Improved Variable Forgetting Factor Proportionate RLS Algorithm with Sparse Penalty and Fast Implementation Using DCD Iterations

the proportionate recursive least squares (PRLS) algorithm has shown faster convergence and better performance than both proportionate updating (PU) mechanism based least mean squares (LMS) algorithms and RLS algorithms with a sparse regularization term. In this paper, we propose a variable forgetti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:China communications Ročník 21; číslo 10; s. 1 - 12
Hlavní autoři: Zhen, Han, Fengrui, Zhang, Yu, Zhang, Yanfeng, Han, Peng, Jiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: China Institute of Communications 01.10.2024
GNSS Research Center,Wuhan University,Wuhan 430072,China%School of Information Science and Technology,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
Témata:
ISSN:1673-5447
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:the proportionate recursive least squares (PRLS) algorithm has shown faster convergence and better performance than both proportionate updating (PU) mechanism based least mean squares (LMS) algorithms and RLS algorithms with a sparse regularization term. In this paper, we propose a variable forgetting factor (VFF) PRLS algorithm with a sparse penalty, e.g., l 1 -norm, for sparse identification. To reduce the computation complexity of the proposed algorithm, a fast implementation method based on dichotomous coordinate descent (DCD) algorithm is also derived. Simulation results indicate superior performance of the proposed algorithm.
ISSN:1673-5447
DOI:10.23919/JCC.ja.2022-0367