GAME-RL: Generating Adversarial Malware Examples Against API Call Based Detection via Reinforcement Learning

The adversarial example presents new security threats to trustworthy detection systems. In the context of evading dynamic detection based on API call sequences, a practical approach involves inserting perturbing API calls to modify these sequences. The type of inserted API calls and their insertion...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on dependable and secure computing Vol. 22; no. 5; pp. 5431 - 5447
Main Authors: Zhan, Dazhi, Liu, Xin, Bai, Wei, Li, Wei, Guo, Shize, Pan, Zhisong
Format: Journal Article
Language:English
Published: Washington IEEE 01.09.2025
IEEE Computer Society
Subjects:
ISSN:1545-5971, 1941-0018
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The adversarial example presents new security threats to trustworthy detection systems. In the context of evading dynamic detection based on API call sequences, a practical approach involves inserting perturbing API calls to modify these sequences. The type of inserted API calls and their insertion locations are crucial for generating an effective adversarial API call sequence. Existing methods either optimize the inserted API calls while neglecting the insertion positions or treat these optimizations as separate processes. This can lead to inefficient attacks that insert a large number of unnecessary API calls. To address this issue, we propose a novel reinforcement learning (RL) framework, dubbed GAME-RL, which simultaneously optimizes both the perturbing APIs and their insertion positions. Specifically, we define malware modification through IAT (Import Address Table) hooking as a sequential decision-making process. We introduce an invalid action masking and an auto-regressive policy head within the RL framework, ensuring the feasibility of IAT hooking and capturing the inherent relationship between factors. GAME-RL learns more effective evasion strategies, taking into account functionality preservation and the black-box setting. We conduct comprehensive experiments on various target models, demonstrating that GAME-RL significantly improves the evasion rate while maintaining acceptable levels of adversarial overhead.
AbstractList The adversarial example presents new security threats to trustworthy detection systems. In the context of evading dynamic detection based on API call sequences, a practical approach involves inserting perturbing API calls to modify these sequences. The type of inserted API calls and their insertion locations are crucial for generating an effective adversarial API call sequence. Existing methods either optimize the inserted API calls while neglecting the insertion positions or treat these optimizations as separate processes. This can lead to inefficient attacks that insert a large number of unnecessary API calls. To address this issue, we propose a novel reinforcement learning (RL) framework, dubbed GAME-RL, which simultaneously optimizes both the perturbing APIs and their insertion positions. Specifically, we define malware modification through IAT (Import Address Table) hooking as a sequential decision-making process. We introduce an invalid action masking and an auto-regressive policy head within the RL framework, ensuring the feasibility of IAT hooking and capturing the inherent relationship between factors. GAME-RL learns more effective evasion strategies, taking into account functionality preservation and the black-box setting. We conduct comprehensive experiments on various target models, demonstrating that GAME-RL significantly improves the evasion rate while maintaining acceptable levels of adversarial overhead.
Author Li, Wei
Zhan, Dazhi
Liu, Xin
Guo, Shize
Pan, Zhisong
Bai, Wei
Author_xml – sequence: 1
  givenname: Dazhi
  orcidid: 0000-0003-2766-3405
  surname: Zhan
  fullname: Zhan, Dazhi
  organization: Army Engineering University of PLA, Nanjing, China
– sequence: 2
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: Army Engineering University of PLA, Nanjing, China
– sequence: 3
  givenname: Wei
  surname: Bai
  fullname: Bai, Wei
  organization: Army Engineering University of PLA, Nanjing, China
– sequence: 4
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Army Academy of Armored Forces, Beijing, China
– sequence: 5
  givenname: Shize
  surname: Guo
  fullname: Guo, Shize
  organization: Army Engineering University of PLA, Nanjing, China
– sequence: 6
  givenname: Zhisong
  orcidid: 0000-0001-8615-7313
  surname: Pan
  fullname: Pan, Zhisong
  email: panzhisong@aeu.edu.cn
  organization: Army Engineering University of PLA, Nanjing, China
BookMark eNp9kEtLAzEQx4Mo-PwAgoeA563JNtlNvK1trUJFqXpepsmsRLbZmsTXt3dLexAPMoeZw__B_A7Jru88EnLK2YBzpi-exo-jQc5yORjKoiiZ2iEHXAueMcbVbn9LITOpS75PDmN8ZSwXSosD0k6ru0k2n13SKXoMkJx_oZX9wBAhOGjpHbSfEJBOvmC5ajHS6gWcj4lWD7d0BG1LryCipWNMaJLrPP1wQOfofNMFg0v0ic4Qgu-Dj8leA23Ek-0-Is_Xk6fRTTa7n96Oqllmcl2krFxIUVptpAQhikZwaU3ecGuBMVFou7BKmX70AqUy3BotddNoa5nVvNFmeETON7mr0L29Y0z1a_cefF9ZD3NRCtUDkr2Kb1QmdDEGbOpVcEsI3zVn9RpqvYZar6HWW6i9p_zjMS7B-u0UwLX_Os82ToeIv5q0UiXnwx_ug4bF
CODEN ITDSCM
CitedBy_id crossref_primary_10_3390_act14090434
crossref_primary_10_3390_electronics14122422
Cites_doi 10.1007/978-3-030-86514-6_3
10.1145/3611643.3616356
10.1007/978-3-319-50127-7_11
10.1038/s42256-019-0138-9
10.1109/DSN.2019.00020
10.1145/3427228.3427230
10.1007/978-3-030-00470-5_23
10.1109/SPW.2018.00009
10.32473/flairs.v35i.130584
10.1609/aaai.v31i1.10804
10.1609/aaai.v34i01.5474
10.1145/3473039
10.1145/3326362
10.1016/j.asoc.2021.107506
10.1109/TDSC.2022.3153844
10.1007/s41635-017-0013-2
10.1109/TIFS.2023.3345640
10.1007/s10489-022-03523-2
10.1109/IJCNN52387.2021.9534432
10.1109/SP40000.2020.00073
10.1016/j.cose.2020.102118
10.1109/TC.2023.3339955
10.1145/3427228.3427242
10.1609/aaai.v32i1.11409
10.1109/TDSC.2023.3324265
10.1109/ICASSP.2013.6638293
10.1145/3411508.3421374
10.48550/arXiv.1812.05905
10.1109/BigData47090.2019.9006464
10.1109/DSN58367.2023.00027
10.1155/2015/659101
10.1109/WCNC.2013.6555301
10.1007/978-3-030-41579-2_2
10.18653/v1/n16-1174
10.1109/COMST.2022.3225137
10.1007/978-3-319-76941-7_71
10.1109/MSR52588.2021.00076
10.1109/TDSC.2018.2884928
10.1109/ICAIIC.2019.8669079
10.24963/ijcai.2019/382
10.1145/3052973.3053009
10.1109/SPW.2018.00020
10.1109/TIFS.2023.3333567
10.1007/978-981-19-8991-9_29
10.1109/SPW53761.2021.00021
10.1145/3133956.3133978
10.1109/EISIC.2017.21
10.1016/j.asoc.2021.107505
ContentType Journal Article
Copyright Copyright IEEE Computer Society 2025
Copyright_xml – notice: Copyright IEEE Computer Society 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
JQ2
DOI 10.1109/TDSC.2025.3566708
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1941-0018
EndPage 5447
ExternalDocumentID 10_1109_TDSC_2025_3566708
10988711
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62076251
  funderid: 10.13039/501100001809
GroupedDBID .4S
.DC
0R~
29I
4.4
5GY
5VS
6IK
7WY
8FE
8FG
8FL
8R4
8R5
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJCF
ABQJQ
ABUWG
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFKRA
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
ATWAV
AZQEC
BEFXN
BENPR
BEZIV
BFFAM
BGLVJ
BGNUA
BKEBE
BPEOZ
BPHCQ
CCPQU
CS3
DU5
DWQXO
EBS
EDO
EJD
FRNLG
GNUQQ
HCIFZ
HZ~
IEDLZ
IFIPE
IPLJI
ITG
ITH
JAVBF
K60
K6V
K6~
K7-
L6V
LAI
M0C
M43
M7S
O9-
OCL
P2P
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
Q2X
RIA
RIE
RNI
RNS
RZB
AAYXX
AFFHD
CITATION
JQ2
ID FETCH-LOGICAL-c296t-7b547d9c55a446f415dc2f1dda00469dbd88c8c89be58c1dc959ff9dd0d91f9c3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001564268700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5971
IngestDate Thu Nov 13 16:21:22 EST 2025
Tue Nov 18 22:24:21 EST 2025
Sat Nov 29 07:33:24 EST 2025
Wed Sep 10 07:40:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-7b547d9c55a446f415dc2f1dda00469dbd88c8c89be58c1dc959ff9dd0d91f9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8615-7313
0000-0003-2766-3405
PQID 3247486705
PQPubID 27603
PageCount 17
ParticipantIDs crossref_primary_10_1109_TDSC_2025_3566708
proquest_journals_3247486705
crossref_citationtrail_10_1109_TDSC_2025_3566708
ieee_primary_10988711
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle IEEE transactions on dependable and secure computing
PublicationTitleAbbrev TDSC
PublicationYear 2025
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref57
ref12
ref15
ref59
ref58
ref52
ref11
ref55
ref10
ref17
Dai (ref16) 2018
ref18
ref46
Li (ref63) 2023
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref4
ref3
Anderson (ref19) 2017; 2017
ref5
Raff (ref9) 2018
Catak (ref53) 2019
Anderson (ref6) 2018
ref35
ref34
ref37
ref36
ref31
ref30
Rosenberg (ref62) 2019
ref33
ref32
ref2
Goodfellow (ref13) 2015
ref1
ref39
ref38
Grosse (ref61) 2016
Metz (ref50) 2017; 3
Szegedy (ref14) 2014
ref24
ref23
ref26
ref25
Demontis (ref56) 2019
ref20
ref64
ref22
ref21
Schulman (ref51) 2017
ref28
ref27
ref29
Hu (ref40) 2018
Jordaney (ref54) 2017
Molnar (ref47) 2020
ref60
References_xml – year: 2019
  ident: ref53
  article-title: A benchmark API call dataset for windows PE malware classification
– start-page: 1181
  volume-title: Proc. 32nd USENIX Secur. Symp.
  year: 2023
  ident: ref63
  article-title: Black-box adversarial example attack towards FCG based android malware detection under incomplete feature information
– ident: ref22
  doi: 10.1007/978-3-030-86514-6_3
– ident: ref64
  doi: 10.1145/3611643.3616356
– ident: ref32
  doi: 10.1007/978-3-319-50127-7_11
– ident: ref46
  doi: 10.1038/s42256-019-0138-9
– ident: ref12
  doi: 10.1109/DSN.2019.00020
– ident: ref28
  doi: 10.1145/3427228.3427230
– ident: ref29
  doi: 10.1007/978-3-030-00470-5_23
– year: 2017
  ident: ref51
  article-title: Proximal policy optimization algorithms
– ident: ref15
  doi: 10.1109/SPW.2018.00009
– ident: ref48
  doi: 10.32473/flairs.v35i.130584
– year: 2019
  ident: ref62
  article-title: Defense methods against adversarial examples for recurrent neural networks
– ident: ref44
  doi: 10.1609/aaai.v31i1.10804
– ident: ref5
  doi: 10.1609/aaai.v34i01.5474
– ident: ref33
  doi: 10.1145/3473039
– ident: ref59
  doi: 10.1145/3326362
– ident: ref41
  doi: 10.1016/j.asoc.2021.107506
– ident: ref24
  doi: 10.1109/TDSC.2022.3153844
– year: 2018
  ident: ref6
  article-title: EMBER: An open dataset for training static PE malware machine learning models
– ident: ref26
  doi: 10.1007/s41635-017-0013-2
– ident: ref43
  doi: 10.1109/TIFS.2023.3345640
– ident: ref4
  doi: 10.1007/s10489-022-03523-2
– ident: ref60
  doi: 10.1109/IJCNN52387.2021.9534432
– ident: ref18
  doi: 10.1109/SP40000.2020.00073
– ident: ref23
  doi: 10.1016/j.cose.2020.102118
– ident: ref25
  doi: 10.1109/TC.2023.3339955
– ident: ref3
  doi: 10.1145/3427228.3427242
– ident: ref2
  doi: 10.1609/aaai.v32i1.11409
– start-page: 321
  volume-title: Proc. 28th USENIX Secur. Symp. (USENIX Secur. 19)
  year: 2019
  ident: ref56
  article-title: Why do adversarial attacks transfer? Explaining transferability of evasion and poisoning attacks
– ident: ref42
  doi: 10.1109/TDSC.2023.3324265
– volume: 2017
  start-page: 1
  year: 2017
  ident: ref19
  article-title: Evading machine learning malware detection
  publication-title: Black Hat
– volume-title: Proc. Int. Conf. Learn. Represent
  year: 2015
  ident: ref13
  article-title: Explaining and harnessing adversarial examples
– start-page: 245
  volume-title: Proc. AAAI Conf. Artif. Intell.
  year: 2018
  ident: ref40
  article-title: Black-box attacks against RNN based malware detection algorithms
– volume: 3
  start-page: 1137
  year: 2017
  ident: ref50
  article-title: Discrete sequential prediction of continuous actions for deep RL
  publication-title: J. Mach. Learn. Res.
– ident: ref7
  doi: 10.1109/ICASSP.2013.6638293
– ident: ref38
  doi: 10.1145/3411508.3421374
– ident: ref52
  doi: 10.48550/arXiv.1812.05905
– ident: ref11
  doi: 10.1109/BigData47090.2019.9006464
– ident: ref30
  doi: 10.1109/DSN58367.2023.00027
– ident: ref8
  doi: 10.1155/2015/659101
– ident: ref57
  doi: 10.1109/WCNC.2013.6555301
– ident: ref27
  doi: 10.1007/978-3-030-41579-2_2
– ident: ref45
  doi: 10.18653/v1/n16-1174
– start-page: 625
  volume-title: Proc. 26th USENIX Secur. Symp.
  year: 2017
  ident: ref54
  article-title: Transcend: Detecting concept drift in malware classification models
– ident: ref1
  doi: 10.1109/COMST.2022.3225137
– ident: ref17
  doi: 10.1007/978-3-319-76941-7_71
– ident: ref58
  doi: 10.1109/MSR52588.2021.00076
– ident: ref10
  doi: 10.1109/TDSC.2018.2884928
– volume-title: Proc. Int. Conf. Learn. Represent
  year: 2014
  ident: ref14
  article-title: Intriguing properties of neural networks
– ident: ref36
  doi: 10.1109/ICAIIC.2019.8669079
– ident: ref49
  doi: 10.24963/ijcai.2019/382
– volume-title: Interpretable Machine Learning
  year: 2020
  ident: ref47
– ident: ref39
  doi: 10.1145/3052973.3053009
– ident: ref31
  doi: 10.1109/SPW.2018.00020
– start-page: 268
  volume-title: Proc. AAAI Conf. Artif. Intell.
  year: 2018
  ident: ref9
  article-title: Malware detection by eating a whole EXE
– start-page: 1115
  volume-title: Proc. 35th Int. Conf. Mach. Learn.
  year: 2018
  ident: ref16
  article-title: Adversarial attack on graph structured data
– ident: ref34
  doi: 10.1109/TIFS.2023.3333567
– ident: ref35
  doi: 10.1007/978-981-19-8991-9_29
– ident: ref20
  doi: 10.1109/SPW53761.2021.00021
– ident: ref55
  doi: 10.1145/3133956.3133978
– ident: ref37
  doi: 10.1109/EISIC.2017.21
– year: 2016
  ident: ref61
  article-title: Adversarial perturbations against deep neural networks for malware classification
– ident: ref21
  doi: 10.1016/j.asoc.2021.107505
SSID ssj0024894
Score 2.4214067
Snippet The adversarial example presents new security threats to trustworthy detection systems. In the context of evading dynamic detection based on API call...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5431
SubjectTerms adversarial example
API call
Application programming interface
Application programming interfaces
Closed box
Computational modeling
Cybersecurity
dynamic analysis
Feature extraction
Games
Generative adversarial networks
Greedy algorithms
IAT hooking
Insertion
Malware
Operating systems
Reinforcement learning
reinforcement learning (RL)
Training
Title GAME-RL: Generating Adversarial Malware Examples Against API Call Based Detection via Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10988711
https://www.proquest.com/docview/3247486705
Volume 22
WOSCitedRecordID wos001564268700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0018
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024894
  issn: 1545-5971
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60ePBifVSsVtmDJyE1fWw26632oYItpVboLewrpRBSadrqz3d2s9WCKEguOeyGkG8nM7M7830IXRMuJA009YgGawKP73usKQhkKUrWBDd8kNKKTdDBIJxM2NA1q9teGK21LT7TVXNrz_LVXK7MVhlYOAObMJ28u5TSvFnrm1gvtKqHJiTwIEquuSNMmHM77ry0IRWsk2oDohdqpCS3nJBVVfnxK7b-pVf855sdogMXSOJWjvwR2tHpMSpuRBqws9kTlDy0-l1v9HyHc4ZpU-aMrQxzxs3iw32evPOFxt0PbpiCM9ya8hkEjbg1fMJtniT4Hjydwh29tGVbKV7POB5pS7kq7e4idiyt0xJ67XXH7UfPSSx4ss6CpUcFaVLFJCEc8sIYvLmS9bimFLeJsxIqDCVcTGgSSsCPERbHTClfsVrMZOMUFdJ5qs8QDuM65conOmjoJmchh1CnIQLIh4QIVeyXkb_55pF0_ONGBiOJbB7is8jAFBmYIgdTGd18TXnLyTf-GlwyuGwNzCEpo8oG2cjZZxZBGEkN16BPzn-ZdoH2zdPzcrIKKiwXK32J9uR6OcsWV3bpfQLEA9Xk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kCnqxPipWq-7Bk5CapNkm6632YcW2lFqht7CvlEJopS_9-c5utiqIguSSwy4J-XYyM7sz34fQNWFchFUVOkSBNYHHdx0acAJZihQeZ5oPUhixibDXi0Yj2rfN6qYXRillis9UWd-as3w5Eyu9VQYWTsEmdCfvNgkC38vatb6o9SKje6iDAgfiZM8eYsKs22HjuQ7JoE_KFYhfQi0m-c0NGV2VHz9j42Fa-X--2wHat6EkrmXYH6ItNT1C-Y1MA7ZWe4zSh1q36Qw6dzjjmNaFztgIMS-YXn64y9I3Nle4-c40V_AC18ZsAmEjrvUfcZ2lKb4HXydxQy1N4dYUrycMD5QhXRVmfxFbntZxAb20msN627EiC47waXXphJwEoaSCEAaZYQL-XAo_8aRkJnWWXEaRgItyRSIBCFJCk4RK6UrqJVRUTlBuOpuqU4SjxA-ZdImqVlTAaMQg2KnwKmREnEcycYvI3XzzWFgGci2EkcYmE3FprGGKNUyxhamIbj6nvGb0G38NLmhcvg3MICmi0gbZ2FroIoZAMtRsgy45-2XaFdptD7uduPPYezpHe_pJWXFZCeWW85W6QDtivZws5pdmGX4ADBjZKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAME-RL%3A+Generating+Adversarial+Malware+Examples+Against+API+Call+Based+Detection+via+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+dependable+and+secure+computing&rft.au=Zhan%2C+Dazhi&rft.au=Liu%2C+Xin&rft.au=Bai%2C+Wei&rft.au=Li%2C+Wei&rft.date=2025-09-01&rft.issn=1545-5971&rft.eissn=1941-0018&rft.volume=22&rft.issue=5&rft.spage=5431&rft.epage=5447&rft_id=info:doi/10.1109%2FTDSC.2025.3566708&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TDSC_2025_3566708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5971&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5971&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5971&client=summon