Joint distributions of statistics over permutations avoiding two patterns of length 3

Finding distributions of permutation statistics over pattern-avoiding classes of permutations attracted much attention in the literature. In particular, Bukata et al. found distributions of ascents and descents on permutations avoiding any two patterns of length 3. In this paper, we generalize these...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník 26:1, Permutation...; číslo Special issues
Hlavní autoři: Han, Tian, Kitaev, Sergey
Médium: Journal Article
Jazyk:angličtina
Vydáno: Discrete Mathematics & Theoretical Computer Science 04.11.2024
Témata:
ISSN:1365-8050, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Finding distributions of permutation statistics over pattern-avoiding classes of permutations attracted much attention in the literature. In particular, Bukata et al. found distributions of ascents and descents on permutations avoiding any two patterns of length 3. In this paper, we generalize these results in two different ways: we find explicit formulas for the joint distribution of six statistics (asc, des, lrmax, lrmin, rlmax, rlmin), and also explicit formulas for the joint distribution of four statistics (asc, des, MNA, MND) on these permutations in all cases. The latter result also extends the recent studies by Kitaev and Zhang of the statistics MNA and MND (related to non-overlapping occurrences of ascents and descents) on stack-sortable permutations. All multivariate generating functions in our paper are rational, and we provide combinatorial proofs of five equidistribution results that can be derived from the generating functions.
ISSN:1365-8050
1365-8050
DOI:10.46298/dmtcs.12517