STMemAE: An Instance-Level Based Spatio-Temporal Memory Autoencoder for Unsupervised Vision-Based Seizure Detection

Electroencephalogram (EEG) is most favorable in epilepsy analysis, but suffered from inconvenient recording and ease in disturbation. Contrastively, the vision-based seizure detection is more feasible in real applications for 24/7 monitoring. However, most vision-based seizure detections follow the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on emerging topics in computational intelligence Vol. 9; no. 5; pp. 3298 - 3310
Main Authors: Hu, Dinghan, Wu, Kai, Fang, Yuan, Jiang, Tiejia, Gao, Feng, Cao, Jiuwen
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2471-285X, 2471-285X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Electroencephalogram (EEG) is most favorable in epilepsy analysis, but suffered from inconvenient recording and ease in disturbation. Contrastively, the vision-based seizure detection is more feasible in real applications for 24/7 monitoring. However, most vision-based seizure detections follow the supervised training scheme, that is usually tedious and time-consuming in data annotations. With these regards, an effective instance-level based spatio-temporal memory autoencoder, called STMemAE, is proposed for unsupervised vision-based seizure detection in this paper. In STMemAE, YOLOv5 object detection algorithm is first applied to build an instance-level based memory AE since the frame-level based AE cannot well adapt to new scenarios. A convolutional encoder is then used to extract both the posture and motion features of the subjects. A two-stream memory net aiming to generate both spatial and temporal memory-augmented features is further developed to linearly combine the memory items. Finally, the outputs of two streams are delivered to decoder for detection. Moreover, the gradient loss is used together with the intensity loss in the training stage for better future frame generation on interictal data, which can also speedup the network training. The performance is evaluated on the video dataset recorded in Children's Hospital, Zhejiang University School of Medicine (CHZU), consisting video sequences of 15 childhood epilepsy patients. Results show that STMemAE can achieve 98.16% of Area Under Curve (AUC), and outperforms several popular deep learning models as well as many unsupervised vision-based seizure detection methods.
AbstractList Electroencephalogram (EEG) is most favorable in epilepsy analysis, but suffered from inconvenient recording and ease in disturbation. Contrastively, the vision-based seizure detection is more feasible in real applications for 24/7 monitoring. However, most vision-based seizure detections follow the supervised training scheme, that is usually tedious and time-consuming in data annotations. With these regards, an effective instance-level based spatio-temporal memory autoencoder, called STMemAE, is proposed for unsupervised vision-based seizure detection in this paper. In STMemAE, YOLOv5 object detection algorithm is first applied to build an instance-level based memory AE since the frame-level based AE cannot well adapt to new scenarios. A convolutional encoder is then used to extract both the posture and motion features of the subjects. A two-stream memory net aiming to generate both spatial and temporal memory-augmented features is further developed to linearly combine the memory items. Finally, the outputs of two streams are delivered to decoder for detection. Moreover, the gradient loss is used together with the intensity loss in the training stage for better future frame generation on interictal data, which can also speedup the network training. The performance is evaluated on the video dataset recorded in Children's Hospital, Zhejiang University School of Medicine (CHZU), consisting video sequences of 15 childhood epilepsy patients. Results show that STMemAE can achieve 98.16% of Area Under Curve (AUC), and outperforms several popular deep learning models as well as many unsupervised vision-based seizure detection methods.
Author Hu, Dinghan
Wu, Kai
Fang, Yuan
Gao, Feng
Jiang, Tiejia
Cao, Jiuwen
Author_xml – sequence: 1
  givenname: Dinghan
  orcidid: 0000-0003-1493-0041
  surname: Hu
  fullname: Hu, Dinghan
  email: hdh@hdu.edu.cn
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Kai
  surname: Wu
  fullname: Wu, Kai
  email: 396395584@qq.com
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
– sequence: 3
  givenname: Yuan
  orcidid: 0000-0002-8070-2680
  surname: Fang
  fullname: Fang, Yuan
  email: fangyuan2017@zjnu.edu.cn
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
– sequence: 4
  givenname: Tiejia
  orcidid: 0000-0003-3688-8366
  surname: Jiang
  fullname: Jiang, Tiejia
  email: jiangyouze@zju.edu.cn
  organization: Department of Neurology, Children's Hospital, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Feng
  orcidid: 0000-0003-4907-7212
  surname: Gao
  fullname: Gao, Feng
  email: epilepsy@zju.edu.cn
  organization: Department of Neurology, Children's Hospital, Zhejiang University, Hangzhou, China
– sequence: 6
  givenname: Jiuwen
  orcidid: 0000-0002-6480-5794
  surname: Cao
  fullname: Cao, Jiuwen
  email: jwcao@hdu.edu.cn
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
BookMark eNp9kEFPwjAYhhuDiYj8AeOhiedh-3VlqzdUVBKMB8B4W8r2LSmBdrYbCf56h3AgHjz1O7zP27zPJelYZ5GQa84GnDN1Nx_PHycDYBAPhAQAlp6RLsQJjyCVn52T-4L0Q1gxxkBJLmTcJWE2f8PNaHxPR5ZObKi1zTGa4hbX9EEHLOis0rVx0Rw3lfN6Tdu48zs6amqHNncFelo6Txc2NBX6rdkzHyYYZ6NjAZrvxiN9whrztspekfNSrwP2j2-PLJ7bCa_R9P1l8jiaRjmoYR0lhVgqHSepKAVioRKVLFMsIAatOegSeVHoWOaJRIkJ40OWqnKpMB4WoIXIRY_cHnor774aDHW2co237ZeZACkUE1JAm0oPqdy7EDyWWW7q_WRbe23WGWfZ3nL2aznbW86OllsU_qCVNxvtd_9DNwfIIOIJkMJQtlt_AJ1fi6I
CODEN ITETCU
CitedBy_id crossref_primary_10_1080_01616412_2025_2555516
Cites_doi 10.1109/TNSRE.2021.3107142
10.1109/ISSPIT.2018.8642670
10.1109/TCDS.2021.3064228
10.1109/ICASSP40776.2020.9054649
10.1117/12.2243622
10.1109/TCDS.2019.2936441
10.1109/jbhi.2015.2462079
10.1109/ICMIC.2016.7804256
10.1109/tim.2022.3220287
10.1109/TNSRE.2022.3229066
10.1016/S0140-6736(18)32596-0
10.1007/s10489-022-03613-1
10.1109/TPAMI.2016.2577031
10.1109/TCSVT.2020.3027843
10.1109/TCDS.2022.3175636
10.1109/ICCV.2017.74
10.48550/arXiv.1804.02767
10.1109/TETCI.2022.3171855
10.5698/1535-7511.17.3.180
10.1109/EMBC.2012.6346955
10.1109/TITB.2012.2186586
10.1109/TCSVT.2019.2962229
10.1109/TCSII.2022.3188162
10.1109/ICASSP43922.2022.9746325
10.1109/IEMENTECH.2017.8076983
10.1016/j.isatra.2022.07.014
10.1016/j.neunet.2022.03.014
10.1109/JBHI.2019.2895855
10.1109/ISBI.2018.8363746
10.1109/cvpr.2018.00684
10.1016/j.cmpb.2020.105472
10.1109/CVPR.2018.00745
10.1109/WoWMoM.2011.5986193
10.1111/j.0013-9580.2005.66104.x
10.1109/ICC.2012.6364396
10.1109/TCSVT.2022.3195727
10.1109/CVPR42600.2020.01438
10.1109/TCSVT.2022.3221622
10.1109/TIP.2021.3096089
10.1007/s13755-020-00129-1
10.1016/j.neunet.2019.11.023
10.1109/TNSRE.2022.3223056
10.1109/JBHI.2021.3049649
10.1109/ICCV.2019.00718
10.1109/CVPR46437.2021.01517
10.1109/TCSVT.2020.3039798
10.1109/ICCV.2019.00179
10.1016/j.cmpb.2021.106604
10.1002/sam.11161
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2024.3522208
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 3310
ExternalDocumentID 10_1109_TETCI_2024_3522208
10826578
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1909209
  funderid: 10.13039/501100001809
– fundername: Natural Science Key Foundation of Zhejiang Province
  grantid: LZ24F030010
– fundername: National Key Research and Development Program of China
  grantid: 2021YFE0100100
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c296t-7d3b9a4783f3eed9797b8ed242aa12afe1dda45c75e5e7016089fb9e46d2a33c3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001395289200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Thu Nov 27 15:42:26 EST 2025
Sat Nov 29 07:25:36 EST 2025
Tue Nov 18 22:18:52 EST 2025
Wed Oct 01 07:05:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-7d3b9a4783f3eed9797b8ed242aa12afe1dda45c75e5e7016089fb9e46d2a33c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6480-5794
0000-0003-1493-0041
0000-0003-4907-7212
0000-0003-3688-8366
0000-0002-8070-2680
PQID 3253903532
PQPubID 4437216
PageCount 13
ParticipantIDs ieee_primary_10826578
proquest_journals_3253903532
crossref_citationtrail_10_1109_TETCI_2024_3522208
crossref_primary_10_1109_TETCI_2024_3522208
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref18
Hilal (ref24) 2021; 193
ref51
ref50
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Raghu (ref12) 2020; 124
ref2
ref1
ref39
ref38
Jocher (ref46) 2020
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref8
  doi: 10.1109/TNSRE.2021.3107142
– volume: 124
  start-page: 202
  volume-title: Neural Netw.
  year: 2020
  ident: ref12
  article-title: EEG based multi-class seizure type classification using convolutional neural network and transfer learning
– ident: ref35
  doi: 10.1109/ISSPIT.2018.8642670
– ident: ref3
  doi: 10.1109/TCDS.2021.3064228
– ident: ref20
  doi: 10.1109/ICASSP40776.2020.9054649
– ident: ref40
  doi: 10.1117/12.2243622
– ident: ref6
  doi: 10.1109/TCDS.2019.2936441
– ident: ref14
  doi: 10.1109/jbhi.2015.2462079
– ident: ref39
  doi: 10.1109/ICMIC.2016.7804256
– ident: ref4
  doi: 10.1109/tim.2022.3220287
– volume: 193
  year: 2021
  ident: ref24
  article-title: A review of anomaly detection techniques and applications in financial fraud
  publication-title: Expert Syst. Appl.
– ident: ref9
  doi: 10.1109/TNSRE.2022.3229066
– ident: ref1
  doi: 10.1016/S0140-6736(18)32596-0
– ident: ref42
  doi: 10.1007/s10489-022-03613-1
– ident: ref51
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref31
  doi: 10.1109/TCSVT.2020.3027843
– ident: ref5
  doi: 10.1109/TCDS.2022.3175636
– ident: ref47
  doi: 10.1109/ICCV.2017.74
– ident: ref52
  doi: 10.48550/arXiv.1804.02767
– ident: ref16
  doi: 10.1109/TETCI.2022.3171855
– ident: ref17
  doi: 10.5698/1535-7511.17.3.180
– ident: ref18
  doi: 10.1109/EMBC.2012.6346955
– ident: ref34
  doi: 10.1109/TITB.2012.2186586
– ident: ref44
  doi: 10.1109/TCSVT.2019.2962229
– ident: ref15
  doi: 10.1109/TCSII.2022.3188162
– ident: ref36
  doi: 10.1109/ICASSP43922.2022.9746325
– ident: ref38
  doi: 10.1109/IEMENTECH.2017.8076983
– ident: ref41
  doi: 10.1016/j.isatra.2022.07.014
– ident: ref10
  doi: 10.1016/j.neunet.2022.03.014
– ident: ref22
  doi: 10.1109/JBHI.2019.2895855
– ident: ref19
  doi: 10.1109/ISBI.2018.8363746
– ident: ref23
  doi: 10.1109/cvpr.2018.00684
– ident: ref25
  doi: 10.1016/j.cmpb.2020.105472
– ident: ref49
  doi: 10.1109/CVPR.2018.00745
– ident: ref33
  doi: 10.1109/WoWMoM.2011.5986193
– ident: ref2
  doi: 10.1111/j.0013-9580.2005.66104.x
– ident: ref37
  doi: 10.1109/ICC.2012.6364396
– ident: ref32
  doi: 10.1109/TCSVT.2022.3195727
– ident: ref29
  doi: 10.1109/CVPR42600.2020.01438
– ident: ref45
  doi: 10.1109/TCSVT.2022.3221622
– ident: ref50
  doi: 10.1109/TIP.2021.3096089
– ident: ref13
  doi: 10.1007/s13755-020-00129-1
– ident: ref11
  doi: 10.1016/j.neunet.2019.11.023
– year: 2020
  ident: ref46
  article-title: YOLOv5: V3.1 - Bug fixes and performance improvements
– ident: ref7
  doi: 10.1109/TNSRE.2022.3223056
– ident: ref21
  doi: 10.1109/JBHI.2021.3049649
– ident: ref48
  doi: 10.1109/ICCV.2019.00718
– ident: ref30
  doi: 10.1109/CVPR46437.2021.01517
– ident: ref43
  doi: 10.1109/TCSVT.2020.3039798
– ident: ref28
  doi: 10.1109/ICCV.2019.00179
– ident: ref26
  doi: 10.1016/j.cmpb.2021.106604
– ident: ref27
  doi: 10.1002/sam.11161
SSID ssj0002951354
Score 2.324758
Snippet Electroencephalogram (EEG) is most favorable in epilepsy analysis, but suffered from inconvenient recording and ease in disturbation. Contrastively, the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3298
SubjectTerms Annotations
Brain modeling
Computer vision
Convulsions & seizures
Electroencephalography
Epilepsy
Feature extraction
gradient loss
Image reconstruction
instance-level
Machine learning
Memory modules
Motion perception
Object recognition
Prototypes
Seizures
STMemAE
Training
Unsupervised learning
unsupervised seizure detection
Visualization
YOLO
Title STMemAE: An Instance-Level Based Spatio-Temporal Memory Autoencoder for Unsupervised Vision-Based Seizure Detection
URI https://ieeexplore.ieee.org/document/10826578
https://www.proquest.com/docview/3253903532
Volume 9
WOSCitedRecordID wos001395289200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66ePDiAxXXFzl4k2ibpE3jrb5wQUWwireSJrMgaFf6EPTXm6TdZUEUvPWQKW2_SeZL-s0MQofaxNaPdEIUM4ZwLjRJQiiIJR_GhmeWKF94_ulG3N0lz8_yvk9W97kwAODFZ3DsLv2_fDPRrTsqszPckmHrYotoUYi4S9aaHahQyxVYxKeJMYE8yS6z85HdAlJ-7GgGdS0k54KP76byYwn2ceVq9Z9PtIZWegKJ0w7xdbQA5QaqH7JbeEsvT3Fa4pFnfBrIjRME4TMbpwx-8MppknWVqF7xrVPYfuK0bSaulKWBClv6ih_Lun13y4ezefJ556S_Abx8tRXgC2i8eqvcRI9X9tWvSd9OgWgq44YIwwqpuEjYmNnIKIUURQLGxmilQqrGEBqjeKRFBBEIV3kukeNCAo8NVYxptoUG5aSEbYRZEIAuqEVVaa6VkRCbCLxmNBxHARuicPqdc93XGnctL15zv-cIZO6xyR02eY_NEB3NbN67Sht_jt50aMyN7IAYor0pnnk_G-uc0YjJgEWM7vxitouWqWvs61V6e2jQVC3soyX90bzU1YF3tG_vs9I9
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7eQF-8oOK85sE3yWxzWRvf5g2H2xDsxt5KmpyBoJ1sraC_3iTtRBAF3_qQU9p-Jzlf0u-cg9CpNi3rRzomihlDOI80iUPIiCUfxoZnFitfeH7Yjfr9eDSSD3Wyus-FAQAvPoOmu_T_8s1El-6ozM5wS4atiy2iZcE5Dap0ra8jFWrZAhN8nhoTyPPkJrnq2E0g5U1HNKhrIvkt_Ph-Kj8WYR9Zbjf--UybaL2mkLhdYb6FFiDfRrPHpAcv7ZsL3M5xx3M-DaTrJEH40kYqgx-9dpokVS2qZ9xzGtt33C6LiStmaWCKLYHFg3xWvroFxNkMfeY5qW8ATx_lFPA1FF6_le-gwa199TtSN1QgmspWQSLDMql4FLMxs7FRRjLKYjA2SisVUjWG0BjFhY4ECIhc7blYjjMJvGWoYkyzXbSUT3LYQ5gFAeiMWlyV5loZCS0jwKtGw7EIWAOF8--c6rrauGt68Zz6XUcgU49N6rBJa2wa6OzL5rWqtfHn6B2HxreRFRANdDjHM63n4yxlVDAZMMHo_i9mJ2j1Lul1026nf3-A1qhr8-s1e4doqZiWcIRW9FvxNJsee6f7BAW41YQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STMemAE%3A+An+Instance-Level+Based+Spatio-Temporal+Memory+Autoencoder+for+Unsupervised+Vision-Based+Seizure+Detection&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Hu%2C+Dinghan&rft.au=Wu%2C+Kai&rft.au=Fang%2C+Yuan&rft.au=Jiang%2C+Tiejia&rft.date=2025-10-01&rft.issn=2471-285X&rft.eissn=2471-285X&rft.volume=9&rft.issue=5&rft.spage=3298&rft.epage=3310&rft_id=info:doi/10.1109%2FTETCI.2024.3522208&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TETCI_2024_3522208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon