IFCRL: Interval-Intent Fuzzy Concept Re-Cognition Learning Model
The fuzzy concept serves as a crucial tool for describing phenomena and constitutes the fundamental unit of human cognition. Fuzzy concepts are characterized by their extent and intent, with the latter being comprised of continuous membership degrees. Given that human cognition often progresses from...
Uloženo v:
| Vydáno v: | IEEE transactions on fuzzy systems Ročník 32; číslo 6; s. 3581 - 3593 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The fuzzy concept serves as a crucial tool for describing phenomena and constitutes the fundamental unit of human cognition. Fuzzy concepts are characterized by their extent and intent, with the latter being comprised of continuous membership degrees. Given that human cognition often progresses from vagueness to precision, it is imperative that the form of intent not be confined to a singular continuous value; rather, an interval possesses superior flexibility in this regard. Initial cognitive processes lack comprehensiveness in acquiring knowledge, necessitating subsequent cognitions to more accurately delineate the intended scope of a concept. Motivated by this insight, we proposed an interval-intent fuzzy concept re-cognition learning model (IFCRL). First, this model transforms fuzzy concept intent from a single continuous value into an interval-based representation, which describes the range of attribute values for all objects within the given interval. Second, in order to simulate secondary cognitive processes akin to those exhibited by humans toward phenomena, we present a concept re-cognition learning method capable of effectively scaling intervals within reasonable bounds. Third, aiming to overcome cognitive barriers and emulate imaginative processes observed in human brains, we introduce a concept clustering approach based on intent similarity which significantly reduces concept complexity while enhancing cognitive efficiency. Finally, we evaluate our classification performance using 12 datasets and experimental results demonstrate that IFCRL outperforms 14 other classification algorithms both feasibly and effectively. |
|---|---|
| AbstractList | The fuzzy concept serves as a crucial tool for describing phenomena and constitutes the fundamental unit of human cognition. Fuzzy concepts are characterized by their extent and intent, with the latter being comprised of continuous membership degrees. Given that human cognition often progresses from vagueness to precision, it is imperative that the form of intent not be confined to a singular continuous value; rather, an interval possesses superior flexibility in this regard. Initial cognitive processes lack comprehensiveness in acquiring knowledge, necessitating subsequent cognitions to more accurately delineate the intended scope of a concept. Motivated by this insight, we proposed an interval-intent fuzzy concept re-cognition learning model (IFCRL). First, this model transforms fuzzy concept intent from a single continuous value into an interval-based representation, which describes the range of attribute values for all objects within the given interval. Second, in order to simulate secondary cognitive processes akin to those exhibited by humans toward phenomena, we present a concept re-cognition learning method capable of effectively scaling intervals within reasonable bounds. Third, aiming to overcome cognitive barriers and emulate imaginative processes observed in human brains, we introduce a concept clustering approach based on intent similarity which significantly reduces concept complexity while enhancing cognitive efficiency. Finally, we evaluate our classification performance using 12 datasets and experimental results demonstrate that IFCRL outperforms 14 other classification algorithms both feasibly and effectively. |
| Author | Ding, Yi Qian, Yuhua Ding, Weiping Xu, Weihua |
| Author_xml | – sequence: 1 givenname: Yi orcidid: 0009-0005-2907-7110 surname: Ding fullname: Ding, Yi email: drying20@163.com organization: College of Artificial Intelligence, Southwest University, Chongqing, China – sequence: 2 givenname: Weihua orcidid: 0000-0001-5419-4654 surname: Xu fullname: Xu, Weihua email: chxuwh@gmail.com organization: College of Artificial Intelligence, Southwest University, Chongqing, China – sequence: 3 givenname: Weiping orcidid: 0000-0002-3180-7347 surname: Ding fullname: Ding, Weiping email: dwp9988@163.com organization: School of Information Science and Technology, Nantong University, Nantong, China – sequence: 4 givenname: Yuhua orcidid: 0000-0001-6772-4247 surname: Qian fullname: Qian, Yuhua email: jinchengqyh@126.com organization: Institute of Big Data Science and Industry, Shanxi University, Taiyuan, China |
| BookMark | eNp9kE9LwzAYh4NMcE6_gHgoeO7M_zSelGJ1MBHGdtklZGk6Omoy00zYPr2t20E8eHp_h9_zvi_PJRg47ywANwiOEYLyfl4slssxhpiOCRGccXkGhkhSlEJI6KDLkJOUC8gvwGXbbiBElKFsCB4nRT6bPiQTF2340k3aBxeTYnc47JPcO2O3MZnZNPdrV8fau2RqdXC1WydvvrTNFTivdNPa69McgUXxPM9f0-n7yyR_mqYGSx5TXtIVphkpJTeCl3hVEakzAo1BtGIS8SzLpJaMElMxWKJVpYkRAlNNhRHMkBG4O-7dBv-5s21UG78LrjupCORUIMYE6lrZsWWCb9tgK2XqqPu3Y9B1oxBUvS_140v1vtTJV4fiP-g21B867P-Hbo9Qba39BVABKcTkG97Pdyc |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1007_s10489_025_06227_5 crossref_primary_10_1016_j_inffus_2025_103386 crossref_primary_10_1016_j_ins_2024_120926 crossref_primary_10_1016_j_patcog_2025_112268 crossref_primary_10_1109_TCYB_2024_3499952 crossref_primary_10_1016_j_ijar_2025_109386 crossref_primary_10_1016_j_asoc_2025_113331 crossref_primary_10_1109_TFUZZ_2025_3543893 crossref_primary_10_3390_axioms14080593 crossref_primary_10_1109_TITS_2025_3558469 crossref_primary_10_1080_03081079_2024_2396859 crossref_primary_10_1016_j_inffus_2025_103715 crossref_primary_10_1016_j_inffus_2024_102659 |
| Cites_doi | 10.1023/A:1025419826662 10.1016/j.ijar.2017.01.009 10.1002/0471725293 10.1016/j.ijar.2013.10.002 10.1007/978-3-7908-1825-3_7 10.1109/TSMC.1985.6313426 10.1007/springerreference_62800 10.1016/j.ins.2019.05.009 10.1016/j.ins.2011.08.001 10.1016/j.ejor.2021.11.003 10.11919/j.issn.1002–0829.215044 10.1109/TNNLS.2023.3235800 10.1007/978-3-540-25929-9_6 10.1109/TSMCB.2009.2013334 10.1007/BF00058655 10.1016/j.fss.2007.04.023 10.1002/SERIES1345 10.1142/9789814675017_0002 10.21873/cgp.20063 10.1007/978-3-319-11740-9_67 10.1016/j.ins.2023.119818 10.1109/TSMCC.2006.871151 10.1007/978-3-540-24651-0_30 10.1016/j.ins.2014.07.029 10.1109/TSMC.2018.2882090 10.1007/978-3-642-01815-2_23 10.4018/jcini.2008040101 10.1016/0898-1221(92)90120-7 10.1007/s12559-023-10107-w 10.1007/978-3-642-59830-2 10.1109/TFUZZ.2022.3216110 10.1007/978-3-540-39964-3_62 10.1109/ICMLC.2011.6016738 10.1007/978-3-642-29892-9_9 10.1007/978-3-540-24651-0_18 10.1016/j.inffus.2018.08.007 10.1109/TCYB.2020.2980794 10.4236/jbise.2010.34053 10.1109/tnnls.2023.3333537 10.1016/j.knosys.2022.110093 10.1109/FUZZY.2011.6007623 10.1016/j.ins.2023.118998 10.1007/978-3-540-32262-7_19 10.1109/TFUZZ.2021.3128061 10.1016/j.fss.2012.03.003 10.1109/TSMCC.2012.2236648 10.1109/TKDE.2008.223 10.1007/s13042-021-01434-1 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TFUZZ.2024.3376569 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 3593 |
| ExternalDocumentID | 10_1109_TFUZZ_2024_3376569 10470402 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62376229; 61976120 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Chongqing grantid: CSTB2023NSCQ-LZX0027 funderid: 10.13039/501100005230 – fundername: Natural Science Key Foundation of Jiangsu Education Department grantid: 21KJA510004 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c296t-6d4b2483d96c76d2bf39a830cc14f59168889a9543cf50d1bfa3c7724a47c75c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001240137400031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Mon Jun 30 06:31:33 EDT 2025 Tue Nov 18 21:29:49 EST 2025 Sat Nov 29 03:12:46 EST 2025 Wed Aug 27 02:07:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-6d4b2483d96c76d2bf39a830cc14f59168889a9543cf50d1bfa3c7724a47c75c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6772-4247 0000-0002-3180-7347 0009-0005-2907-7110 0000-0001-5419-4654 |
| PQID | 3064715571 |
| PQPubID | 85428 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3064715571 ieee_primary_10470402 crossref_citationtrail_10_1109_TFUZZ_2024_3376569 crossref_primary_10_1109_TFUZZ_2024_3376569 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 Zhang (ref29) 2007; 24 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Mi (ref32) 2018 ref40 Hu (ref50) 2005; 1 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref2 ref1 ref39 ref38 Murphy (ref44) 2006; 18 Kuncheva (ref51) 1995; 1 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 |
| References_xml | – ident: ref1 doi: 10.1023/A:1025419826662 – ident: ref23 doi: 10.1016/j.ijar.2017.01.009 – ident: ref46 doi: 10.1002/0471725293 – ident: ref30 doi: 10.1016/j.ijar.2013.10.002 – ident: ref40 doi: 10.1007/978-3-7908-1825-3_7 – ident: ref53 doi: 10.1109/TSMC.1985.6313426 – ident: ref8 doi: 10.1007/springerreference_62800 – ident: ref34 doi: 10.1016/j.ins.2019.05.009 – ident: ref7 doi: 10.1016/j.ins.2011.08.001 – ident: ref35 doi: 10.1016/j.ejor.2021.11.003 – ident: ref43 doi: 10.11919/j.issn.1002–0829.215044 – ident: ref26 doi: 10.1109/TNNLS.2023.3235800 – volume: 1 year: 1995 ident: ref51 article-title: An intuitionistic fuzzy k-nearest neighbors rule publication-title: Notes Intuit Fuzzy Sets – ident: ref18 doi: 10.1007/978-3-540-25929-9_6 – ident: ref28 doi: 10.1109/TSMCB.2009.2013334 – ident: ref47 doi: 10.1007/BF00058655 – ident: ref48 doi: 10.1016/j.fss.2007.04.023 – volume: 18 start-page: 1 issue: 60 year: 2006 ident: ref44 article-title: Naive Bayes classifiers – volume: 1 start-page: 203 issue: 2 year: 2005 ident: ref50 article-title: Improving fuzzy k-NN by using genetic algorithm publication-title: J. Comput. Inf. Syst. – ident: ref45 doi: 10.1002/SERIES1345 – ident: ref6 doi: 10.1142/9789814675017_0002 – ident: ref42 doi: 10.21873/cgp.20063 – ident: ref24 doi: 10.1007/978-3-319-11740-9_67 – ident: ref31 doi: 10.1016/j.ins.2023.119818 – ident: ref2 doi: 10.1109/TSMCC.2006.871151 – ident: ref13 doi: 10.1007/978-3-540-24651-0_30 – ident: ref10 doi: 10.1016/j.ins.2014.07.029 – ident: ref33 doi: 10.1109/TSMC.2018.2882090 – ident: ref3 doi: 10.1007/978-3-642-01815-2_23 – ident: ref16 doi: 10.4018/jcini.2008040101 – ident: ref17 doi: 10.1016/0898-1221(92)90120-7 – ident: ref27 doi: 10.1007/s12559-023-10107-w – ident: ref11 doi: 10.1007/978-3-642-59830-2 – ident: ref25 doi: 10.1109/TFUZZ.2022.3216110 – volume: 24 start-page: 957 issue: 6 year: 2007 ident: ref29 article-title: Cognitive model based on granular computing publication-title: Chin. J. Eng. Math – ident: ref41 doi: 10.1007/978-3-540-39964-3_62 – ident: ref52 doi: 10.1109/ICMLC.2011.6016738 – ident: ref12 doi: 10.1007/978-3-642-29892-9_9 – ident: ref14 doi: 10.1007/978-3-540-24651-0_18 – ident: ref9 doi: 10.1016/j.inffus.2018.08.007 – ident: ref22 doi: 10.1109/TCYB.2020.2980794 – ident: ref49 doi: 10.4236/jbise.2010.34053 – ident: ref37 doi: 10.1109/tnnls.2023.3333537 – year: 2018 ident: ref32 article-title: A generalized concept-cognitive learning: A machine learning viewpoint – ident: ref39 doi: 10.1016/j.knosys.2022.110093 – ident: ref21 doi: 10.1109/FUZZY.2011.6007623 – ident: ref15 doi: 10.1016/j.ins.2023.118998 – ident: ref19 doi: 10.1007/978-3-540-32262-7_19 – ident: ref36 doi: 10.1109/TFUZZ.2021.3128061 – ident: ref20 doi: 10.1016/j.fss.2012.03.003 – ident: ref5 doi: 10.1109/TSMCC.2012.2236648 – ident: ref4 doi: 10.1109/TKDE.2008.223 – ident: ref38 doi: 10.1007/s13042-021-01434-1 |
| SSID | ssj0014518 |
| Score | 2.5110254 |
| Snippet | The fuzzy concept serves as a crucial tool for describing phenomena and constitutes the fundamental unit of human cognition. Fuzzy concepts are characterized... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3581 |
| SubjectTerms | Algorithms Classification Classification algorithms Clustering Cognition Cognition & reasoning Computational modeling Concept clustering concept-cognitive learning Context modeling Fuzzy systems Granular computing interval-intent Learning Mathematical models object classification Stochastic processes |
| Title | IFCRL: Interval-Intent Fuzzy Concept Re-Cognition Learning Model |
| URI | https://ieeexplore.ieee.org/document/10470402 https://www.proquest.com/docview/3064715571 |
| Volume | 32 |
| WOSCitedRecordID | wos001240137400031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA86POjB6Zw4nZKDN8nWNmkenpRiURhDxgZjl9ImqQhjk60T3F9vknZjIAreekhC-X7fM_keANxyTxnll2IUaE6Rfb9FKeM54q5bOFPGqjmke6zf5-OxeK2K1V0tjNbaJZ_pjv10b_lqLlf2qqxr2woYpjMad58xVhZrbZ8MSOiXdW8UI8o8uqmQ8UR3GI8mExMLBqSDjUCFNrt5xwq5sSo_dLEzMHH9n792Ao4rTxI-ltCfgj09a4D6ZkoDrIS2AY52Wg6egYeXOBr07qG7CTRchlwOewHj1Xr9BaOyiBEONIrKvKL5DFYtWN-gnZs2bYJR_DSMnlE1RQHJQNACUUWygHCsBJWMqiDLsUg59qT0SR4a79DEwCIVIcEyDz3lZ3mKpfG5SUqYZKHE56A2m8_0BYCMyNCjPEuFLwkLUi5MvJaHKstVzrAiLeBvqJrIqsW4nXQxTVyo4YnEIZFYJJIKiRa42-75KBts_Lm6aWm_s7Ikewu0N-gllRAuExtcMeMvMf_yl21X4NCeXqZ-tUGtWKz0NTiQn8X7cnHj-OsbZEzJpQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP8QFdSDb3E-c_Am0bZ5e1KGZcM5RCaIl9ImqQiyidsE99ebpJ0MRMFbDwkp3-97Jt8D4ERGxim_nODESo79-y3OhSyxDN3ChXFWLSDdEd2ufHxUd3WxeqiFsdaG5DN75j_DW74Z6LG_Kjv3bQUc0zmNu8AoTeKqXOv70YCyuKp84wRzEfFpjUykznvpw9OTiwYTekacSDGf3zxjh8JglR_aOJiYdO2fP7cOq7Uvia4q8DdgzvY3YW06pwHVYrsJKzNNB7fgsp027zsXKNwFOj7DIYt9hNLxZPKJmlUZI7q3uFllFg36qG7C-oz85LTXbXhIr3vNFq7nKGCdKD7C3NAioZIYxbXgJilKonJJIq1jWjLnH7ooWOWKUaJLFpm4KHOinddNcyq0YJrswHx_0Le7gATVLOKyyFWsqUhyqVzEVjJTlKYUxNAGxFOqZrpuMu5nXbxmIdiIVBaQyDwSWY1EA06_97xVLTb-XL3taT-zsiJ7Aw6m6GW1GA4zH14J5zGJeO-Xbcew1OrddrJOu3uzD8v-pCoR7ADmR-9jewiL-mP0Mnw_Crz2BQ2pzOw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IFCRL%3A+Interval-Intent+Fuzzy+Concept+Re-Cognition+Learning+Model&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Ding%2C+Yi&rft.au=Xu%2C+Weihua&rft.au=Ding%2C+Weiping&rft.au=Qian%2C+Yuhua&rft.date=2024-06-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=32&rft.issue=6&rft.spage=3581&rft.epage=3593&rft_id=info:doi/10.1109%2FTFUZZ.2024.3376569&rft.externalDocID=10470402 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |