IFCRL: Interval-Intent Fuzzy Concept Re-Cognition Learning Model

The fuzzy concept serves as a crucial tool for describing phenomena and constitutes the fundamental unit of human cognition. Fuzzy concepts are characterized by their extent and intent, with the latter being comprised of continuous membership degrees. Given that human cognition often progresses from...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 32; číslo 6; s. 3581 - 3593
Hlavní autoři: Ding, Yi, Xu, Weihua, Ding, Weiping, Qian, Yuhua
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The fuzzy concept serves as a crucial tool for describing phenomena and constitutes the fundamental unit of human cognition. Fuzzy concepts are characterized by their extent and intent, with the latter being comprised of continuous membership degrees. Given that human cognition often progresses from vagueness to precision, it is imperative that the form of intent not be confined to a singular continuous value; rather, an interval possesses superior flexibility in this regard. Initial cognitive processes lack comprehensiveness in acquiring knowledge, necessitating subsequent cognitions to more accurately delineate the intended scope of a concept. Motivated by this insight, we proposed an interval-intent fuzzy concept re-cognition learning model (IFCRL). First, this model transforms fuzzy concept intent from a single continuous value into an interval-based representation, which describes the range of attribute values for all objects within the given interval. Second, in order to simulate secondary cognitive processes akin to those exhibited by humans toward phenomena, we present a concept re-cognition learning method capable of effectively scaling intervals within reasonable bounds. Third, aiming to overcome cognitive barriers and emulate imaginative processes observed in human brains, we introduce a concept clustering approach based on intent similarity which significantly reduces concept complexity while enhancing cognitive efficiency. Finally, we evaluate our classification performance using 12 datasets and experimental results demonstrate that IFCRL outperforms 14 other classification algorithms both feasibly and effectively.
AbstractList The fuzzy concept serves as a crucial tool for describing phenomena and constitutes the fundamental unit of human cognition. Fuzzy concepts are characterized by their extent and intent, with the latter being comprised of continuous membership degrees. Given that human cognition often progresses from vagueness to precision, it is imperative that the form of intent not be confined to a singular continuous value; rather, an interval possesses superior flexibility in this regard. Initial cognitive processes lack comprehensiveness in acquiring knowledge, necessitating subsequent cognitions to more accurately delineate the intended scope of a concept. Motivated by this insight, we proposed an interval-intent fuzzy concept re-cognition learning model (IFCRL). First, this model transforms fuzzy concept intent from a single continuous value into an interval-based representation, which describes the range of attribute values for all objects within the given interval. Second, in order to simulate secondary cognitive processes akin to those exhibited by humans toward phenomena, we present a concept re-cognition learning method capable of effectively scaling intervals within reasonable bounds. Third, aiming to overcome cognitive barriers and emulate imaginative processes observed in human brains, we introduce a concept clustering approach based on intent similarity which significantly reduces concept complexity while enhancing cognitive efficiency. Finally, we evaluate our classification performance using 12 datasets and experimental results demonstrate that IFCRL outperforms 14 other classification algorithms both feasibly and effectively.
Author Ding, Yi
Qian, Yuhua
Ding, Weiping
Xu, Weihua
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0009-0005-2907-7110
  surname: Ding
  fullname: Ding, Yi
  email: drying20@163.com
  organization: College of Artificial Intelligence, Southwest University, Chongqing, China
– sequence: 2
  givenname: Weihua
  orcidid: 0000-0001-5419-4654
  surname: Xu
  fullname: Xu, Weihua
  email: chxuwh@gmail.com
  organization: College of Artificial Intelligence, Southwest University, Chongqing, China
– sequence: 3
  givenname: Weiping
  orcidid: 0000-0002-3180-7347
  surname: Ding
  fullname: Ding, Weiping
  email: dwp9988@163.com
  organization: School of Information Science and Technology, Nantong University, Nantong, China
– sequence: 4
  givenname: Yuhua
  orcidid: 0000-0001-6772-4247
  surname: Qian
  fullname: Qian, Yuhua
  email: jinchengqyh@126.com
  organization: Institute of Big Data Science and Industry, Shanxi University, Taiyuan, China
BookMark eNp9kE9LwzAYh4NMcE6_gHgoeO7M_zSelGJ1MBHGdtklZGk6Omoy00zYPr2t20E8eHp_h9_zvi_PJRg47ywANwiOEYLyfl4slssxhpiOCRGccXkGhkhSlEJI6KDLkJOUC8gvwGXbbiBElKFsCB4nRT6bPiQTF2340k3aBxeTYnc47JPcO2O3MZnZNPdrV8fau2RqdXC1WydvvrTNFTivdNPa69McgUXxPM9f0-n7yyR_mqYGSx5TXtIVphkpJTeCl3hVEakzAo1BtGIS8SzLpJaMElMxWKJVpYkRAlNNhRHMkBG4O-7dBv-5s21UG78LrjupCORUIMYE6lrZsWWCb9tgK2XqqPu3Y9B1oxBUvS_140v1vtTJV4fiP-g21B867P-Hbo9Qba39BVABKcTkG97Pdyc
CODEN IEFSEV
CitedBy_id crossref_primary_10_1007_s10489_025_06227_5
crossref_primary_10_1016_j_inffus_2025_103386
crossref_primary_10_1016_j_ins_2024_120926
crossref_primary_10_1016_j_patcog_2025_112268
crossref_primary_10_1109_TCYB_2024_3499952
crossref_primary_10_1016_j_ijar_2025_109386
crossref_primary_10_1016_j_asoc_2025_113331
crossref_primary_10_1109_TFUZZ_2025_3543893
crossref_primary_10_3390_axioms14080593
crossref_primary_10_1109_TITS_2025_3558469
crossref_primary_10_1080_03081079_2024_2396859
crossref_primary_10_1016_j_inffus_2025_103715
crossref_primary_10_1016_j_inffus_2024_102659
Cites_doi 10.1023/A:1025419826662
10.1016/j.ijar.2017.01.009
10.1002/0471725293
10.1016/j.ijar.2013.10.002
10.1007/978-3-7908-1825-3_7
10.1109/TSMC.1985.6313426
10.1007/springerreference_62800
10.1016/j.ins.2019.05.009
10.1016/j.ins.2011.08.001
10.1016/j.ejor.2021.11.003
10.11919/j.issn.1002–0829.215044
10.1109/TNNLS.2023.3235800
10.1007/978-3-540-25929-9_6
10.1109/TSMCB.2009.2013334
10.1007/BF00058655
10.1016/j.fss.2007.04.023
10.1002/SERIES1345
10.1142/9789814675017_0002
10.21873/cgp.20063
10.1007/978-3-319-11740-9_67
10.1016/j.ins.2023.119818
10.1109/TSMCC.2006.871151
10.1007/978-3-540-24651-0_30
10.1016/j.ins.2014.07.029
10.1109/TSMC.2018.2882090
10.1007/978-3-642-01815-2_23
10.4018/jcini.2008040101
10.1016/0898-1221(92)90120-7
10.1007/s12559-023-10107-w
10.1007/978-3-642-59830-2
10.1109/TFUZZ.2022.3216110
10.1007/978-3-540-39964-3_62
10.1109/ICMLC.2011.6016738
10.1007/978-3-642-29892-9_9
10.1007/978-3-540-24651-0_18
10.1016/j.inffus.2018.08.007
10.1109/TCYB.2020.2980794
10.4236/jbise.2010.34053
10.1109/tnnls.2023.3333537
10.1016/j.knosys.2022.110093
10.1109/FUZZY.2011.6007623
10.1016/j.ins.2023.118998
10.1007/978-3-540-32262-7_19
10.1109/TFUZZ.2021.3128061
10.1016/j.fss.2012.03.003
10.1109/TSMCC.2012.2236648
10.1109/TKDE.2008.223
10.1007/s13042-021-01434-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2024.3376569
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 3593
ExternalDocumentID 10_1109_TFUZZ_2024_3376569
10470402
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62376229; 61976120
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Chongqing
  grantid: CSTB2023NSCQ-LZX0027
  funderid: 10.13039/501100005230
– fundername: Natural Science Key Foundation of Jiangsu Education Department
  grantid: 21KJA510004
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-6d4b2483d96c76d2bf39a830cc14f59168889a9543cf50d1bfa3c7724a47c75c3
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001240137400031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Mon Jun 30 06:31:33 EDT 2025
Tue Nov 18 21:29:49 EST 2025
Sat Nov 29 03:12:46 EST 2025
Wed Aug 27 02:07:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-6d4b2483d96c76d2bf39a830cc14f59168889a9543cf50d1bfa3c7724a47c75c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6772-4247
0000-0002-3180-7347
0009-0005-2907-7110
0000-0001-5419-4654
PQID 3064715571
PQPubID 85428
PageCount 13
ParticipantIDs proquest_journals_3064715571
ieee_primary_10470402
crossref_citationtrail_10_1109_TFUZZ_2024_3376569
crossref_primary_10_1109_TFUZZ_2024_3376569
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
Zhang (ref29) 2007; 24
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Mi (ref32) 2018
ref40
Hu (ref50) 2005; 1
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
ref1
ref39
ref38
Murphy (ref44) 2006; 18
Kuncheva (ref51) 1995; 1
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
References_xml – ident: ref1
  doi: 10.1023/A:1025419826662
– ident: ref23
  doi: 10.1016/j.ijar.2017.01.009
– ident: ref46
  doi: 10.1002/0471725293
– ident: ref30
  doi: 10.1016/j.ijar.2013.10.002
– ident: ref40
  doi: 10.1007/978-3-7908-1825-3_7
– ident: ref53
  doi: 10.1109/TSMC.1985.6313426
– ident: ref8
  doi: 10.1007/springerreference_62800
– ident: ref34
  doi: 10.1016/j.ins.2019.05.009
– ident: ref7
  doi: 10.1016/j.ins.2011.08.001
– ident: ref35
  doi: 10.1016/j.ejor.2021.11.003
– ident: ref43
  doi: 10.11919/j.issn.1002–0829.215044
– ident: ref26
  doi: 10.1109/TNNLS.2023.3235800
– volume: 1
  year: 1995
  ident: ref51
  article-title: An intuitionistic fuzzy k-nearest neighbors rule
  publication-title: Notes Intuit Fuzzy Sets
– ident: ref18
  doi: 10.1007/978-3-540-25929-9_6
– ident: ref28
  doi: 10.1109/TSMCB.2009.2013334
– ident: ref47
  doi: 10.1007/BF00058655
– ident: ref48
  doi: 10.1016/j.fss.2007.04.023
– volume: 18
  start-page: 1
  issue: 60
  year: 2006
  ident: ref44
  article-title: Naive Bayes classifiers
– volume: 1
  start-page: 203
  issue: 2
  year: 2005
  ident: ref50
  article-title: Improving fuzzy k-NN by using genetic algorithm
  publication-title: J. Comput. Inf. Syst.
– ident: ref45
  doi: 10.1002/SERIES1345
– ident: ref6
  doi: 10.1142/9789814675017_0002
– ident: ref42
  doi: 10.21873/cgp.20063
– ident: ref24
  doi: 10.1007/978-3-319-11740-9_67
– ident: ref31
  doi: 10.1016/j.ins.2023.119818
– ident: ref2
  doi: 10.1109/TSMCC.2006.871151
– ident: ref13
  doi: 10.1007/978-3-540-24651-0_30
– ident: ref10
  doi: 10.1016/j.ins.2014.07.029
– ident: ref33
  doi: 10.1109/TSMC.2018.2882090
– ident: ref3
  doi: 10.1007/978-3-642-01815-2_23
– ident: ref16
  doi: 10.4018/jcini.2008040101
– ident: ref17
  doi: 10.1016/0898-1221(92)90120-7
– ident: ref27
  doi: 10.1007/s12559-023-10107-w
– ident: ref11
  doi: 10.1007/978-3-642-59830-2
– ident: ref25
  doi: 10.1109/TFUZZ.2022.3216110
– volume: 24
  start-page: 957
  issue: 6
  year: 2007
  ident: ref29
  article-title: Cognitive model based on granular computing
  publication-title: Chin. J. Eng. Math
– ident: ref41
  doi: 10.1007/978-3-540-39964-3_62
– ident: ref52
  doi: 10.1109/ICMLC.2011.6016738
– ident: ref12
  doi: 10.1007/978-3-642-29892-9_9
– ident: ref14
  doi: 10.1007/978-3-540-24651-0_18
– ident: ref9
  doi: 10.1016/j.inffus.2018.08.007
– ident: ref22
  doi: 10.1109/TCYB.2020.2980794
– ident: ref49
  doi: 10.4236/jbise.2010.34053
– ident: ref37
  doi: 10.1109/tnnls.2023.3333537
– year: 2018
  ident: ref32
  article-title: A generalized concept-cognitive learning: A machine learning viewpoint
– ident: ref39
  doi: 10.1016/j.knosys.2022.110093
– ident: ref21
  doi: 10.1109/FUZZY.2011.6007623
– ident: ref15
  doi: 10.1016/j.ins.2023.118998
– ident: ref19
  doi: 10.1007/978-3-540-32262-7_19
– ident: ref36
  doi: 10.1109/TFUZZ.2021.3128061
– ident: ref20
  doi: 10.1016/j.fss.2012.03.003
– ident: ref5
  doi: 10.1109/TSMCC.2012.2236648
– ident: ref4
  doi: 10.1109/TKDE.2008.223
– ident: ref38
  doi: 10.1007/s13042-021-01434-1
SSID ssj0014518
Score 2.5110254
Snippet The fuzzy concept serves as a crucial tool for describing phenomena and constitutes the fundamental unit of human cognition. Fuzzy concepts are characterized...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3581
SubjectTerms Algorithms
Classification
Classification algorithms
Clustering
Cognition
Cognition & reasoning
Computational modeling
Concept clustering
concept-cognitive learning
Context modeling
Fuzzy systems
Granular computing
interval-intent
Learning
Mathematical models
object classification
Stochastic processes
Title IFCRL: Interval-Intent Fuzzy Concept Re-Cognition Learning Model
URI https://ieeexplore.ieee.org/document/10470402
https://www.proquest.com/docview/3064715571
Volume 32
WOSCitedRecordID wos001240137400031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA86POjB6Zw4nZKDN8nWNmkenpRiURhDxgZjl9ImqQhjk60T3F9vknZjIAreekhC-X7fM_keANxyTxnll2IUaE6Rfb9FKeM54q5bOFPGqjmke6zf5-OxeK2K1V0tjNbaJZ_pjv10b_lqLlf2qqxr2woYpjMad58xVhZrbZ8MSOiXdW8UI8o8uqmQ8UR3GI8mExMLBqSDjUCFNrt5xwq5sSo_dLEzMHH9n792Ao4rTxI-ltCfgj09a4D6ZkoDrIS2AY52Wg6egYeXOBr07qG7CTRchlwOewHj1Xr9BaOyiBEONIrKvKL5DFYtWN-gnZs2bYJR_DSMnlE1RQHJQNACUUWygHCsBJWMqiDLsUg59qT0SR4a79DEwCIVIcEyDz3lZ3mKpfG5SUqYZKHE56A2m8_0BYCMyNCjPEuFLwkLUi5MvJaHKstVzrAiLeBvqJrIqsW4nXQxTVyo4YnEIZFYJJIKiRa42-75KBts_Lm6aWm_s7Ikewu0N-gllRAuExtcMeMvMf_yl21X4NCeXqZ-tUGtWKz0NTiQn8X7cnHj-OsbZEzJpQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP8QFdSDb3E-c_Am0bZ5e1KGZcM5RCaIl9ImqQiyidsE99ebpJ0MRMFbDwkp3-97Jt8D4ERGxim_nODESo79-y3OhSyxDN3ChXFWLSDdEd2ufHxUd3WxeqiFsdaG5DN75j_DW74Z6LG_Kjv3bQUc0zmNu8AoTeKqXOv70YCyuKp84wRzEfFpjUykznvpw9OTiwYTekacSDGf3zxjh8JglR_aOJiYdO2fP7cOq7Uvia4q8DdgzvY3YW06pwHVYrsJKzNNB7fgsp027zsXKNwFOj7DIYt9hNLxZPKJmlUZI7q3uFllFg36qG7C-oz85LTXbXhIr3vNFq7nKGCdKD7C3NAioZIYxbXgJilKonJJIq1jWjLnH7ooWOWKUaJLFpm4KHOinddNcyq0YJrswHx_0Le7gATVLOKyyFWsqUhyqVzEVjJTlKYUxNAGxFOqZrpuMu5nXbxmIdiIVBaQyDwSWY1EA06_97xVLTb-XL3taT-zsiJ7Aw6m6GW1GA4zH14J5zGJeO-Xbcew1OrddrJOu3uzD8v-pCoR7ADmR-9jewiL-mP0Mnw_Crz2BQ2pzOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IFCRL%3A+Interval-Intent+Fuzzy+Concept+Re-Cognition+Learning+Model&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Ding%2C+Yi&rft.au=Xu%2C+Weihua&rft.au=Ding%2C+Weiping&rft.au=Qian%2C+Yuhua&rft.date=2024-06-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=32&rft.issue=6&rft.spage=3581&rft.epage=3593&rft_id=info:doi/10.1109%2FTFUZZ.2024.3376569&rft.externalDocID=10470402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon