GAME-RL: Generating Adversarial Malware Examples Against API Call Based Detection via Reinforcement Learning
The adversarial example presents new security threats to trustworthy detection systems. In the context of evading dynamic detection based on API call sequences, a practical approach involves inserting perturbing API calls to modify these sequences. The type of inserted API calls and their insertion...
Saved in:
| Published in: | IEEE transactions on dependable and secure computing Vol. 22; no. 5; pp. 5431 - 5447 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Washington
IEEE
01.09.2025
IEEE Computer Society |
| Subjects: | |
| ISSN: | 1545-5971, 1941-0018 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The adversarial example presents new security threats to trustworthy detection systems. In the context of evading dynamic detection based on API call sequences, a practical approach involves inserting perturbing API calls to modify these sequences. The type of inserted API calls and their insertion locations are crucial for generating an effective adversarial API call sequence. Existing methods either optimize the inserted API calls while neglecting the insertion positions or treat these optimizations as separate processes. This can lead to inefficient attacks that insert a large number of unnecessary API calls. To address this issue, we propose a novel reinforcement learning (RL) framework, dubbed GAME-RL, which simultaneously optimizes both the perturbing APIs and their insertion positions. Specifically, we define malware modification through IAT (Import Address Table) hooking as a sequential decision-making process. We introduce an invalid action masking and an auto-regressive policy head within the RL framework, ensuring the feasibility of IAT hooking and capturing the inherent relationship between factors. GAME-RL learns more effective evasion strategies, taking into account functionality preservation and the black-box setting. We conduct comprehensive experiments on various target models, demonstrating that GAME-RL significantly improves the evasion rate while maintaining acceptable levels of adversarial overhead. |
|---|---|
| AbstractList | The adversarial example presents new security threats to trustworthy detection systems. In the context of evading dynamic detection based on API call sequences, a practical approach involves inserting perturbing API calls to modify these sequences. The type of inserted API calls and their insertion locations are crucial for generating an effective adversarial API call sequence. Existing methods either optimize the inserted API calls while neglecting the insertion positions or treat these optimizations as separate processes. This can lead to inefficient attacks that insert a large number of unnecessary API calls. To address this issue, we propose a novel reinforcement learning (RL) framework, dubbed GAME-RL, which simultaneously optimizes both the perturbing APIs and their insertion positions. Specifically, we define malware modification through IAT (Import Address Table) hooking as a sequential decision-making process. We introduce an invalid action masking and an auto-regressive policy head within the RL framework, ensuring the feasibility of IAT hooking and capturing the inherent relationship between factors. GAME-RL learns more effective evasion strategies, taking into account functionality preservation and the black-box setting. We conduct comprehensive experiments on various target models, demonstrating that GAME-RL significantly improves the evasion rate while maintaining acceptable levels of adversarial overhead. |
| Author | Li, Wei Zhan, Dazhi Liu, Xin Guo, Shize Pan, Zhisong Bai, Wei |
| Author_xml | – sequence: 1 givenname: Dazhi orcidid: 0000-0003-2766-3405 surname: Zhan fullname: Zhan, Dazhi organization: Army Engineering University of PLA, Nanjing, China – sequence: 2 givenname: Xin surname: Liu fullname: Liu, Xin organization: Army Engineering University of PLA, Nanjing, China – sequence: 3 givenname: Wei surname: Bai fullname: Bai, Wei organization: Army Engineering University of PLA, Nanjing, China – sequence: 4 givenname: Wei surname: Li fullname: Li, Wei organization: Army Academy of Armored Forces, Beijing, China – sequence: 5 givenname: Shize surname: Guo fullname: Guo, Shize organization: Army Engineering University of PLA, Nanjing, China – sequence: 6 givenname: Zhisong orcidid: 0000-0001-8615-7313 surname: Pan fullname: Pan, Zhisong email: panzhisong@aeu.edu.cn organization: Army Engineering University of PLA, Nanjing, China |
| BookMark | eNp9kEtLAzEQx4Mo-PwAgoeA563JNtlNvK1trUJFqXpepsmsRLbZmsTXt3dLexAPMoeZw__B_A7Jru88EnLK2YBzpi-exo-jQc5yORjKoiiZ2iEHXAueMcbVbn9LITOpS75PDmN8ZSwXSosD0k6ru0k2n13SKXoMkJx_oZX9wBAhOGjpHbSfEJBOvmC5ajHS6gWcj4lWD7d0BG1LryCipWNMaJLrPP1wQOfofNMFg0v0ic4Qgu-Dj8leA23Ek-0-Is_Xk6fRTTa7n96Oqllmcl2krFxIUVptpAQhikZwaU3ecGuBMVFou7BKmX70AqUy3BotddNoa5nVvNFmeETON7mr0L29Y0z1a_cefF9ZD3NRCtUDkr2Kb1QmdDEGbOpVcEsI3zVn9RpqvYZar6HWW6i9p_zjMS7B-u0UwLX_Os82ToeIv5q0UiXnwx_ug4bF |
| CODEN | ITDSCM |
| CitedBy_id | crossref_primary_10_3390_act14090434 crossref_primary_10_3390_electronics14122422 |
| Cites_doi | 10.1007/978-3-030-86514-6_3 10.1145/3611643.3616356 10.1007/978-3-319-50127-7_11 10.1038/s42256-019-0138-9 10.1109/DSN.2019.00020 10.1145/3427228.3427230 10.1007/978-3-030-00470-5_23 10.1109/SPW.2018.00009 10.32473/flairs.v35i.130584 10.1609/aaai.v31i1.10804 10.1609/aaai.v34i01.5474 10.1145/3473039 10.1145/3326362 10.1016/j.asoc.2021.107506 10.1109/TDSC.2022.3153844 10.1007/s41635-017-0013-2 10.1109/TIFS.2023.3345640 10.1007/s10489-022-03523-2 10.1109/IJCNN52387.2021.9534432 10.1109/SP40000.2020.00073 10.1016/j.cose.2020.102118 10.1109/TC.2023.3339955 10.1145/3427228.3427242 10.1609/aaai.v32i1.11409 10.1109/TDSC.2023.3324265 10.1109/ICASSP.2013.6638293 10.1145/3411508.3421374 10.48550/arXiv.1812.05905 10.1109/BigData47090.2019.9006464 10.1109/DSN58367.2023.00027 10.1155/2015/659101 10.1109/WCNC.2013.6555301 10.1007/978-3-030-41579-2_2 10.18653/v1/n16-1174 10.1109/COMST.2022.3225137 10.1007/978-3-319-76941-7_71 10.1109/MSR52588.2021.00076 10.1109/TDSC.2018.2884928 10.1109/ICAIIC.2019.8669079 10.24963/ijcai.2019/382 10.1145/3052973.3053009 10.1109/SPW.2018.00020 10.1109/TIFS.2023.3333567 10.1007/978-981-19-8991-9_29 10.1109/SPW53761.2021.00021 10.1145/3133956.3133978 10.1109/EISIC.2017.21 10.1016/j.asoc.2021.107505 |
| ContentType | Journal Article |
| Copyright | Copyright IEEE Computer Society 2025 |
| Copyright_xml | – notice: Copyright IEEE Computer Society 2025 |
| DBID | 97E RIA RIE AAYXX CITATION JQ2 |
| DOI | 10.1109/TDSC.2025.3566708 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1941-0018 |
| EndPage | 5447 |
| ExternalDocumentID | 10_1109_TDSC_2025_3566708 10988711 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62076251 funderid: 10.13039/501100001809 |
| GroupedDBID | .4S .DC 0R~ 29I 4.4 5GY 5VS 6IK 7WY 8FE 8FG 8FL 8R4 8R5 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJCF ABQJQ ABUWG ABVLG ACGFO ACIWK AENEX AETIX AFKRA AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS ATWAV AZQEC BEFXN BENPR BEZIV BFFAM BGLVJ BGNUA BKEBE BPEOZ BPHCQ CCPQU CS3 DU5 DWQXO EBS EDO EJD FRNLG GNUQQ HCIFZ HZ~ IEDLZ IFIPE IPLJI ITG ITH JAVBF K60 K6V K6~ K7- L6V LAI M0C M43 M7S O9- OCL P2P P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PUEGO Q2X RIA RIE RNI RNS RZB AAYXX AFFHD CITATION JQ2 |
| ID | FETCH-LOGICAL-c296t-7b547d9c55a446f415dc2f1dda00469dbd88c8c89be58c1dc959ff9dd0d91f9c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001564268700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5971 |
| IngestDate | Thu Nov 13 16:21:22 EST 2025 Tue Nov 18 22:24:21 EST 2025 Sat Nov 29 07:33:24 EST 2025 Wed Sep 10 07:40:43 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-7b547d9c55a446f415dc2f1dda00469dbd88c8c89be58c1dc959ff9dd0d91f9c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8615-7313 0000-0003-2766-3405 |
| PQID | 3247486705 |
| PQPubID | 27603 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_TDSC_2025_3566708 proquest_journals_3247486705 crossref_citationtrail_10_1109_TDSC_2025_3566708 ieee_primary_10988711 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | IEEE transactions on dependable and secure computing |
| PublicationTitleAbbrev | TDSC |
| PublicationYear | 2025 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | ref57 ref12 ref15 ref59 ref58 ref52 ref11 ref55 ref10 ref17 Dai (ref16) 2018 ref18 ref46 Li (ref63) 2023 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref4 ref3 Anderson (ref19) 2017; 2017 ref5 Raff (ref9) 2018 Catak (ref53) 2019 Anderson (ref6) 2018 ref35 ref34 ref37 ref36 ref31 ref30 Rosenberg (ref62) 2019 ref33 ref32 ref2 Goodfellow (ref13) 2015 ref1 ref39 ref38 Grosse (ref61) 2016 Metz (ref50) 2017; 3 Szegedy (ref14) 2014 ref24 ref23 ref26 ref25 Demontis (ref56) 2019 ref20 ref64 ref22 ref21 Schulman (ref51) 2017 ref28 ref27 ref29 Hu (ref40) 2018 Jordaney (ref54) 2017 Molnar (ref47) 2020 ref60 |
| References_xml | – year: 2019 ident: ref53 article-title: A benchmark API call dataset for windows PE malware classification – start-page: 1181 volume-title: Proc. 32nd USENIX Secur. Symp. year: 2023 ident: ref63 article-title: Black-box adversarial example attack towards FCG based android malware detection under incomplete feature information – ident: ref22 doi: 10.1007/978-3-030-86514-6_3 – ident: ref64 doi: 10.1145/3611643.3616356 – ident: ref32 doi: 10.1007/978-3-319-50127-7_11 – ident: ref46 doi: 10.1038/s42256-019-0138-9 – ident: ref12 doi: 10.1109/DSN.2019.00020 – ident: ref28 doi: 10.1145/3427228.3427230 – ident: ref29 doi: 10.1007/978-3-030-00470-5_23 – year: 2017 ident: ref51 article-title: Proximal policy optimization algorithms – ident: ref15 doi: 10.1109/SPW.2018.00009 – ident: ref48 doi: 10.32473/flairs.v35i.130584 – year: 2019 ident: ref62 article-title: Defense methods against adversarial examples for recurrent neural networks – ident: ref44 doi: 10.1609/aaai.v31i1.10804 – ident: ref5 doi: 10.1609/aaai.v34i01.5474 – ident: ref33 doi: 10.1145/3473039 – ident: ref59 doi: 10.1145/3326362 – ident: ref41 doi: 10.1016/j.asoc.2021.107506 – ident: ref24 doi: 10.1109/TDSC.2022.3153844 – year: 2018 ident: ref6 article-title: EMBER: An open dataset for training static PE malware machine learning models – ident: ref26 doi: 10.1007/s41635-017-0013-2 – ident: ref43 doi: 10.1109/TIFS.2023.3345640 – ident: ref4 doi: 10.1007/s10489-022-03523-2 – ident: ref60 doi: 10.1109/IJCNN52387.2021.9534432 – ident: ref18 doi: 10.1109/SP40000.2020.00073 – ident: ref23 doi: 10.1016/j.cose.2020.102118 – ident: ref25 doi: 10.1109/TC.2023.3339955 – ident: ref3 doi: 10.1145/3427228.3427242 – ident: ref2 doi: 10.1609/aaai.v32i1.11409 – start-page: 321 volume-title: Proc. 28th USENIX Secur. Symp. (USENIX Secur. 19) year: 2019 ident: ref56 article-title: Why do adversarial attacks transfer? Explaining transferability of evasion and poisoning attacks – ident: ref42 doi: 10.1109/TDSC.2023.3324265 – volume: 2017 start-page: 1 year: 2017 ident: ref19 article-title: Evading machine learning malware detection publication-title: Black Hat – volume-title: Proc. Int. Conf. Learn. Represent year: 2015 ident: ref13 article-title: Explaining and harnessing adversarial examples – start-page: 245 volume-title: Proc. AAAI Conf. Artif. Intell. year: 2018 ident: ref40 article-title: Black-box attacks against RNN based malware detection algorithms – volume: 3 start-page: 1137 year: 2017 ident: ref50 article-title: Discrete sequential prediction of continuous actions for deep RL publication-title: J. Mach. Learn. Res. – ident: ref7 doi: 10.1109/ICASSP.2013.6638293 – ident: ref38 doi: 10.1145/3411508.3421374 – ident: ref52 doi: 10.48550/arXiv.1812.05905 – ident: ref11 doi: 10.1109/BigData47090.2019.9006464 – ident: ref30 doi: 10.1109/DSN58367.2023.00027 – ident: ref8 doi: 10.1155/2015/659101 – ident: ref57 doi: 10.1109/WCNC.2013.6555301 – ident: ref27 doi: 10.1007/978-3-030-41579-2_2 – ident: ref45 doi: 10.18653/v1/n16-1174 – start-page: 625 volume-title: Proc. 26th USENIX Secur. Symp. year: 2017 ident: ref54 article-title: Transcend: Detecting concept drift in malware classification models – ident: ref1 doi: 10.1109/COMST.2022.3225137 – ident: ref17 doi: 10.1007/978-3-319-76941-7_71 – ident: ref58 doi: 10.1109/MSR52588.2021.00076 – ident: ref10 doi: 10.1109/TDSC.2018.2884928 – volume-title: Proc. Int. Conf. Learn. Represent year: 2014 ident: ref14 article-title: Intriguing properties of neural networks – ident: ref36 doi: 10.1109/ICAIIC.2019.8669079 – ident: ref49 doi: 10.24963/ijcai.2019/382 – volume-title: Interpretable Machine Learning year: 2020 ident: ref47 – ident: ref39 doi: 10.1145/3052973.3053009 – ident: ref31 doi: 10.1109/SPW.2018.00020 – start-page: 268 volume-title: Proc. AAAI Conf. Artif. Intell. year: 2018 ident: ref9 article-title: Malware detection by eating a whole EXE – start-page: 1115 volume-title: Proc. 35th Int. Conf. Mach. Learn. year: 2018 ident: ref16 article-title: Adversarial attack on graph structured data – ident: ref34 doi: 10.1109/TIFS.2023.3333567 – ident: ref35 doi: 10.1007/978-981-19-8991-9_29 – ident: ref20 doi: 10.1109/SPW53761.2021.00021 – ident: ref55 doi: 10.1145/3133956.3133978 – ident: ref37 doi: 10.1109/EISIC.2017.21 – year: 2016 ident: ref61 article-title: Adversarial perturbations against deep neural networks for malware classification – ident: ref21 doi: 10.1016/j.asoc.2021.107505 |
| SSID | ssj0024894 |
| Score | 2.4214067 |
| Snippet | The adversarial example presents new security threats to trustworthy detection systems. In the context of evading dynamic detection based on API call... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5431 |
| SubjectTerms | adversarial example API call Application programming interface Application programming interfaces Closed box Computational modeling Cybersecurity dynamic analysis Feature extraction Games Generative adversarial networks Greedy algorithms IAT hooking Insertion Malware Operating systems Reinforcement learning reinforcement learning (RL) Training |
| Title | GAME-RL: Generating Adversarial Malware Examples Against API Call Based Detection via Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/10988711 https://www.proquest.com/docview/3247486705 |
| Volume | 22 |
| WOSCitedRecordID | wos001564268700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1941-0018 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024894 issn: 1545-5971 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60ePBifVSsVtmDJyE1fWw26632oYItpVboLewrpRBSadrqz3d2s9WCKEguOeyGkG8nM7M7830IXRMuJA009YgGawKP73usKQhkKUrWBDd8kNKKTdDBIJxM2NA1q9teGK21LT7TVXNrz_LVXK7MVhlYOAObMJ28u5TSvFnrm1gvtKqHJiTwIEquuSNMmHM77ry0IRWsk2oDohdqpCS3nJBVVfnxK7b-pVf855sdogMXSOJWjvwR2tHpMSpuRBqws9kTlDy0-l1v9HyHc4ZpU-aMrQxzxs3iw32evPOFxt0PbpiCM9ya8hkEjbg1fMJtniT4Hjydwh29tGVbKV7POB5pS7kq7e4idiyt0xJ67XXH7UfPSSx4ss6CpUcFaVLFJCEc8sIYvLmS9bimFLeJsxIqDCVcTGgSSsCPERbHTClfsVrMZOMUFdJ5qs8QDuM65conOmjoJmchh1CnIQLIh4QIVeyXkb_55pF0_ONGBiOJbB7is8jAFBmYIgdTGd18TXnLyTf-GlwyuGwNzCEpo8oG2cjZZxZBGEkN16BPzn-ZdoH2zdPzcrIKKiwXK32J9uR6OcsWV3bpfQLEA9Xk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kCnqxPipWq-7Bk5CapNkm6632YcW2lFqht7CvlEJopS_9-c5utiqIguSSwy4J-XYyM7sz34fQNWFchFUVOkSBNYHHdx0acAJZihQeZ5oPUhixibDXi0Yj2rfN6qYXRillis9UWd-as3w5Eyu9VQYWTsEmdCfvNgkC38vatb6o9SKje6iDAgfiZM8eYsKs22HjuQ7JoE_KFYhfQi0m-c0NGV2VHz9j42Fa-X--2wHat6EkrmXYH6ItNT1C-Y1MA7ZWe4zSh1q36Qw6dzjjmNaFztgIMS-YXn64y9I3Nle4-c40V_AC18ZsAmEjrvUfcZ2lKb4HXydxQy1N4dYUrycMD5QhXRVmfxFbntZxAb20msN627EiC47waXXphJwEoaSCEAaZYQL-XAo_8aRkJnWWXEaRgItyRSIBCFJCk4RK6UrqJVRUTlBuOpuqU4SjxA-ZdImqVlTAaMQg2KnwKmREnEcycYvI3XzzWFgGci2EkcYmE3FprGGKNUyxhamIbj6nvGb0G38NLmhcvg3MICmi0gbZ2FroIoZAMtRsgy45-2XaFdptD7uduPPYezpHe_pJWXFZCeWW85W6QDtivZws5pdmGX4ADBjZKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAME-RL%3A+Generating+Adversarial+Malware+Examples+Against+API+Call+Based+Detection+via+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+dependable+and+secure+computing&rft.au=Zhan%2C+Dazhi&rft.au=Liu%2C+Xin&rft.au=Bai%2C+Wei&rft.au=Li%2C+Wei&rft.date=2025-09-01&rft.issn=1545-5971&rft.eissn=1941-0018&rft.volume=22&rft.issue=5&rft.spage=5431&rft.epage=5447&rft_id=info:doi/10.1109%2FTDSC.2025.3566708&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TDSC_2025_3566708 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5971&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5971&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5971&client=summon |