Fast Data-Driven Greedy Sensor Selection for Ridge Regression

We propose a data-driven sensor-selection algorithm for accurate estimation of the target variables from the selected measurements. The target variables are assumed to be estimated by a ridge-regression estimator, which is trained based on the data. The proposed algorithm greedily selects sensors fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal Jg. 25; H. 6; S. 10030 - 10045
Hauptverfasser: Sasaki, Yasuo, Yamada, Keigo, Nagata, Takayuki, Saito, Yuji, Nonomura, Taku
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 15.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1530-437X, 1558-1748
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We propose a data-driven sensor-selection algorithm for accurate estimation of the target variables from the selected measurements. The target variables are assumed to be estimated by a ridge-regression estimator, which is trained based on the data. The proposed algorithm greedily selects sensors for minimizing the cost function of the estimator. Sensor selection that prevents overfitting of the resulting estimator can be realized by setting a positive regularization parameter. The greedy solution is computed in quite a short time by using some recurrent relations that we derive. The effectiveness of the proposed algorithm is verified for artificial datasets that are generated from linear systems and a real-wold dataset that is aimed for the selection of pressure-sensor locations for estimating the yaw angle of a ground vehicle. The demonstration for the datasets reveals that the proposed algorithm computes a sensor set, resulting in more accurate estimation than existing data-driven selection algorithms in some conditions. Furthermore, it is confirmed that setting a positive regularization parameter in the proposed algorithm leads to accurate estimation when overfitting is problematic.
AbstractList We propose a data-driven sensor-selection algorithm for accurate estimation of the target variables from the selected measurements. The target variables are assumed to be estimated by a ridge-regression estimator, which is trained based on the data. The proposed algorithm greedily selects sensors for minimizing the cost function of the estimator. Sensor selection that prevents overfitting of the resulting estimator can be realized by setting a positive regularization parameter. The greedy solution is computed in quite a short time by using some recurrent relations that we derive. The effectiveness of the proposed algorithm is verified for artificial datasets that are generated from linear systems and a real-wold dataset that is aimed for the selection of pressure-sensor locations for estimating the yaw angle of a ground vehicle. The demonstration for the datasets reveals that the proposed algorithm computes a sensor set, resulting in more accurate estimation than existing data-driven selection algorithms in some conditions. Furthermore, it is confirmed that setting a positive regularization parameter in the proposed algorithm leads to accurate estimation when overfitting is problematic.
Author Yamada, Keigo
Nonomura, Taku
Nagata, Takayuki
Saito, Yuji
Sasaki, Yasuo
Author_xml – sequence: 1
  givenname: Yasuo
  orcidid: 0000-0003-0450-2764
