Joint Power and 3D Trajectory Optimization for UAV-enabled Wireless Powered Communication Networks with Obstacles
Unmanned aerial vehicle (UAV)-enabled wireless powered communication networks (WPCNs) are promising technologies in 5G/6G wireless communications, while there are several challenges about UAV power allocation and scheduling to enhance the energy utilization efficiency, considering the existence of o...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on communications Jg. 71; H. 4; S. 1 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0090-6778, 1558-0857 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Unmanned aerial vehicle (UAV)-enabled wireless powered communication networks (WPCNs) are promising technologies in 5G/6G wireless communications, while there are several challenges about UAV power allocation and scheduling to enhance the energy utilization efficiency, considering the existence of obstacles. In this work, we consider a UAV-enabled WPCN scenario that a UAV needs to cover the ground wireless devices (WDs). During the coverage process, the UAV needs to collect data from the WDs and charge them simultaneously. To this end, we formulate a joint-UAV power and three-dimensional (3D) trajectory optimization problem (JUPTTOP) to simultaneously increase the total number of the covered WDs, increase the time efficiency, and reduce the total flying distance of UAV so as to improve the energy utilization efficiency in the network. Due to the difficulties and complexities, we decompose it into two sub optimization problems, which are the UAV power allocation optimization problem (UPAOP) and UAV 3D trajectory optimization problem (UTTOP), respectively. Then, we propose an improved non-dominated sorting genetic algorithm-II with K -means initialization operator and Variable dimension mechanism (NSGA-II-KV) for solving the UPAOP. For UTTOP, we first introduce a pretreatment method, and then use an improved particle swarm optimization with Normal distribution initialization, Genetic mechanism, Differential mechanism and Pursuit operator (PSO-NGDP) to deal with this sub optimization problem. Simulation results verify the effectiveness of the proposed strategies under different scales and settings of the networks. |
|---|---|
| AbstractList | Unmanned aerial vehicle (UAV)-enabled wireless powered communication networks (WPCNs) are promising technologies in 5G/6G wireless communications, while there are several challenges about UAV power allocation and scheduling to enhance the energy utilization efficiency, considering the existence of obstacles. In this work, we consider a UAV-enabled WPCN scenario that a UAV needs to cover the ground wireless devices (WDs). During the coverage process, the UAV needs to collect data from the WDs and charge them simultaneously. To this end, we formulate a joint-UAV power and three-dimensional (3D) trajectory optimization problem (JUPTTOP) to simultaneously increase the total number of the covered WDs, increase the time efficiency, and reduce the total flying distance of UAV so as to improve the energy utilization efficiency in the network. Due to the difficulties and complexities, we decompose it into two sub optimization problems, which are the UAV power allocation optimization problem (UPAOP) and UAV 3D trajectory optimization problem (UTTOP), respectively. Then, we propose an improved non-dominated sorting genetic algorithm-II with K -means initialization operator and Variable dimension mechanism (NSGA-II-KV) for solving the UPAOP. For UTTOP, we first introduce a pretreatment method, and then use an improved particle swarm optimization with Normal distribution initialization, Genetic mechanism, Differential mechanism and Pursuit operator (PSO-NGDP) to deal with this sub optimization problem. Simulation results verify the effectiveness of the proposed strategies under different scales and settings of the networks. Unmanned aerial vehicle (UAV)-enabled wireless powered communication networks (WPCNs) are promising technologies in 5G/6G wireless communications, while there are several challenges about UAV power allocation and scheduling to enhance the energy utilization efficiency, considering the existence of obstacles. In this work, we consider a UAV-enabled WPCN scenario that a UAV needs to cover the ground wireless devices (WDs). During the coverage process, the UAV needs to collect data from the WDs and charge them simultaneously. To this end, we formulate a joint-UAV power and three-dimensional (3D) trajectory optimization problem (JUPTTOP) to simultaneously increase the total number of the covered WDs, increase the time efficiency, and reduce the total flying distance of UAV so as to improve the energy utilization efficiency in the network. Due to the difficulties and complexities, we decompose it into two sub optimization problems, which are the UAV power allocation optimization problem (UPAOP) and UAV 3D trajectory optimization problem (UTTOP), respectively. Then, we propose an improved non-dominated sorting genetic algorithm-II with [Formula Omitted]-means initialization operator and Variable dimension mechanism (NSGA-II-KV) for solving the UPAOP. For UTTOP, we first introduce a pretreatment method, and then use an improved particle swarm optimization with Normal distribution initialization, Genetic mechanism, Differential mechanism and Pursuit operator (PSO-NGDP) to deal with this sub optimization problem. Simulation results verify the effectiveness of the proposed strategies under different scales and settings of the networks. |
| Author | Yuen, Chau Liu, Yanheng Fan, Junsong Liang, Shuang Pan, Hongyang Sun, Geng |
| Author_xml | – sequence: 1 givenname: Hongyang surname: Pan fullname: Pan, Hongyang organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 2 givenname: Yanheng orcidid: 0000-0001-9826-5266 surname: Liu fullname: Liu, Yanheng organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 3 givenname: Geng orcidid: 0000-0001-7802-4908 surname: Sun fullname: Sun, Geng organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 4 givenname: Junsong surname: Fan fullname: Fan, Junsong organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 5 givenname: Shuang orcidid: 0000-0001-7651-505X surname: Liang fullname: Liang, Shuang organization: School of Information Science and Technology, Northeast Normal University, Changchun, China – sequence: 6 givenname: Chau orcidid: 0000-0002-9307-2120 surname: Yuen fullname: Yuen, Chau organization: Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, Singapore |
| BookMark | eNp9kMtOwzAQRS0EEqXwA4iFJdYpYzsPZ4nKW0BZFFhGtjMRLm1cbFdV-XpSwgKxYDXS6J55nAOy27oWCTlmMGIMyrPpePLwMOLAxUjwFPKy2CEDlmUyAZkVu2QAUEKSF4XcJwchzAAgBSEG5OPO2TbSJ7dGT1VbU3FBp17N0ETnN3SyjHZhP1W0rqWN8_T5_CXBVuk51vTVepxjCD3dNcZusVi11vTxR4xr598DXdv4Ric6RGW6-CHZa9Q84NFPHZLnq8vp-Ca5n1zfjs_vE8PLPCay1JrxhnOWFrI0PNOCozIiZVqXBrvrTS2MKQCLxoA2MpcCdVrUKBjoOhVDctrPXXr3scIQq5lb-bZbWXEJAtJMMtaleJ8y3oXgsamW3i6U31QMqq3a6ltttVVb_ajtIPkHMjZ-Px29svP_0ZMetYj4axcIzspcfAF9voqc |
| CODEN | IECMBT |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3538276 crossref_primary_10_3390_electronics13081592 crossref_primary_10_1109_OJVT_2025_3525781 crossref_primary_10_1109_TNSM_2025_3532080 crossref_primary_10_1109_TCCN_2024_3407096 crossref_primary_10_1109_JIOT_2025_3574332 crossref_primary_10_1109_TCCN_2024_3520557 crossref_primary_10_1109_TVT_2024_3461333 crossref_primary_10_1109_JIOT_2024_3397823 crossref_primary_10_3390_s23218771 crossref_primary_10_1016_j_comnet_2024_110842 crossref_primary_10_1371_journal_pone_0297066 crossref_primary_10_1109_JIOT_2025_3565782 crossref_primary_10_1109_JSEN_2023_3329483 crossref_primary_10_1109_JIOT_2025_3543823 crossref_primary_10_3390_drones7100628 crossref_primary_10_1109_TITS_2023_3296769 crossref_primary_10_1109_JIOT_2025_3532494 crossref_primary_10_1142_S2737480725500116 crossref_primary_10_1109_JIOT_2023_3323289 crossref_primary_10_3390_fi16070245 crossref_primary_10_1109_JIOT_2023_3285942 crossref_primary_10_1109_JIOT_2024_3386861 crossref_primary_10_1016_j_adhoc_2025_103757 crossref_primary_10_1016_j_adhoc_2025_103999 crossref_primary_10_1109_JIOT_2024_3516729 crossref_primary_10_1109_JIOT_2025_3532977 crossref_primary_10_1016_j_adhoc_2025_103953 crossref_primary_10_1109_TMC_2025_3579597 crossref_primary_10_1109_JIOT_2024_3371586 crossref_primary_10_1109_TAES_2024_3353724 crossref_primary_10_1109_COMST_2024_3425597 crossref_primary_10_1109_TMC_2024_3459896 crossref_primary_10_1109_TWC_2025_3561066 crossref_primary_10_1109_TVT_2024_3433606 crossref_primary_10_1109_JIOT_2024_3366580 crossref_primary_10_1109_JIOT_2025_3529904 crossref_primary_10_1109_JIOT_2025_3541715 crossref_primary_10_1016_j_comnet_2023_109986 crossref_primary_10_1109_JIOT_2024_3468888 crossref_primary_10_1038_s41598_025_06673_8 crossref_primary_10_1109_JIOT_2025_3533570 crossref_primary_10_1109_TSMC_2024_3349537 crossref_primary_10_1109_ACCESS_2025_3599579 crossref_primary_10_1109_JIOT_2025_3533016 crossref_primary_10_3390_jmse12101761 crossref_primary_10_1109_TMC_2025_3563072 crossref_primary_10_1109_TITS_2025_3543252 crossref_primary_10_1109_JIOT_2025_3531914 crossref_primary_10_1109_JIOT_2024_3363181 crossref_primary_10_1016_j_heliyon_2024_e26627 crossref_primary_10_1109_JPROC_2024_3404491 crossref_primary_10_1109_TCOMM_2024_3511952 crossref_primary_10_1109_TMC_2024_3350885 crossref_primary_10_1109_TVT_2024_3520500 crossref_primary_10_1016_j_comnet_2023_110074 crossref_primary_10_1109_TNSE_2024_3488839 crossref_primary_10_1007_s12083_023_01584_9 crossref_primary_10_1186_s13634_023_01081_4 crossref_primary_10_1016_j_vehcom_2025_100938 crossref_primary_10_3390_fi17090401 crossref_primary_10_1109_TMC_2024_3432491 crossref_primary_10_3390_drones8050199 crossref_primary_10_1109_JIOT_2024_3453964 crossref_primary_10_1109_TWC_2023_3321648 crossref_primary_10_1109_JIOT_2025_3542473 crossref_primary_10_1109_TNSE_2025_3566140 crossref_primary_10_1109_JIOT_2024_3524243 |
| Cites_doi | 10.1109/ACCESS.2021.3132650 10.1109/AIKE.2018.00012 10.1109/JIOT.2022.3182798 10.1109/ACCESS.2022.3142529 10.1109/TETCI.2019.2939373 10.1109/ACCESS.2021.3105517 10.1109/TVT.2022.3150011 10.1109/TVT.2021.3097203 10.1109/TSP.2020.2967146 10.23919/JCC.2020.10.010 10.1109/JIOT.2018.2875446 10.1109/INFOCOMWKSHPS51825.2021.9484496 10.1109/TWC.2021.3108901 10.53106/160792642021072204003 10.1109/TEVC.2010.2053935 10.1016/j.eswa.2021.116464 10.1109/TNET.2012.2218123 10.1109/TWC.2012.113012.120500 10.1016/j.advengsoft.2017.07.002 10.1109/ACCESS.2020.3048021 10.1016/j.amc.2006.06.107 10.1109/TNET.2017.2786463 10.1007/s00521-015-1920-1 10.1109/TCYB.2014.2360752 10.1109/TVT.2021.3057397 10.1109/TWC.2015.2503334 10.1109/TNET.2021.3122130 10.1109/TGCN.2021.3068333 10.1016/j.comnet.2022.109196 10.1109/JIOT.2020.3016694 10.1109/TGCN.2017.2767203 10.1109/TEVC.2003.817234 10.1109/JIOT.2020.2999083 10.1109/ACCESS.2019.2962340 10.1109/TMC.2012.161 10.1109/TCOMM.2014.2359878 10.1109/JPROC.2019.2952892 10.1109/ACCESS.2019.2948384 10.1109/TWC.2019.2902559 10.21629/JSEE.2018.05.16 10.1016/j.comnet.2021.108573 10.1109/TCYB.2016.2517140 10.1109/TWC.2015.2506561 10.1109/TVT.2019.2927425 10.1109/TWC.2020.3035425 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCOMM.2023.3240697 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0857 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TCOMM_2023_3240697 10032196 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61872158; 62002133; 62172186; 62272194 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IES IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 ZCA 3EH 5VS AAYXX ABFSI ACKIV AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 IAAWW IBMZZ ICLAB IFJZH VH1 ZCG 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c296t-89bb12f2214789c25b32eac341bb9ce403cd3cc70e7fc0bc8683eb47de310bd43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 83 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000976725600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0090-6778 |
| IngestDate | Mon Jun 30 10:19:06 EDT 2025 Sat Nov 29 04:08:25 EST 2025 Tue Nov 18 22:31:17 EST 2025 Wed Aug 27 02:18:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-89bb12f2214789c25b32eac341bb9ce403cd3cc70e7fc0bc8683eb47de310bd43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9307-2120 0000-0001-9826-5266 0000-0001-7802-4908 0000-0001-7651-505X |
| PQID | 2803045811 |
| PQPubID | 85472 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TCOMM_2023_3240697 proquest_journals_2803045811 crossref_citationtrail_10_1109_TCOMM_2023_3240697 ieee_primary_10032196 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on communications |
| PublicationTitleAbbrev | TCOMM |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref13 doi: 10.1109/ACCESS.2021.3132650 – ident: ref37 doi: 10.1109/AIKE.2018.00012 – ident: ref27 doi: 10.1109/JIOT.2022.3182798 – ident: ref7 doi: 10.1109/ACCESS.2022.3142529 – ident: ref26 doi: 10.1109/TETCI.2019.2939373 – ident: ref34 doi: 10.1109/ACCESS.2021.3105517 – ident: ref20 doi: 10.1109/TVT.2022.3150011 – ident: ref33 doi: 10.1109/TVT.2021.3097203 – ident: ref29 doi: 10.1109/TSP.2020.2967146 – ident: ref10 doi: 10.23919/JCC.2020.10.010 – ident: ref9 doi: 10.1109/JIOT.2018.2875446 – ident: ref11 doi: 10.1109/INFOCOMWKSHPS51825.2021.9484496 – ident: ref45 doi: 10.1109/TWC.2021.3108901 – ident: ref31 doi: 10.53106/160792642021072204003 – ident: ref36 doi: 10.1109/TEVC.2010.2053935 – ident: ref43 doi: 10.1016/j.eswa.2021.116464 – ident: ref24 doi: 10.1109/TNET.2012.2218123 – ident: ref28 doi: 10.1109/TWC.2012.113012.120500 – ident: ref40 doi: 10.1016/j.advengsoft.2017.07.002 – ident: ref19 doi: 10.1109/ACCESS.2020.3048021 – ident: ref35 doi: 10.1016/j.amc.2006.06.107 – ident: ref23 doi: 10.1109/TNET.2017.2786463 – ident: ref39 doi: 10.1007/s00521-015-1920-1 – ident: ref42 doi: 10.1109/TCYB.2014.2360752 – ident: ref17 doi: 10.1109/TVT.2021.3057397 – ident: ref2 doi: 10.1109/TWC.2015.2503334 – ident: ref44 doi: 10.1109/TNET.2021.3122130 – ident: ref16 doi: 10.1109/TGCN.2021.3068333 – ident: ref30 doi: 10.1016/j.comnet.2022.109196 – ident: ref4 doi: 10.1109/JIOT.2020.3016694 – ident: ref12 doi: 10.1109/TGCN.2017.2767203 – ident: ref32 doi: 10.1109/TEVC.2003.817234 – ident: ref6 doi: 10.1109/JIOT.2020.2999083 – ident: ref14 doi: 10.1109/ACCESS.2019.2962340 – ident: ref22 doi: 10.1109/TMC.2012.161 – ident: ref3 doi: 10.1109/TCOMM.2014.2359878 – ident: ref25 doi: 10.1109/JPROC.2019.2952892 – ident: ref18 doi: 10.1109/ACCESS.2019.2948384 – ident: ref21 doi: 10.1109/TWC.2019.2902559 – ident: ref15 doi: 10.21629/JSEE.2018.05.16 – ident: ref38 doi: 10.1016/j.comnet.2021.108573 – ident: ref41 doi: 10.1109/TCYB.2016.2517140 – ident: ref1 doi: 10.1109/TWC.2015.2506561 – ident: ref5 doi: 10.1109/TVT.2019.2927425 – ident: ref8 doi: 10.1109/TWC.2020.3035425 |
| SSID | ssj0004033 |
| Score | 2.6560912 |
| Snippet | Unmanned aerial vehicle (UAV)-enabled wireless powered communication networks (WPCNs) are promising technologies in 5G/6G wireless communications, while there... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Autonomous aerial vehicles Barriers Communication networks Communications networks Efficiency energy consumption Energy utilization Genetic algorithms non-dominated sorting genetic algorithm-II Normal distribution Operators (mathematics) Optimization Particle swarm optimization Power management Renewable energy sources Resource management Sorting algorithms Three-dimensional displays Trajectory optimization unmanned aerial vehicle Unmanned aerial vehicles Uplink Wireless communications Wireless networks Wireless powered communication networks |
| Title | Joint Power and 3D Trajectory Optimization for UAV-enabled Wireless Powered Communication Networks with Obstacles |
| URI | https://ieeexplore.ieee.org/document/10032196 https://www.proquest.com/docview/2803045811 |
| Volume | 71 |
| WOSCitedRecordID | wos000976725600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-0857 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004033 issn: 0090-6778 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nTKTl4k8w2aZv0OKZDhH0cNtmt9CUpTGan-xD8703STjdEwVspeaX017z3krzf-yF0zaMUIioykgFVJKAABCKPEaBUqDgEbuyc2ATvdsVoFPdLsrrjwmitXfGZbthLd5avpnJpt8rMDPeYmWHRNtrmnBdkrW8SpMfKlpO2np2LFUPGi28HrV6n07BC4Q3mqJ58Iwo5WZUfvtgFmPbBP1_tEO2XmSRuFtAfoS2dH6O9tf6CJ-jtcTrOF7hvldBwmivM7rAJTs9up_4D94y7eCl5mNgkr3jYfCLakakUtmWxE-MGC2tzY4NKgrtF-fgc241c3AOTZNr6uioatu8HrQdSaiwQSeNoQUQM4NOMWrkiEUsaAqPGF5vYBhBLbT6qVExK7mmeSQ-kiATTEHClTV4IKmCnqJJPc32GcEZZACELdJQJe9pqMA91kAUpNav3NExryF9980SWDcitDsYkcQsRL04cTonFKSlxqqGbL5vXov3Gn6OrFpm1kQUoNVRfYZuUU3SeWFkue0rs--e_mF2gXfv0ok6njiqL2VJfoh35vhjPZ1fu7_sEEM3YXQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BQQIO7Iiy-sANpSS2kzjHCqjK0uVQELco4zhSEaTQBYm_x3ZSoEIgcYsijxLlxTNje948gJMwSDCgInMypKnDKaKDgcscpFSkkY-htrNiE2G7LR4eom5JVrdcGKWULT5TNXNpz_LTgZyYrTI9w12mZ1gwDws-59Qr6FpfNEiXlU0nTUV7KKYcGTc66513Wq2akQqvMUv2DGfikBVW-eGNbYhprP3z5dZhtcwlSb0AfwPmVL4JK986DG7B6_Wgn49J12ihkSRPCbsgOjw92r36d9LRDuO5ZGISnb6Su_q9oyydKiWmMPZJO8LCWt-YIZOQdlFAPiJmK5d0UKeZpsJuG-4al73zplOqLDiSRsHYERGiRzNqBItEJKmPjGpvrKMbYiSV_qgyZVKGrgoz6aIUgWAKeZgqnRliytkOVPJBrnaBZJRx9BlXQSbMeatG3Vc84wnV6_fET6rgTb95LMsW5EYJ4ym2SxE3ii1OscEpLnGqwumnzUvRgOPP0dsGmW8jC1CqcDDFNi4n6Sg2wlzmnNjz9n4xO4alZq91G99etW_2Ydk8qajaOYDKeDhRh7Ao38b90fDI_okfeUTbpA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Power+and+3D+Trajectory+Optimization+for+UAV-enabled+Wireless+Powered+Communication+Networks+with+Obstacles&rft.jtitle=IEEE+transactions+on+communications&rft.au=Pan%2C+Hongyang&rft.au=Liu%2C+Yanheng&rft.au=Sun%2C+Geng&rft.au=Fan%2C+Junsong&rft.date=2023-04-01&rft.pub=IEEE&rft.issn=0090-6778&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCOMM.2023.3240697&rft.externalDocID=10032196 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |