Learning to Beamform in Joint Multicast and Unicast Transmission With Imperfect CSI
With the rapid development of mobile Internet, the demand for multicast is growing rapidly, such as content pushing and video streaming. The multicast service is usually offered to users without interrupting their on-going unicast transmission, and thus the multicast and unicast beamformers needs to...
Saved in:
| Published in: | IEEE transactions on communications Vol. 71; no. 5; pp. 2711 - 2723 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0090-6778, 1558-0857 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the rapid development of mobile Internet, the demand for multicast is growing rapidly, such as content pushing and video streaming. The multicast service is usually offered to users without interrupting their on-going unicast transmission, and thus the multicast and unicast beamformers needs to be jointly designed, which generally requires perfect channel state information (CSI). However, perfect CSI is usually unavailable due to the channel estimation error. In this paper, we propose a learning based approach to jointly design the multicast and unicast beamformers with imperfect CSI. To learn the beamforming strategy, a new graph neural network (GNN) based architecture named unicast-multicast GNN (UMGNN) is proposed, which only requires the estimated channel. UMGNN can guarantee the permutation invariance/equivalence and model the special property in the multicast transmission, i.e., the multicast rate is determined by the worst user. Moreover, by sharing the parameters across different users, UMGNN exhibits a pretty good scalability to different number of users. Numerical results show that UMGNN outperforms a fully connected neural network and a widely used sampling-based algorithm. To highlight its performance in the multicast transmission, we also show that UMGNN can find the correct worst user that determines the multicast rate. |
|---|---|
| AbstractList | With the rapid development of mobile Internet, the demand for multicast is growing rapidly, such as content pushing and video streaming. The multicast service is usually offered to users without interrupting their on-going unicast transmission, and thus the multicast and unicast beamformers needs to be jointly designed, which generally requires perfect channel state information (CSI). However, perfect CSI is usually unavailable due to the channel estimation error. In this paper, we propose a learning based approach to jointly design the multicast and unicast beamformers with imperfect CSI. To learn the beamforming strategy, a new graph neural network (GNN) based architecture named unicast-multicast GNN (UMGNN) is proposed, which only requires the estimated channel. UMGNN can guarantee the permutation invariance/equivalence and model the special property in the multicast transmission, i.e., the multicast rate is determined by the worst user. Moreover, by sharing the parameters across different users, UMGNN exhibits a pretty good scalability to different number of users. Numerical results show that UMGNN outperforms a fully connected neural network and a widely used sampling-based algorithm. To highlight its performance in the multicast transmission, we also show that UMGNN can find the correct worst user that determines the multicast rate. |
| Author | Zhang, Zhe Tao, Meixia Liu, Ya-Feng |
| Author_xml | – sequence: 1 givenname: Zhe orcidid: 0000-0003-1816-3740 surname: Zhang fullname: Zhang, Zhe email: zhang_zhe@sjtu.edu.cn organization: Department of Electronic Engineering, Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Meixia orcidid: 0000-0002-0799-0954 surname: Tao fullname: Tao, Meixia email: mxtao@sjtu.edu.cn organization: Department of Electronic Engineering, Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Ya-Feng orcidid: 0000-0002-9684-9150 surname: Liu fullname: Liu, Ya-Feng email: yafliu@lsec.cc.ac.cn organization: State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China |
| BookMark | eNp9kD1PwzAQhi1UJNrCH0AMlphTznbsOCNEfBS16tBWjJGb2OCqcYrtDvx7UtIBMTDdDe_z3ukZoYFrnUbomsCEEMjvVsViPp9QoGzCKCd5zs_QkHAuE5A8G6AhQA6JyDJ5gUYhbAEgBcaGaDnTyjvr3nFs8YNWjWl9g63Dr611Ec8Pu2grFSJWrsZr1-8rr1xobAi2dfjNxg88bfbaG11FXCynl-jcqF3QV6c5Ruunx1XxkswWz9PifpZUNBcxEYZQYiplCJNSEEl4TYXZwAaMFlALZmq6qSUzUjAhOONpKmtIqQYt6pxQNka3fe_et58HHWK5bQ_edSdLKknKU5CEdCnZpyrfhuC1KSsbVexej17ZXUmgPCosfxSWR4XlSWGH0j_o3ttG-a__oZseslrrXwBwyUXGvgECPX37 |
| CODEN | IECMBT |
| CitedBy_id | crossref_primary_10_1109_JPROC_2024_3409428 crossref_primary_10_1109_TCCN_2024_3508777 crossref_primary_10_1109_JSAC_2024_3443759 crossref_primary_10_1109_JSAC_2024_3431583 crossref_primary_10_1109_TMC_2025_3558790 crossref_primary_10_1109_TWC_2025_3543615 crossref_primary_10_1109_COMST_2023_3319354 crossref_primary_10_1109_TWC_2024_3361174 crossref_primary_10_1109_OJCOMS_2025_3598312 crossref_primary_10_1109_LCOMM_2024_3405557 crossref_primary_10_1109_TCOMM_2024_3385919 crossref_primary_10_1109_TIFS_2025_3534562 crossref_primary_10_1109_TWC_2024_3437668 crossref_primary_10_1109_TWC_2024_3361900 |
| Cites_doi | 10.1109/TSP.2007.909010 10.1109/TWC.2020.3030973 10.1109/JSAC.2021.3078502 10.1109/JSAC.2018.2844638 10.1109/TSP.2005.863008 10.1109/LCOMM.2019.2917431 10.1109/TCOMM.2019.2957482 10.1109/GLOBECOM46510.2021.9685457 10.1109/LWC.2019.2943466 10.1109/CISS.2015.7086813 10.1109/TSP.2015.2442957 10.1109/TSP.2014.2385669 10.1109/TSP.2018.2866382 10.1109/SPAWC.2017.8227668 10.1109/TCOMM.2017.2679708 10.1109/TWC.2018.2858223 10.1109/TNN.2008.2005605 10.1016/0893-6080(89)90020-8 10.1109/TVT.2019.2953724 10.1007/978-1-4614-0237-4 10.1109/MCOM.2008.4557052 10.1109/TWC.2017.2751046 10.1109/TSP.2017.2699640 10.1109/TCCN.2018.2881442 10.1109/TWC.2021.3123620 10.1109/LCOMM.2018.2825444 10.1109/JSAC.2019.2904352 10.1109/JSAC.2019.2933891 10.1109/TWC.2019.2942916 10.1109/TWC.2019.2947591 10.1109/TVT.2011.2146797 10.1109/TSP.2013.2278815 10.1109/GCWkshps45667.2019.9024538 10.1109/LCOMM.2021.3063707 10.1109/TBC.2019.2932339 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCOMM.2023.3251995 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0857 |
| EndPage | 2723 |
| ExternalDocumentID | 10_1109_TCOMM_2023_3251995 10058567 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 11991020; 12288201 funderid: 10.13039/501100001809 – fundername: National Key R&D Project of China grantid: 2020YFB1406802 – fundername: Fundamental Research Funds for the Central Universities of China funderid: 10.13039/501100012226 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c296t-6f121fcaf138861815d26fb0b0fe60d63fd2bd83f86366535448d042e0e6d9123 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000991750900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0090-6778 |
| IngestDate | Mon Jun 30 10:10:28 EDT 2025 Sat Nov 29 04:08:25 EST 2025 Tue Nov 18 22:44:20 EST 2025 Wed Aug 27 02:22:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-6f121fcaf138861815d26fb0b0fe60d63fd2bd83f86366535448d042e0e6d9123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9684-9150 0000-0003-1816-3740 0000-0002-0799-0954 |
| PQID | 2814540811 |
| PQPubID | 85472 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10058567 proquest_journals_2814540811 crossref_citationtrail_10_1109_TCOMM_2023_3251995 crossref_primary_10_1109_TCOMM_2023_3251995 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on communications |
| PublicationTitleAbbrev | TCOMM |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 li (ref23) 2018 ref15 ref14 ref36 he (ref24) 2014 ref31 ref30 ref11 ref33 ref10 ref32 shen (ref22) 2021 ref2 ref1 ref17 ref39 ref16 abadi (ref40) 2016 ref19 ref18 fey (ref38) 2019 ref26 diamond (ref42) 2016; 17 ref25 ref20 ref21 ref43 ref28 ref27 ref29 ref8 ref7 kingma (ref41) 2014 ref9 ref4 ref3 ref6 ref5 keyulu xu (ref37) 2019 |
| References_xml | – ident: ref29 doi: 10.1109/TSP.2007.909010 – ident: ref10 doi: 10.1109/TWC.2020.3030973 – ident: ref18 doi: 10.1109/JSAC.2021.3078502 – year: 2019 ident: ref38 article-title: Fast graph representation learning with PyTorch geometric publication-title: arXiv 1903 02428 – year: 2021 ident: ref22 article-title: How neural architectures affect deep learning for communication networks? publication-title: arXiv 2111 02215 – start-page: 3293 year: 2014 ident: ref24 article-title: Learning to search in branch and bound algorithms publication-title: Proc Adv Neural Inf Process Syst – ident: ref6 doi: 10.1109/JSAC.2018.2844638 – ident: ref31 doi: 10.1109/TSP.2005.863008 – ident: ref4 doi: 10.1109/LCOMM.2019.2917431 – ident: ref15 doi: 10.1109/TCOMM.2019.2957482 – ident: ref20 doi: 10.1109/GLOBECOM46510.2021.9685457 – ident: ref17 doi: 10.1109/LWC.2019.2943466 – ident: ref39 doi: 10.1109/CISS.2015.7086813 – ident: ref35 doi: 10.1109/TSP.2015.2442957 – ident: ref7 doi: 10.1109/TSP.2014.2385669 – start-page: 265 year: 2016 ident: ref40 article-title: TensorFlow: A system for large-scale machine learning publication-title: Proc ACM OSDI – start-page: 1 year: 2014 ident: ref41 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent – ident: ref9 doi: 10.1109/TSP.2018.2866382 – ident: ref3 doi: 10.1109/SPAWC.2017.8227668 – ident: ref30 doi: 10.1109/TCOMM.2017.2679708 – ident: ref1 doi: 10.1109/TWC.2018.2858223 – ident: ref21 doi: 10.1109/TNN.2008.2005605 – ident: ref36 doi: 10.1016/0893-6080(89)90020-8 – start-page: 1 year: 2019 ident: ref37 article-title: How powerful are graph neural networks? publication-title: Proc Int Conf Learn Represent – ident: ref25 doi: 10.1109/TVT.2019.2953724 – ident: ref8 doi: 10.1007/978-1-4614-0237-4 – ident: ref28 doi: 10.1109/MCOM.2008.4557052 – ident: ref33 doi: 10.1109/TWC.2017.2751046 – ident: ref43 doi: 10.1109/TSP.2017.2699640 – ident: ref13 doi: 10.1109/TCCN.2018.2881442 – ident: ref27 doi: 10.1109/TWC.2021.3123620 – ident: ref14 doi: 10.1109/LCOMM.2018.2825444 – ident: ref11 doi: 10.1109/JSAC.2019.2904352 – ident: ref12 doi: 10.1109/JSAC.2019.2933891 – ident: ref5 doi: 10.1109/TWC.2019.2942916 – ident: ref26 doi: 10.1109/TWC.2019.2947591 – ident: ref32 doi: 10.1109/TVT.2011.2146797 – ident: ref34 doi: 10.1109/TSP.2013.2278815 – ident: ref19 doi: 10.1109/GCWkshps45667.2019.9024538 – volume: 17 start-page: 1 year: 2016 ident: ref42 article-title: CVXPY: A Python-embedded modeling language for convex optimization publication-title: J Mach Learn Res – ident: ref16 doi: 10.1109/LCOMM.2021.3063707 – start-page: 536 year: 2018 ident: ref23 article-title: Combinatorial optimization with graph convolutional networks and guided tree search publication-title: Proc NeurIPS – ident: ref2 doi: 10.1109/TBC.2019.2932339 |
| SSID | ssj0004033 |
| Score | 2.4980383 |
| Snippet | With the rapid development of mobile Internet, the demand for multicast is growing rapidly, such as content pushing and video streaming. The multicast service... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2711 |
| SubjectTerms | Algorithms Array signal processing Beamforming Channel estimation Graph neural networks imperfect CSI Interference Joint multicast and unicast transmission Learning Multicast algorithms Multicasting Neural networks Optimization Permutations UMGNN Unicast Video transmission |
| Title | Learning to Beamform in Joint Multicast and Unicast Transmission With Imperfect CSI |
| URI | https://ieeexplore.ieee.org/document/10058567 https://www.proquest.com/docview/2814540811 |
| Volume | 71 |
| WOSCitedRecordID | wos000991750900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0857 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004033 issn: 0090-6778 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxOnU3LwJp1p0-bjqMOh4qawDXcrbT60oK1snX-_SdrpQBS85ZCU8n59eS_p-_0eAGdcJUQKzbxUaeSFocIe1wH2khQracInZomTzL-nwyGbTvljTVZ3XBillCs-U107dP_yZSEW9qrMeDgy2S2hDdCglFZkrW8SJMK15KStZ6dsyZBB_GLcexgMurZReBdbpqZtJrEShVxblR97sQsw_e1_vtoO2KozSXhZQb8L1lS-BzZX9AX3wahWT32GZQGvVPJmM1SY5fCuyPISOvKtSOYlTHIJJ3k1dtHLoG-v0eBTVr7AW5Naz2zZB-yNbltg0r8e9268uouCJwJOSo9oP_C1SLSPGSMmoEcyIDpFKdKKIEmwlkEqGdaMYEIiHJkDmzSurJAikpvAdgCaeZGrQwClNtlZKGiqqQy14FyLKFTabAEmjREBbQN_adVY1BLjttPFa-yOGojHDonYIhHXSLTB-dea90pg48_ZLWv7lZmV2dugs0Qvrp1wHgfMt_qCzPePfll2DDbs06sCxg5olrOFOgHr4qPM5rNT9319AspazDc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xScCBtYiy-sANpThx6thHqKhaaAsSregtSrxAJUhRG_h-bCeFSggkbj7YSjTP45k4894AnHGVUCk081KlsReGinhcB8RLUqKkCZ-EJU4yvxP1emw45PclWd1xYZRSrvhM1ezQ_cuXY_Fur8qMh2OT3dJoEZbrYRj4BV3rmwaJSSk6aSvaIzbjyGB-0W_cdbs12yq8RixX07aTmItDrrHKj9PYhZjm5j9fbgs2ylwSXRbgb8OCynZgfU5hcBceSv3UJ5SP0ZVKXm2OikYZuhmPshw5-q1IpjlKMokGWTF28cvgby_S0OMof0Ztk1xPbOEHajy0KzBoXvcbLa_so-CJgNPco9oPfC0S7RPGqAnpdRlQneIUa0WxpETLIJWMaEYJpXVibMukcWaFFZXchLY9WMrGmdoHJLXJz0IRpTqSoRaca1EPlTaHgElkRBBVwZ9ZNRalyLjtdfESu48NzGOHRGyRiEskqnD-teatkNj4c3bF2n5uZmH2KhzN0ItLN5zGAfOtwiDz_YNflp3Caqvf7cSddu_2ENbsk4pyxiNYyifv6hhWxEc-mk5O3F77BJZDz34 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Beamform+in+Joint+Multicast+and+Unicast+Transmission+With+Imperfect+CSI&rft.jtitle=IEEE+transactions+on+communications&rft.au=Zhang%2C+Zhe&rft.au=Tao%2C+Meixia&rft.au=Liu%2C+Ya-Feng&rft.date=2023-05-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=71&rft.issue=5&rft.spage=2711&rft.epage=2723&rft_id=info:doi/10.1109%2FTCOMM.2023.3251995&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2023_3251995 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |