident: ref28 doi: 10.1145/3458744.3473352 – ident: ref24 doi: 10.1109/MM.2019.2930057 – volume-title: Proc. GPU Technol. Conf. ident: ref16 article-title: Cusparse library – ident: ref33 doi: 10.1016/j.micpro.2011.05.005 – ident: ref6 doi: 10.1002/cta.796 – ident: ref41 doi: 10.1109/IPDPS.2014.125 – ident: ref11 doi: 10.1145/2049662.2049663 – ident: ref14 doi: 10.1109/JSSC.2019.2960480 – ident: ref38 doi: 10.1145/1583991.1584053 – ident: ref31 doi: 10.1145/331532.331562 – ident: ref43 doi: 10.1109/CIT.2010.208 – ident: ref45 doi: 10.23919/DATE56975.2023.10136958 – ident: ref10 doi: 10.1109/MICRO50266.2020.00068 – start-page: 75 volume-title: Proc. SpringSim (HPS) ident: ref42 article-title: Accelerating the LOBPCG method on GPUs using a blocked sparse matrix vector product |
| SSID | ssj0014490 |
| Score | 2.429994 |
| Snippet | General sparse matrix-matrix multiplication (SpGEMM) is integral to many high-performance computing (HPC) and machine learning applications. However, prior... General sparse matrix–matrix multiplication (SpGEMM) is integral to many high-performance computing (HPC) and machine learning applications. However, prior... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Benchmarks Computer architecture Computer memory Embedded systems Field programmable gate arrays Field-programmable gate array (FPGA) Format general sparse matrix–matrix multiplication (SpGEMM) Graphics processing units Gustavson’s algorithm Hardware Indexes Machine learning Mathematical analysis Matrix algebra Matrix converters Memory management Multiplication Network latency OpenCL Performance enhancement Preprocessing reconfigurable computing Resource utilization Sparse matrices Sparsity |
| Title | FSpGEMM: A Framework for Accelerating Sparse General Matrix-Matrix Multiplication Using Gustavson's Algorithm on FPGAs |
| URI | https://ieeexplore.ieee.org/document/10419187 https://www.proquest.com/docview/2973251059 |
| Volume | 32 |
| WOSCitedRecordID | wos001168601500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9999 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014490 issn: 1063-8210 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5u-KAPXidOp-RB8EEye0mbxrci6xTcGGzK3kqayxzMbeyGP98k7eZAFHxqoUkp_Zqe8-Wc8x0AbihjXiBciqgvAoQ9RyIWYYG0qVaYyDDkSthmE6Tdjvp92imK1W0tjJTSJp_Jujm1sXwx4UuzVaZXONb0IiIlUCIkzIu1NiEDjGkuPRD6KNJEZl0h49D73ttL91lzQQ_XfWNfrdDrtxWybVV-_IutgUkO__loR-Cg8CRhnEN_DHbk-ATsb-kLnoJV0p02G63WA4xhss7CgtpNhTHn2t4Y9McD2J1qdithoUANW0a1_xPlB9jKMw6LrT1oUwxg05RdrbSrfjuH8WgwmQ0X7x9QX046zXheAa9Jo_f4hIpGC4h7NFwgykTmKi6ZCe4KI-ATRIoQIo19Z1gpPcrRVFAQnoU8IAJnkaAUZ8oNiBKefwbK48lYngNIPGx8vEzxwDQY194AJ5kfBjJkGaaSVYG7fvEpL1TITTOMUWrZiENTC1ZqwEoLsKrgbjNnmmtw_Dm6YuDZGpkjUwW1NcBpsU7nqenc5Vkf8-KXaZdgz9w9T9apgfJitpRXYJevFsP57Np-gl95qthR |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5tBWnjgR9bJzrY8APSHiZDmzhxzFuESEE0FVI7xFuU-AcglbZqS8WfP5_jAhJi0p4SKbYS5Ytzd7677wM4FGUZRKojqAhVRFnQ1rRMmKLWVBvGdRxLo5zYBO_3k5sbceWb1V0vjNbaFZ_pIzx1uXw1kY-4VWZXOLPhRcI_whpKZ_l2reekAWOiJh-IQ5rYUGbVI9MWx8Pr3uDCRoMBOwrRwjqq1xc75IRV3vyNnYnJtv7z4bZh0_uSJK3B34EPevwFNl4xDH6FZTaYds_y_ISkJFvVYRHrqJJUSmtxEP_xLRlMbXyrieegJjny9j_R-kDyuubQb-4RV2RAuth4tbTO-q85SUe3k9n94u6B2MvZVTedN-FPdjY8PadeaoHKQMQLKkpVdYzUJaZ3FVL4RInhnGu08CUzxo5q22BQcVnFMuKKVYkSglWmE3GjgvAbNMaTsd4FwgOGXl5lZIQS49YfkLwK40jHZcWELlvQWb34QnoecpTDGBUuHmmLwoFVIFiFB6sFv5_nTGsWjn-ObiI8r0bWyLRgfwVw4VfqvEDtrsB5md_fmXYAn86Hea_oXfQv9-Az3qku3dmHxmL2qH_Aulwu7uezn-5z_Avnk9ua |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FSpGEMM%3A+A+Framework+for+Accelerating+Sparse+General+Matrix%E2%80%93Matrix+Multiplication+Using+Gustavson%E2%80%99s+Algorithm+on+FPGAs&rft.jtitle=IEEE+transactions+on+very+large+scale+integration+%28VLSI%29+systems&rft.au=Bank+Tavakoli%2C+Erfan&rft.au=Riera%2C+Michael&rft.au=Quraishi%2C+Masudul+Hassan&rft.au=Ren%2C+Fengbo&rft.date=2024-04-01&rft.issn=1063-8210&rft.eissn=1557-9999&rft.volume=32&rft.issue=4&rft.spage=633&rft.epage=644&rft_id=info:doi/10.1109%2FTVLSI.2024.3355499&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVLSI_2024_3355499 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8210&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8210&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8210&client=summon |