  surname: Sasaki
  fullname: Sasaki, Yasuo
  email: sasaki.yasuo.g8@f.mail.nagoya-u.ac.jp
  organization: Department of Aerospace Engineering, Nagoya University, Nagoya, Japan
– sequence: 2
  givenname: Keigo
  orcidid: 0000-0001-8399-9574
  surname: Yamada
  fullname: Yamada, Keigo
  email: keigo.yamada.t5@dc.tohoku.ac.jp
  organization: Department of Aerospace Engineering, Tohoku University, Sendai, Japan
– sequence: 3
  givenname: Takayuki
  orcidid: 0000-0003-3644-4888
  surname: Nagata
  fullname: Nagata, Takayuki
  email: takayuki.nagata@mae.nagoya-u.ac.jp
  organization: Department of Aerospace Engineering, Nagoya University, Nagoya, Japan
– sequence: 4
  givenname: Yuji
  orcidid: 0000-0003-2804-8076
  surname: Saito
  fullname: Saito, Yuji
  email: yuji.saito@tohoku.ac.jp
  organization: Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
– sequence: 5
  givenname: Taku
  surname: Nonomura
  fullname: Nonomura, Taku
  email: nonomura@nagoya-u.jp
  organization: Department of Aerospace Engineering, Nagoya University, Nagoya, Japan
BookMark eNp9kE1Lw0AQhhepYFv9AYKHgOfU2WyS2Rw8SL9UikKr4G2ZJhOJ1KTupkL_vRvag3jwNB-8z3y8A9Grm5qFuJQwkhKym8fV9GkUQZSMVKIQIToRfZkkOpQY616XKwhjhW9nYuDcB4DMMMG-uJ2Ra4MJtRRObPXNdTC3zMU-WHHtGuvDhvO2auqg9NWyKt45WPK7Zed881yclrRxfHGMQ_E6m76M78PF8_xhfLcI8yhL21AD8BqiNGOigigGBSkXsVQ5lIhrrSElxERnhDrPdCoL7as1lOT1GbEaiuvD3K1tvnbsWvPR7GztVxolEaPu8cSr8KDKbeOc5dLkVUvd8a2lamMkmM4r03llOsQcvfKk_ENubfVJdv8vc3VgKmb-pdeoVazVD6e7ddA
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_LSENS_2025_3591066
Cites_doi 10.1109/JSEN.2023.3258223
10.1109/CDC.2010.5717225
10.1109/JSEN.2020.3013094
10.1109/TSP.2008.2007095
10.1016/0893-6080(91)90009-T
10.1093/oso/9780199296590.001.0001
10.1109/JSEN.2018.2887044
10.1109/ACCESS.2022.3194250
10.1007/978-3-030-68056-5
10.1145/1374376.1374384
10.1109/TAC.2021.3082502
10.1177/1475921719825601
10.1145/1791212.1791238
10.26868/25222708.2019.210916
10.1109/TSP.2016.2550005
10.1016/j.ymssp.2022.109957
10.3390/app11094216
10.1016/j.automatica.2016.12.025
10.1109/TSP.2019.2903017
10.1088/1748-9326/ac548f
10.1016/j.ymssp.2021.107619
10.1016/j.sigpro.2005.05.030
10.1109/TSP.2016.2573767
10.2322/tjsass.64.242
10.1016/j.ensm.2022.06.053
10.1007/s10115-012-0538-1
10.1109/TAC.2013.2257618
10.1109/TSP.2021.3063495
10.1214/17-AOS1679
10.1109/JSEN.2021.3073978
10.1007/s00332-022-09806-9
10.1201/9781420035933
10.1109/TIT.2004.834793
10.1109/TAC.2014.2351673
10.32604/cmes.2021.016603
10.1109/MCS.2018.2810460
10.1109/LCSYS.2018.2849611
10.1109/LSP.2014.2342198
10.1007/s00348-022-03471-0
10.1109/ACCESS.2021.3076186
10.1109/JSTSP.2009.2028381
10.1093/gji/ggad165
10.23919/ECC.2019.8795800
10.1109/TCNS.2015.2453711
10.1017/CBO9781139177801.004
10.1007/s12650-022-00855-6
10.1109/TSP.2022.3224643
10.1137/S0097539792240406
10.1109/TKDE.2014.2349910
10.1109/TSP.2022.3212150
10.1109/LSENS.2020.2999186
10.1109/CDC42340.2020.9304166
10.2514/6.2023-1944
10.1109/TC.2015.2395423
10.23919/ACC.2019.8814464
10.23919/ACC.2017.7962975
10.1109/ISIC.2016.7579985
10.1109/ACSSC.1993.342465
10.1016/j.jweia.2022.105043
10.1063/5.0049071
10.1007/BF01588971
10.1109/JSEN.2023.3328005
10.1109/ACCESS.2023.3291415
10.1109/TSP.2014.2379662
10.1109/CDC.2018.8619761
10.1109/TAC.2020.2973774
10.1109/ACCESS.2021.3067712
10.1109/TAC.2020.3044284
10.1109/BCI51272.2021.9385301
10.3390/s23135961
10.1109/LSP.2021.3050708
10.1109/TSP.2014.2299518
10.1093/gji/ggac443
10.4271/840300
10.1017/jfm.2021.948
10.1109/CDC.2014.7040017
10.1016/j.compchemeng.2012.05.010
10.1109/ISCIT.2009.5341219
10.1007/978-1-4615-7566-5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2025.3537702
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 10045
ExternalDocumentID 10_1109_JSEN_2025_3537702
10878348
Genre orig-research
GrantInformation_xml – fundername: Japan Society of the Promotion of Science KAKENHI
  grantid: 21J14180; 23K13348
  funderid: 10.13039/501100000646
– fundername: JST CREST
  grantid: JPMJCR1763
– fundername: Japan Science and Technology Agency (JST) Moonshot Research and Development Program
  grantid: JPMJMS2287
  funderid: 10.13039/501100013352
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c296t-800eb0269eaadaa40306ed413c0f77b8806a77589a78c9861d8758b0faaad9ae3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001445066200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:01:26 EDT 2025
Tue Nov 18 21:02:35 EST 2025
Sat Nov 29 08:04:40 EST 2025
Wed Aug 27 01:42:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-800eb0269eaadaa40306ed413c0f77b8806a77589a78c9861d8758b0faaad9ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8399-9574
0000-0003-3644-4888
0000-0003-0450-2764
0000-0003-2804-8076
PQID 3177220255
PQPubID 75733
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2025_3537702
crossref_primary_10_1109_JSEN_2025_3537702
ieee_primary_10878348
proquest_journals_3177220255
PublicationCentury 2000
PublicationDate 2025-03-15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
Das (ref76)
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
Yeo (ref2) 2022
ref48
ref47
ref42
ref41
ref85
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
Das (ref77) 2018; 19
ref1
ref38
ref71
ref70
ref73
ref72
Micchelli (ref67) 2006; 7
ref24
ref68
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
Gower (ref23)
Krause (ref39) 2008; 9
References_xml – ident: ref50
  doi: 10.1109/JSEN.2023.3258223
– ident: ref41
  doi: 10.1109/CDC.2010.5717225
– volume: 7
  start-page: 2651
  year: 2006
  ident: ref67
  article-title: Universal kernels
  publication-title: J. Mach. Learn. Res.
– ident: ref54
  doi: 10.1109/JSEN.2020.3013094
– ident: ref22
  doi: 10.1109/TSP.2008.2007095
– ident: ref68
  doi: 10.1016/0893-6080(91)90009-T
– ident: ref80
  doi: 10.1093/oso/9780199296590.001.0001
– ident: ref53
  doi: 10.1109/JSEN.2018.2887044
– ident: ref60
  doi: 10.1109/ACCESS.2022.3194250
– ident: ref83
  doi: 10.1007/978-3-030-68056-5
– ident: ref72
  doi: 10.1145/1374376.1374384
– volume: 9
  start-page: 235
  year: 2008
  ident: ref39
  article-title: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
  publication-title: J. Mach. Learn. Res.
– ident: ref37
  doi: 10.1109/TAC.2021.3082502
– ident: ref14
  doi: 10.1177/1475921719825601
– ident: ref18
  doi: 10.1145/1791212.1791238
– ident: ref65
  doi: 10.26868/25222708.2019.210916
– ident: ref20
  doi: 10.1109/TSP.2016.2550005
– ident: ref9
  doi: 10.1016/j.ymssp.2022.109957
– ident: ref4
  doi: 10.3390/app11094216
– ident: ref16
  doi: 10.1016/j.automatica.2016.12.025
– ident: ref48
  doi: 10.1109/TSP.2019.2903017
– ident: ref10
  doi: 10.1088/1748-9326/ac548f
– ident: ref58
  doi: 10.1016/j.ymssp.2021.107619
– ident: ref78
  doi: 10.1016/j.sigpro.2005.05.030
– ident: ref35
  doi: 10.1109/TSP.2016.2573767
– ident: ref5
  doi: 10.2322/tjsass.64.242
– ident: ref66
  doi: 10.1016/j.ensm.2022.06.053
– ident: ref61
  doi: 10.1007/s10115-012-0538-1
– ident: ref28
  doi: 10.1109/TAC.2013.2257618
– ident: ref62
  doi: 10.1109/TSP.2021.3063495
– ident: ref75
  doi: 10.1214/17-AOS1679
– ident: ref32
  doi: 10.1109/JSEN.2021.3073978
– ident: ref40
  doi: 10.1007/s00332-022-09806-9
– ident: ref69
  doi: 10.1201/9781420035933
– ident: ref71
  doi: 10.1109/TIT.2004.834793
– ident: ref29
  doi: 10.1109/TAC.2014.2351673
– ident: ref59
  doi: 10.32604/cmes.2021.016603
– ident: ref52
  doi: 10.1109/MCS.2018.2810460
– ident: ref25
  doi: 10.1109/LCSYS.2018.2849611
– ident: ref30
  doi: 10.1109/LSP.2014.2342198
– ident: ref6
  doi: 10.1007/s00348-022-03471-0
– ident: ref55
  doi: 10.1109/ACCESS.2021.3076186
– ident: ref3
  doi: 10.1109/JSTSP.2009.2028381
– ident: ref13
  doi: 10.1093/gji/ggad165
– ident: ref44
  doi: 10.23919/ECC.2019.8795800
– ident: ref43
  doi: 10.1109/TCNS.2015.2453711
– ident: ref74
  doi: 10.1017/CBO9781139177801.004
– ident: ref84
  doi: 10.1007/s12650-022-00855-6
– ident: ref49
  doi: 10.1109/TSP.2022.3224643
– ident: ref15
  doi: 10.1137/S0097539792240406
– ident: ref79
  doi: 10.1109/TKDE.2014.2349910
– ident: ref33
  doi: 10.1109/TSP.2022.3212150
– ident: ref56
  doi: 10.1109/LSENS.2020.2999186
– ident: ref45
  doi: 10.1109/CDC42340.2020.9304166
– ident: ref81
  doi: 10.2514/6.2023-1944
– ident: ref11
  doi: 10.1109/TC.2015.2395423
– ident: ref36
  doi: 10.23919/ACC.2019.8814464
– ident: ref19
  doi: 10.23919/ACC.2017.7962975
– start-page: 1057
  volume-title: Proc. 28th Int. Conf. Mach. Learn.
  ident: ref76
  article-title: Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection
– ident: ref26
  doi: 10.1109/ISIC.2016.7579985
– year: 2022
  ident: ref2
  article-title: Effcient magnetometer sensor array selection for signal reconstruction and brain source localization
  publication-title: arXiv:2205.10925
– ident: ref70
  doi: 10.1109/ACSSC.1993.342465
– ident: ref63
  doi: 10.1016/j.jweia.2022.105043
– ident: ref8
  doi: 10.1063/5.0049071
– start-page: 616
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: RSN: Randomized subspace Newton
– ident: ref73
  doi: 10.1007/BF01588971
– ident: ref51
  doi: 10.1109/JSEN.2023.3328005
– ident: ref38
  doi: 10.1109/ACCESS.2023.3291415
– ident: ref27
  doi: 10.1109/TSP.2014.2379662
– ident: ref34
  doi: 10.1109/CDC.2018.8619761
– ident: ref46
  doi: 10.1109/TAC.2020.2973774
– ident: ref57
  doi: 10.1109/ACCESS.2021.3067712
– ident: ref47
  doi: 10.1109/TAC.2020.3044284
– ident: ref85
  doi: 10.1109/BCI51272.2021.9385301
– ident: ref21
  doi: 10.3390/s23135961
– ident: ref24
  doi: 10.1109/LSP.2021.3050708
– ident: ref42
  doi: 10.1109/TSP.2014.2299518
– ident: ref12
  doi: 10.1093/gji/ggac443
– ident: ref82
  doi: 10.4271/840300
– ident: ref7
  doi: 10.1017/jfm.2021.948
– ident: ref31
  doi: 10.1109/CDC.2014.7040017
– volume: 19
  start-page: 74
  issue: 1
  year: 2018
  ident: ref77
  article-title: Approximate submodularity and its applications: Subset selection, sparse approximation and dictionary selection
  publication-title: J. Mach. Learn. Res.
– ident: ref1
  doi: 10.1016/j.compchemeng.2012.05.010
– ident: ref17
  doi: 10.1109/ISCIT.2009.5341219
– ident: ref64
  doi: 10.1007/978-1-4615-7566-5
SSID ssj0019757
Score 2.4300492
Snippet We propose a data-driven sensor-selection algorithm for accurate estimation of the target variables from the selected measurements. The target variables are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10030
SubjectTerms Accuracy
Algorithms
Computational modeling
Cost function
Datasets
Estimation
Greedy algorithms
Intelligent sensors
Keywords Greedy algorithm
Linear programming
Linear systems
Overfitting
Parameters
Regularization
ridge regression
sensor selection
Sensors
Training
Vectors
Title Fast Data-Driven Greedy Sensor Selection for Ridge Regression
URI https://ieeexplore.ieee.org/document/10878348
https://www.proquest.com/docview/3177220255
Volume 25
WOSCitedRecordID wos001445066200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50EdSDb3F90YMnoZq-8jh4EHURkUV8wN5K2kxVWLqyWwX_vZM0Kwui4KmFzkCZyWTyZV4ARyaTFSLZdxEnPExNwUNJjj7MIkksKLlC1zL_VvT7cjBQd75Y3dXCIKJLPsMT--pi-WZUvturMrJwaedCyHmYF4K3xVrfIQMlXFtPsmAWpokY-BBmxNTpzcNVn6BgnJ0kWSKEv0KZOiE3VeXHVuz8S2_1n3-2Biv-IBmct5pfhzmsN2B5pr3gBiz6Cecvn5tw1tOTJrjUjQ4vx3aHC2zGjfkMHgjHjsb0GLqkrDqgU2xwb6u4gnt8brNk6y146l09XlyHfnRCWMaKN-R3GBYErxRqbbROLTJAQw6rZJUQBRkt14KggtJClkryyBBukQWrNNErjck2dOpRjTsQlBUXpDMjdJykrIqKlGciZgUmKBJTZl1gU1nmpe8rbsdbDHOHL5jKrfhzK_7ci78Lx98sb21Tjb-It6y8ZwhbUXdhf6qx3NvdJKfTkIgtd7b7C9seLNnvNo0syvah04zf8QAWyo_mdTI-dEvqC6dExyA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ygrSHpnmUbLtpfOgp4FR-yJIOPZRml6TZmpJNYG9GtsZtIXiL1wnk33cka5dASCEn-zADZsajmU_zAvhkuKwRyb7LOMnC1JRZKMnRhzySxIIyU-hG5k9EnsvZTP30zequFwYRXfEZntpXl8s38-rOXpWRhUu7F0KuwyZP05j17VqrpIESbrAn2TAL00TMfBIzYurz9-koJzAY89OEJ0L4S5SlG3J7VZ4cxs7DjHde-G1v4Y0PJYOvve53YQ2bPXj9aMDgHmz7Hee_H_bhy1gvuuBMdzo8a-0ZF9iaG_MQTAnJzlt63LqyrCagODa4sn1cwRX-6utkmwO4GY-uv52HfnlCWMUq68jzMCwJYCnU2midWmyAhlxWxWohSjLbTAsCC0oLWSmZRYaQiyxZrYleaUzewUYzb_AQgqrOBGnNCB0nKaujMs24iFmJCYrEVHwAbCnLovKTxe2Ci9vCIQymCiv-woq_8OIfwMmK5W8_VuN_xAdW3o8Ie1EPYLjUWOEtb1FQPCRiy83fP8N2DNvn1z8mxeQiv_wAryytLSqL-BA2uvYOj2Cruu_-LNqP7vf6BzAsymc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Data-Driven+Greedy+Sensor+Selection+for+Ridge+Regression&rft.jtitle=IEEE+sensors+journal&rft.au=Sasaki%2C+Yasuo&rft.au=Yamada%2C+Keigo&rft.au=Nagata%2C+Takayuki&rft.au=Saito%2C+Yuji&rft.date=2025-03-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=6&rft.spage=10030&rft.epage=10045&rft_id=info:doi/10.1109%2FJSEN.2025.3537702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2025_3537702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon