Improved Variable Forgetting Factor Proportionate RLS Algorithm with Sparse Penalty and Fast Implementation Using DCD Iterations
the proportionate recursive least squares (PRLS) algorithm has shown faster convergence and better performance than both proportionate updating (PU) mechanism based least mean squares (LMS) algorithms and RLS algorithms with a sparse regularization term. In this paper, we propose a variable forgetti...
Uloženo v:
| Vydáno v: | China communications Ročník 21; číslo 10; s. 1 - 12 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
China Institute of Communications
01.10.2024
GNSS Research Center,Wuhan University,Wuhan 430072,China%School of Information Science and Technology,Shijiazhuang Tiedao University,Shijiazhuang 050043,China |
| Témata: | |
| ISSN: | 1673-5447 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | the proportionate recursive least squares (PRLS) algorithm has shown faster convergence and better performance than both proportionate updating (PU) mechanism based least mean squares (LMS) algorithms and RLS algorithms with a sparse regularization term. In this paper, we propose a variable forgetting factor (VFF) PRLS algorithm with a sparse penalty, e.g., l 1 -norm, for sparse identification. To reduce the computation complexity of the proposed algorithm, a fast implementation method based on dichotomous coordinate descent (DCD) algorithm is also derived. Simulation results indicate superior performance of the proposed algorithm. |
|---|---|
| ISSN: | 1673-5447 |
| DOI: | 10.23919/JCC.ja.2022-0367 |