Learning to Beamform in Joint Multicast and Unicast Transmission With Imperfect CSI

With the rapid development of mobile Internet, the demand for multicast is growing rapidly, such as content pushing and video streaming. The multicast service is usually offered to users without interrupting their on-going unicast transmission, and thus the multicast and unicast beamformers needs to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications Vol. 71; no. 5; pp. 2711 - 2723
Main Authors: Zhang, Zhe, Tao, Meixia, Liu, Ya-Feng
Format: Journal Article
Language:English
Published: New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0090-6778, 1558-0857
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the rapid development of mobile Internet, the demand for multicast is growing rapidly, such as content pushing and video streaming. The multicast service is usually offered to users without interrupting their on-going unicast transmission, and thus the multicast and unicast beamformers needs to be jointly designed, which generally requires perfect channel state information (CSI). However, perfect CSI is usually unavailable due to the channel estimation error. In this paper, we propose a learning based approach to jointly design the multicast and unicast beamformers with imperfect CSI. To learn the beamforming strategy, a new graph neural network (GNN) based architecture named unicast-multicast GNN (UMGNN) is proposed, which only requires the estimated channel. UMGNN can guarantee the permutation invariance/equivalence and model the special property in the multicast transmission, i.e., the multicast rate is determined by the worst user. Moreover, by sharing the parameters across different users, UMGNN exhibits a pretty good scalability to different number of users. Numerical results show that UMGNN outperforms a fully connected neural network and a widely used sampling-based algorithm. To highlight its performance in the multicast transmission, we also show that UMGNN can find the correct worst user that determines the multicast rate.
AbstractList With the rapid development of mobile Internet, the demand for multicast is growing rapidly, such as content pushing and video streaming. The multicast service is usually offered to users without interrupting their on-going unicast transmission, and thus the multicast and unicast beamformers needs to be jointly designed, which generally requires perfect channel state information (CSI). However, perfect CSI is usually unavailable due to the channel estimation error. In this paper, we propose a learning based approach to jointly design the multicast and unicast beamformers with imperfect CSI. To learn the beamforming strategy, a new graph neural network (GNN) based architecture named unicast-multicast GNN (UMGNN) is proposed, which only requires the estimated channel. UMGNN can guarantee the permutation invariance/equivalence and model the special property in the multicast transmission, i.e., the multicast rate is determined by the worst user. Moreover, by sharing the parameters across different users, UMGNN exhibits a pretty good scalability to different number of users. Numerical results show that UMGNN outperforms a fully connected neural network and a widely used sampling-based algorithm. To highlight its performance in the multicast transmission, we also show that UMGNN can find the correct worst user that determines the multicast rate.
Author Zhang, Zhe
Tao, Meixia
Liu, Ya-Feng
Author_xml – sequence: 1
  givenname: Zhe
  orcidid: 0000-0003-1816-3740
  surname: Zhang
  fullname: Zhang, Zhe
  email: zhang_zhe@sjtu.edu.cn
  organization: Department of Electronic Engineering, Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Meixia
  orcidid: 0000-0002-0799-0954
  surname: Tao
  fullname: Tao, Meixia
  email: mxtao@sjtu.edu.cn
  organization: Department of Electronic Engineering, Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Ya-Feng
  orcidid: 0000-0002-9684-9150
  surname: Liu
  fullname: Liu, Ya-Feng
  email: yafliu@lsec.cc.ac.cn
  organization: State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kD1PwzAQhi1UJNrCH0AMlphTznbsOCNEfBS16tBWjJGb2OCqcYrtDvx7UtIBMTDdDe_z3ukZoYFrnUbomsCEEMjvVsViPp9QoGzCKCd5zs_QkHAuE5A8G6AhQA6JyDJ5gUYhbAEgBcaGaDnTyjvr3nFs8YNWjWl9g63Dr611Ec8Pu2grFSJWrsZr1-8rr1xobAi2dfjNxg88bfbaG11FXCynl-jcqF3QV6c5Ruunx1XxkswWz9PifpZUNBcxEYZQYiplCJNSEEl4TYXZwAaMFlALZmq6qSUzUjAhOONpKmtIqQYt6pxQNka3fe_et58HHWK5bQ_edSdLKknKU5CEdCnZpyrfhuC1KSsbVexej17ZXUmgPCosfxSWR4XlSWGH0j_o3ttG-a__oZseslrrXwBwyUXGvgECPX37
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_JPROC_2024_3409428
crossref_primary_10_1109_TCCN_2024_3508777
crossref_primary_10_1109_JSAC_2024_3443759
crossref_primary_10_1109_JSAC_2024_3431583
crossref_primary_10_1109_TMC_2025_3558790
crossref_primary_10_1109_TWC_2025_3543615
crossref_primary_10_1109_COMST_2023_3319354
crossref_primary_10_1109_TWC_2024_3361174
crossref_primary_10_1109_OJCOMS_2025_3598312
crossref_primary_10_1109_LCOMM_2024_3405557
crossref_primary_10_1109_TCOMM_2024_3385919
crossref_primary_10_1109_TIFS_2025_3534562
crossref_primary_10_1109_TWC_2024_3437668
crossref_primary_10_1109_TWC_2024_3361900
Cites_doi 10.1109/TSP.2007.909010
10.1109/TWC.2020.3030973
10.1109/JSAC.2021.3078502
10.1109/JSAC.2018.2844638
10.1109/TSP.2005.863008
10.1109/LCOMM.2019.2917431
10.1109/TCOMM.2019.2957482
10.1109/GLOBECOM46510.2021.9685457
10.1109/LWC.2019.2943466
10.1109/CISS.2015.7086813
10.1109/TSP.2015.2442957
10.1109/TSP.2014.2385669
10.1109/TSP.2018.2866382
10.1109/SPAWC.2017.8227668
10.1109/TCOMM.2017.2679708
10.1109/TWC.2018.2858223
10.1109/TNN.2008.2005605
10.1016/0893-6080(89)90020-8
10.1109/TVT.2019.2953724
10.1007/978-1-4614-0237-4
10.1109/MCOM.2008.4557052
10.1109/TWC.2017.2751046
10.1109/TSP.2017.2699640
10.1109/TCCN.2018.2881442
10.1109/TWC.2021.3123620
10.1109/LCOMM.2018.2825444
10.1109/JSAC.2019.2904352
10.1109/JSAC.2019.2933891
10.1109/TWC.2019.2942916
10.1109/TWC.2019.2947591
10.1109/TVT.2011.2146797
10.1109/TSP.2013.2278815
10.1109/GCWkshps45667.2019.9024538
10.1109/LCOMM.2021.3063707
10.1109/TBC.2019.2932339
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2023.3251995
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 2723
ExternalDocumentID 10_1109_TCOMM_2023_3251995
10058567
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11991020; 12288201
  funderid: 10.13039/501100001809
– fundername: National Key R&D Project of China
  grantid: 2020YFB1406802
– fundername: Fundamental Research Funds for the Central Universities of China
  funderid: 10.13039/501100012226
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c296t-6f121fcaf138861815d26fb0b0fe60d63fd2bd83f86366535448d042e0e6d9123
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000991750900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6778
IngestDate Mon Jun 30 10:10:28 EDT 2025
Sat Nov 29 04:08:25 EST 2025
Tue Nov 18 22:44:20 EST 2025
Wed Aug 27 02:22:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-6f121fcaf138861815d26fb0b0fe60d63fd2bd83f86366535448d042e0e6d9123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9684-9150
0000-0003-1816-3740
0000-0002-0799-0954
PQID 2814540811
PQPubID 85472
PageCount 13
ParticipantIDs ieee_primary_10058567
proquest_journals_2814540811
crossref_citationtrail_10_1109_TCOMM_2023_3251995
crossref_primary_10_1109_TCOMM_2023_3251995
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
li (ref23) 2018
ref15
ref14
ref36
he (ref24) 2014
ref31
ref30
ref11
ref33
ref10
ref32
shen (ref22) 2021
ref2
ref1
ref17
ref39
ref16
abadi (ref40) 2016
ref19
ref18
fey (ref38) 2019
ref26
diamond (ref42) 2016; 17
ref25
ref20
ref21
ref43
ref28
ref27
ref29
ref8
ref7
kingma (ref41) 2014
ref9
ref4
ref3
ref6
ref5
keyulu xu (ref37) 2019
References_xml – ident: ref29
  doi: 10.1109/TSP.2007.909010
– ident: ref10
  doi: 10.1109/TWC.2020.3030973
– ident: ref18
  doi: 10.1109/JSAC.2021.3078502
– year: 2019
  ident: ref38
  article-title: Fast graph representation learning with PyTorch geometric
  publication-title: arXiv 1903 02428
– year: 2021
  ident: ref22
  article-title: How neural architectures affect deep learning for communication networks?
  publication-title: arXiv 2111 02215
– start-page: 3293
  year: 2014
  ident: ref24
  article-title: Learning to search in branch and bound algorithms
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref6
  doi: 10.1109/JSAC.2018.2844638
– ident: ref31
  doi: 10.1109/TSP.2005.863008
– ident: ref4
  doi: 10.1109/LCOMM.2019.2917431
– ident: ref15
  doi: 10.1109/TCOMM.2019.2957482
– ident: ref20
  doi: 10.1109/GLOBECOM46510.2021.9685457
– ident: ref17
  doi: 10.1109/LWC.2019.2943466
– ident: ref39
  doi: 10.1109/CISS.2015.7086813
– ident: ref35
  doi: 10.1109/TSP.2015.2442957
– ident: ref7
  doi: 10.1109/TSP.2014.2385669
– start-page: 265
  year: 2016
  ident: ref40
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: Proc ACM OSDI
– start-page: 1
  year: 2014
  ident: ref41
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– ident: ref9
  doi: 10.1109/TSP.2018.2866382
– ident: ref3
  doi: 10.1109/SPAWC.2017.8227668
– ident: ref30
  doi: 10.1109/TCOMM.2017.2679708
– ident: ref1
  doi: 10.1109/TWC.2018.2858223
– ident: ref21
  doi: 10.1109/TNN.2008.2005605
– ident: ref36
  doi: 10.1016/0893-6080(89)90020-8
– start-page: 1
  year: 2019
  ident: ref37
  article-title: How powerful are graph neural networks?
  publication-title: Proc Int Conf Learn Represent
– ident: ref25
  doi: 10.1109/TVT.2019.2953724
– ident: ref8
  doi: 10.1007/978-1-4614-0237-4
– ident: ref28
  doi: 10.1109/MCOM.2008.4557052
– ident: ref33
  doi: 10.1109/TWC.2017.2751046
– ident: ref43
  doi: 10.1109/TSP.2017.2699640
– ident: ref13
  doi: 10.1109/TCCN.2018.2881442
– ident: ref27
  doi: 10.1109/TWC.2021.3123620
– ident: ref14
  doi: 10.1109/LCOMM.2018.2825444
– ident: ref11
  doi: 10.1109/JSAC.2019.2904352
– ident: ref12
  doi: 10.1109/JSAC.2019.2933891
– ident: ref5
  doi: 10.1109/TWC.2019.2942916
– ident: ref26
  doi: 10.1109/TWC.2019.2947591
– ident: ref32
  doi: 10.1109/TVT.2011.2146797
– ident: ref34
  doi: 10.1109/TSP.2013.2278815
– ident: ref19
  doi: 10.1109/GCWkshps45667.2019.9024538
– volume: 17
  start-page: 1
  year: 2016
  ident: ref42
  article-title: CVXPY: A Python-embedded modeling language for convex optimization
  publication-title: J Mach Learn Res
– ident: ref16
  doi: 10.1109/LCOMM.2021.3063707
– start-page: 536
  year: 2018
  ident: ref23
  article-title: Combinatorial optimization with graph convolutional networks and guided tree search
  publication-title: Proc NeurIPS
– ident: ref2
  doi: 10.1109/TBC.2019.2932339
SSID ssj0004033
Score 2.4980383
Snippet With the rapid development of mobile Internet, the demand for multicast is growing rapidly, such as content pushing and video streaming. The multicast service...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2711
SubjectTerms Algorithms
Array signal processing
Beamforming
Channel estimation
Graph neural networks
imperfect CSI
Interference
Joint multicast and unicast transmission
Learning
Multicast algorithms
Multicasting
Neural networks
Optimization
Permutations
UMGNN
Unicast
Video transmission
Title Learning to Beamform in Joint Multicast and Unicast Transmission With Imperfect CSI
URI https://ieeexplore.ieee.org/document/10058567
https://www.proquest.com/docview/2814540811
Volume 71
WOSCitedRecordID wos000991750900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxOnU3LwJp1p0-bjqMOh4qawDXcrbT60oK1snX-_SdrpQBS85ZCU8n59eS_p-_0eAGdcJUQKzbxUaeSFocIe1wH2khQracInZomTzL-nwyGbTvljTVZ3XBillCs-U107dP_yZSEW9qrMeDgy2S2hDdCglFZkrW8SJMK15KStZ6dsyZBB_GLcexgMurZReBdbpqZtJrEShVxblR97sQsw_e1_vtoO2KozSXhZQb8L1lS-BzZX9AX3wahWT32GZQGvVPJmM1SY5fCuyPISOvKtSOYlTHIJJ3k1dtHLoG-v0eBTVr7AW5Naz2zZB-yNbltg0r8e9268uouCJwJOSo9oP_C1SLSPGSMmoEcyIDpFKdKKIEmwlkEqGdaMYEIiHJkDmzSurJAikpvAdgCaeZGrQwClNtlZKGiqqQy14FyLKFTabAEmjREBbQN_adVY1BLjttPFa-yOGojHDonYIhHXSLTB-dea90pg48_ZLWv7lZmV2dugs0Qvrp1wHgfMt_qCzPePfll2DDbs06sCxg5olrOFOgHr4qPM5rNT9319AspazDc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xScCBtYiy-sANpThx6thHqKhaaAsSregtSrxAJUhRG_h-bCeFSggkbj7YSjTP45k4894AnHGVUCk081KlsReGinhcB8RLUqKkCZ-EJU4yvxP1emw45PclWd1xYZRSrvhM1ezQ_cuXY_Fur8qMh2OT3dJoEZbrYRj4BV3rmwaJSSk6aSvaIzbjyGB-0W_cdbs12yq8RixX07aTmItDrrHKj9PYhZjm5j9fbgs2ylwSXRbgb8OCynZgfU5hcBceSv3UJ5SP0ZVKXm2OikYZuhmPshw5-q1IpjlKMokGWTF28cvgby_S0OMof0Ztk1xPbOEHajy0KzBoXvcbLa_so-CJgNPco9oPfC0S7RPGqAnpdRlQneIUa0WxpETLIJWMaEYJpXVibMukcWaFFZXchLY9WMrGmdoHJLXJz0IRpTqSoRaca1EPlTaHgElkRBBVwZ9ZNRalyLjtdfESu48NzGOHRGyRiEskqnD-teatkNj4c3bF2n5uZmH2KhzN0ItLN5zGAfOtwiDz_YNflp3Caqvf7cSddu_2ENbsk4pyxiNYyifv6hhWxEc-mk5O3F77BJZDz34
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Beamform+in+Joint+Multicast+and+Unicast+Transmission+With+Imperfect+CSI&rft.jtitle=IEEE+transactions+on+communications&rft.au=Zhang%2C+Zhe&rft.au=Tao%2C+Meixia&rft.au=Liu%2C+Ya-Feng&rft.date=2023-05-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=71&rft.issue=5&rft.spage=2711&rft.epage=2723&rft_id=info:doi/10.1109%2FTCOMM.2023.3251995&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2023_3251995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon