First-Person Video Domain Adaptation with Multi-Scene Cross-Site Datasets and Attention-Based Methods

Unsupervised Domain Adaptation (UDA) can transfer knowledge from labeled source data to unlabeled target data of the same categories. However, UDA for first-person video action recognition is an under-explored problem, with a lack of benchmark datasets and limited consideration of first-person video...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology Vol. 33; no. 12; p. 1
Main Authors: Liu, Xianyuan, Zhou, Shuo, Lei, Tao, Jiang, Ping, Chen, Zhixiang, Lu, Haiping
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1051-8215, 1558-2205
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Unsupervised Domain Adaptation (UDA) can transfer knowledge from labeled source data to unlabeled target data of the same categories. However, UDA for first-person video action recognition is an under-explored problem, with a lack of benchmark datasets and limited consideration of first-person video characteristics. Existing benchmark datasets provide videos with a single activity scene, e.g. kitchen, and similar global video statistics. However, multiple activity scenes and different global video statistics are still essential for developing robust UDA networks for real-world applications. To this end, we first introduce two first-person video domain adaptation datasets: ADL-7 and GTEA_KITCHEN-6. To the best of our knowledge, they are the first to provide multi-scene and cross-site settings for UDA problem on first-person video action recognition, promoting diversity. They provide five more domains based on the original three from existing datasets, enriching data for this area. They are also compatible with existing datasets, ensuring scalability. First-person videos have unique challenges, i.e. actions tend to occur in hand-object interaction areas. Therefore, networks paying more attention to such areas can benefit common feature learning in UDA. Attention mechanisms can endow networks with the ability to allocate resources adaptively for the important parts of the inputs and fade out the rest. Hence, we introduce channel-temporal attention modules to capture the channel-wise and temporal-wise relationships and model their inter-dependencies important to this characteristic. Moreover, we propose a Channel-Temporal Attention Network (CTAN) to integrate these modules into existing architectures. CTAN outperforms baselines on the new datasets and one existing dataset, EPIC-8.
AbstractList Unsupervised Domain Adaptation (UDA) can transfer knowledge from labeled source data to unlabeled target data of the same categories. However, UDA for first-person video action recognition is an under-explored problem, with a lack of benchmark datasets and limited consideration of first-person video characteristics. Existing benchmark datasets provide videos with a single activity scene, e.g. kitchen, and similar global video statistics. However, multiple activity scenes and different global video statistics are still essential for developing robust UDA networks for real-world applications. To this end, we first introduce two first-person video domain adaptation datasets: ADL-7 and GTEA_KITCHEN-6. To the best of our knowledge, they are the first to provide multi-scene and cross-site settings for UDA problem on first-person video action recognition, promoting diversity. They provide five more domains based on the original three from existing datasets, enriching data for this area. They are also compatible with existing datasets, ensuring scalability. First-person videos have unique challenges, i.e. actions tend to occur in hand-object interaction areas. Therefore, networks paying more attention to such areas can benefit common feature learning in UDA. Attention mechanisms can endow networks with the ability to allocate resources adaptively for the important parts of the inputs and fade out the rest. Hence, we introduce channel-temporal attention modules to capture the channel-wise and temporal-wise relationships and model their inter-dependencies important to this characteristic. Moreover, we propose a Channel-Temporal Attention Network (CTAN) to integrate these modules into existing architectures. CTAN outperforms baselines on the new datasets and one existing dataset, EPIC-8.
Author Lei, Tao
Chen, Zhixiang
Liu, Xianyuan
Jiang, Ping
Lu, Haiping
Zhou, Shuo
Author_xml – sequence: 1
  givenname: Xianyuan
  orcidid: 0000-0002-3084-519X
  surname: Liu
  fullname: Liu, Xianyuan
  organization: Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China
– sequence: 2
  givenname: Shuo
  orcidid: 0000-0002-8069-2814
  surname: Zhou
  fullname: Zhou, Shuo
  organization: Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
– sequence: 3
  givenname: Tao
  orcidid: 0000-0002-0900-1582
  surname: Lei
  fullname: Lei, Tao
  organization: Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China
– sequence: 4
  givenname: Ping
  orcidid: 0000-0002-8679-2189
  surname: Jiang
  fullname: Jiang, Ping
  organization: Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China
– sequence: 5
  givenname: Zhixiang
  surname: Chen
  fullname: Chen, Zhixiang
  organization: Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
– sequence: 6
  givenname: Haiping
  orcidid: 0000-0002-0349-2181
  surname: Lu
  fullname: Lu, Haiping
  organization: Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
BookMark eNp9kE9LAzEQxYNUsK1-AfEQ8JyaP5vd5Fhbq4JFobXXJbuZpSntbk1SxG_vru1BPHiZGYb3m-G9AerVTQ0IXTM6Yozqu-VksVqOOOViJLhiacbOUJ9JqQjnVPbamUpGFGfyAg1C2FDKEpVkfQQz50Mkb-BDU-OVs9DgabMzrsZja_bRRNfuP11c4_lhGx1ZlFADnvgmBLJwEfDURBMgBmxqi8cxQt0h5L5dWjyHuG5suETnldkGuDr1IXqfPSwnT-Tl9fF5Mn4hJddpJKqglRZSVFZZVZiqTEvblkqZQrPSsqJQqTYyA12UCS1E2moUr3TW-hImS8UQ3R7v7n3zcYAQ801z8HX7MudK6ySVSnYqdVSVnQsPVV66o9HojdvmjOZdqPlPqHkXan4KtUX5H3Tv3c74r_-hmyPkAOAXwITONBXfcMmGoA
CODEN ITCTEM
CitedBy_id crossref_primary_10_3390_app132312823
crossref_primary_10_3390_mti9070066
crossref_primary_10_1123_jmpb_2024_0045
Cites_doi 10.1109/CVPR46437.2021.00966
10.1109/TCSVT.2019.2963318
10.1109/CVPR.2018.00829
10.1109/TCSVT.2021.3067449
10.1109/ICRA.2018.8461249
10.1109/TCSVT.2021.3118060
10.1109/TCSVT.2021.3075470
10.1109/CVPR.2012.6248010
10.1109/CVPR.2009.5206848
10.1109/TCSVT.2022.3192135
10.1145/3511808.3557676
10.1109/ICCV.2019.00194
10.1109/CVPR.2017.107
10.1109/TCSVT.2018.2872503
10.1109/TPAMI.2019.2913372
10.1007/s11263-021-01470-y
10.1109/CVPR52688.2022.01351
10.1109/ICRA.2017.7989247
10.1109/CVPR46437.2021.01322
10.1109/TCSVT.2020.3046625
10.1609/aaai.v34i07.6854
10.1109/CVPR.2015.7298625
10.1109/TPAMI.2018.2868685
10.1109/ICCVW.2019.00461
10.1007/978-3-030-58610-2_40
10.1109/TCSVT.2020.2975845
10.1109/CVPR.2016.287
10.1016/j.patcog.2022.108725
10.1109/TCSVT.2019.2912988
10.1007/978-3-030-01246-5_49
10.1109/ICME.2019.00103
10.1007/s11263-021-01531-2
10.1109/TPAMI.2020.2991965
10.1609/aaai.v30i1.10306
10.1109/CVPR.2018.00675
10.1109/CVPR46437.2021.00687
10.1007/978-3-642-00296-0_5
10.1007/978-3-319-46493-0_36
10.1109/CVPR42600.2020.00325
10.1109/CVPR42600.2020.01098
10.1109/TCSVT.2018.2842206
10.1109/ICCV.2019.00642
10.1109/JAS.2021.1004210
10.1007/978-3-030-01234-2_1
10.1016/j.patcog.2020.107255
10.1109/CVPR.2017.502
10.1109/TCSVT.2021.3099943
10.1109/tpami.2020.3015894
10.1109/CVPR42600.2020.00099
10.1109/ICCV48922.2021.01336
10.1109/TPAMI.2018.2868668
10.1016/j.neucom.2021.11.081
10.1109/CVPR.2011.5995444
10.1109/TPAMI.2018.2881114
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2023.3281671
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1
ExternalDocumentID 10_1109_TCSVT_2023_3281671
10139790
Genre orig-research
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 201904910380
  funderid: 10.13039/501100004543
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-8b0f9353fd8d8bafc6cdfc6f8ab91cd1bb869a57e9bc40b36baf82f972153a763
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001121618300048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Sat Sep 06 06:04:18 EDT 2025
Sat Nov 29 01:44:23 EST 2025
Tue Nov 18 22:35:25 EST 2025
Mon Aug 04 05:48:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-8b0f9353fd8d8bafc6cdfc6f8ab91cd1bb869a57e9bc40b36baf82f972153a763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8679-2189
0000-0002-3084-519X
0000-0002-8069-2814
0000-0002-0349-2181
0000-0002-0900-1582
0000-0002-5636-6082
PQID 2899465856
PQPubID 85433
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2023_3281671
crossref_primary_10_1109_TCSVT_2023_3281671
ieee_primary_10139790
proquest_journals_2899465856
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
de la Torre (ref20) 2009
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
Van der Maaten (ref59) 2008; 9
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Long (ref49)
Sahoo (ref27); 34
Bousmalis (ref44); 29
Vaswani (ref46); 30
ref45
ref48
ref47
ref42
ref41
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
Long (ref50); 31
ref31
ref30
ref33
ref32
ref2
ref1
ref39
Jamal (ref51); 2
ref38
Ganin (ref21) 2015; 17
ref24
ref23
ref26
ref25
ref63
ref22
ref28
ref29
ref60
ref62
ref61
References_xml – ident: ref25
  doi: 10.1109/CVPR46437.2021.00966
– ident: ref15
  doi: 10.1109/TCSVT.2019.2963318
– ident: ref13
  doi: 10.1109/CVPR.2018.00829
– ident: ref29
  doi: 10.1109/TCSVT.2021.3067449
– ident: ref11
  doi: 10.1109/ICRA.2018.8461249
– ident: ref38
  doi: 10.1109/TCSVT.2021.3118060
– ident: ref2
  doi: 10.1109/TCSVT.2021.3075470
– ident: ref18
  doi: 10.1109/CVPR.2012.6248010
– ident: ref56
  doi: 10.1109/CVPR.2009.5206848
– volume: 34
  start-page: 23386
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Contrast and mix: Temporal contrastive video domain adaptation with background mixing
– ident: ref40
  doi: 10.1109/TCSVT.2022.3192135
– volume: 30
  start-page: 5998
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref46
  article-title: Attention is all you need
– ident: ref57
  doi: 10.1145/3511808.3557676
– ident: ref34
  doi: 10.1109/ICCV.2019.00194
– ident: ref41
  doi: 10.1109/CVPR.2017.107
– volume: 31
  start-page: 1647
  volume-title: Proc. NIPS
  ident: ref50
  article-title: Conditional adversarial domain adaptation
– ident: ref31
  doi: 10.1109/TCSVT.2018.2872503
– start-page: 97
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref49
  article-title: Learning transferable features with deep adaptation networks
– ident: ref32
  doi: 10.1109/TPAMI.2019.2913372
– ident: ref10
  doi: 10.1007/s11263-021-01470-y
– ident: ref61
  doi: 10.1109/CVPR52688.2022.01351
– ident: ref12
  doi: 10.1109/ICRA.2017.7989247
– volume: 17
  start-page: 2030
  issue: 1
  year: 2015
  ident: ref21
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– ident: ref45
  doi: 10.1109/CVPR46437.2021.01322
– ident: ref28
  doi: 10.1109/TCSVT.2020.3046625
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: ref59
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref52
  doi: 10.1609/aaai.v34i07.6854
– ident: ref55
  doi: 10.1109/CVPR.2015.7298625
– year: 2009
  ident: ref20
  article-title: Detailed human data acquisition of kitchen activities: The CMU-multimodal activity database (CMU-MMAC)
– ident: ref22
  doi: 10.1109/TPAMI.2018.2868685
– ident: ref17
  doi: 10.1109/ICCVW.2019.00461
– ident: ref23
  doi: 10.1007/978-3-030-58610-2_40
– ident: ref9
  doi: 10.1109/TCSVT.2020.2975845
– ident: ref54
  doi: 10.1109/CVPR.2016.287
– ident: ref60
  doi: 10.1016/j.patcog.2022.108725
– ident: ref1
  doi: 10.1109/TCSVT.2019.2912988
– ident: ref53
  doi: 10.1007/978-3-030-01246-5_49
– ident: ref35
  doi: 10.1109/ICME.2019.00103
– ident: ref16
  doi: 10.1007/s11263-021-01531-2
– ident: ref3
  doi: 10.1109/TPAMI.2020.2991965
– ident: ref42
  doi: 10.1609/aaai.v30i1.10306
– ident: ref7
  doi: 10.1109/CVPR.2018.00675
– ident: ref5
  doi: 10.1109/CVPR46437.2021.00687
– ident: ref58
  doi: 10.1007/978-3-642-00296-0_5
– ident: ref43
  doi: 10.1007/978-3-319-46493-0_36
– ident: ref30
  doi: 10.1109/CVPR42600.2020.00325
– ident: ref47
  doi: 10.1109/CVPR42600.2020.01098
– volume: 2
  start-page: 5
  issue: 3
  volume-title: Proc. BMVC
  ident: ref51
  article-title: Deep domain adaptation in action space
– ident: ref14
  doi: 10.1109/TCSVT.2018.2842206
– ident: ref24
  doi: 10.1109/ICCV.2019.00642
– ident: ref63
  doi: 10.1109/JAS.2021.1004210
– ident: ref33
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref48
  doi: 10.1016/j.patcog.2020.107255
– ident: ref6
  doi: 10.1109/CVPR.2017.502
– ident: ref39
  doi: 10.1109/TCSVT.2021.3099943
– ident: ref37
  doi: 10.1109/tpami.2020.3015894
– ident: ref36
  doi: 10.1109/CVPR42600.2020.00099
– ident: ref26
  doi: 10.1109/ICCV48922.2021.01336
– ident: ref8
  doi: 10.1109/TPAMI.2018.2868668
– ident: ref4
  doi: 10.1016/j.neucom.2021.11.081
– volume: 29
  start-page: 343
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref44
  article-title: Domain separation networks
– ident: ref19
  doi: 10.1109/CVPR.2011.5995444
– ident: ref62
  doi: 10.1109/TPAMI.2018.2881114
SSID ssj0014847
Score 2.4744053
Snippet Unsupervised Domain Adaptation (UDA) can transfer knowledge from labeled source data to unlabeled target data of the same categories. However, UDA for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Action recognition
Activity recognition
Adaptation
Benchmark testing
Benchmarks
channel-temporal attention
Data mining
Datasets
first-person vision
Image reconstruction
Kitchens
Knowledge management
Modules
Networks
Representation learning
Scalability
Target recognition
Training
unsupervised domain adaptation
Video
Title First-Person Video Domain Adaptation with Multi-Scene Cross-Site Datasets and Attention-Based Methods
URI https://ieeexplore.ieee.org/document/10139790
https://www.proquest.com/docview/2899465856
Volume 33
WOSCitedRecordID wos001121618300048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46POjBnxOnU3LwJpltk6XJcW4OL47B5tit5FehoN1YO_9-k7QbE1HwUkpJSujXvPclL-99ANxHrsZ6YAjSVGjkSp4jYW0gCiJBSCxIF6fSi03EoxGbz_m4Tlb3uTDGGH_4zHTcrY_l64Vau60yO8MdX-F2hb4fx3GVrLUNGRDm1cQsXwgRs45skyET8MdpfzKbdpxQeAdHLKRx-M0LeVmVH7bYO5jhyT-HdgqOayYJexX0Z2DP5OfgaKe-4AUww8ySOzT2rBrOMm0WcLD4EFkOe1osqyg8dFux0Cfioomypg_23ZjRxJJROBCldXNlAUWuYa8sq8OR6Mk-1PDVq08XTfA2fJ72X1Ctq4BUxGmJmAxSji0KmmkmRaqo0vaSMiF5qHQoJaNcdGPDpSKBxNS2YVHq6vx0sbAG6RI08kVurgDkkcIqNU4sOCCpFIIKSWWcYoVlRBhugXDznRNVFx132hfviV98BDzx2CQOm6TGpgUetn2WVcmNP1s3HRo7LSsgWqC9wTOpp2WRuNUlsZyrS69_6XYDDt3bqwMrbdAoV2tzCw7UZ5kVqzv_x30BRknTsA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yBfXB68R5zYNvktk2aZo8zs2huA1hU3wruRUK2g1X_f0maTcUUfCllJLQ0K8550tOzvkAuIhcjfXAEKSp0MiVPEfC2kAURIKQRJAYZ9KLTSSjEXt-5g91srrPhTHG-MNnpu1ufSxfT9W72yqzM9zxFW5X6KsxIVFYpWstgwaEeT0xyxhCxKwrW-TIBPxq0h0_TdpOKryNIxbSJPzmh7ywyg9r7F1Mf_ufg9sBWzWXhJ0K_F2wYoo9sPmlwuA-MP3c0jv04Hk1fMq1mcLe9FXkBexoMavi8NBtxkKfiovGyho_2HVjRmNLR2FPlNbRlXMoCg07ZVkdj0TX9qGGQ68_PW-Cx_7NpHuLamUFpCJOS8RkkHFscdBMMykyRZW2l4wJyUOlQykZ5SJODJeKBBJT24ZFmav0E2NhTdIBaBTTwhwCyCOFVWacXHBAMikEFZLKJMMKy4gw3ALh4junqi477tQvXlK__Ah46rFJHTZpjU0LXC77zKqiG3-2bjo0vrSsgGiBkwWeaT0x56lbXxLLumJ69Eu3c7B-OxkO0sHd6P4YbLg3VcdXTkCjfHs3p2BNfZT5_O3M_32fcAbW9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-Person+Video+Domain+Adaptation+With+Multi-Scene+Cross-Site+Datasets+and+Attention-Based+Methods&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Liu%2C+Xianyuan&rft.au=Zhou%2C+Shuo&rft.au=Lei%2C+Tao&rft.au=Jiang%2C+Ping&rft.date=2023-12-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=33&rft.issue=12&rft.spage=7774&rft.epage=7788&rft_id=info:doi/10.1109%2FTCSVT.2023.3281671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2023_3281671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon