Dynamic Multi-Objective Optimization Framework With Interactive Evolution for Sequential Recommendation
In contrast to traditional recommender systems which usually pay attention to users' general and long-term preferences, sequential recommendation (SR) can model users' dynamic intents based on their behaviour sequences and suggest the next item(s) to them. However, most of existing sequent...
Uloženo v:
| Vydáno v: | IEEE transactions on emerging topics in computational intelligence Ročník 7; číslo 4; s. 1228 - 1241 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2471-285X, 2471-285X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In contrast to traditional recommender systems which usually pay attention to users' general and long-term preferences, sequential recommendation (SR) can model users' dynamic intents based on their behaviour sequences and suggest the next item(s) to them. However, most of existing sequential models learn the ranking score of an item only based on its relevance property, and the personalized user demands in terms of different learning objectives, such as diversity, tail novelty or recency, which have been played essential roles in multi-objective recommendation (MOR), are often neglected in SR. In this paper, we first discuss the importance of considering multiple different objectives within a learning model for recommender system. Next, to capture users' objective-level preferences by utilizing interactive information in the sequential context, we propose a novel Dynamic Multi-objective Recommendation (DMORec) framework with interactive evolution for SR. In particular, DMORec formulates a dynamic multi-objective optimization task to simultaneously optimize more than two varying objectives in an interactive recommendation process. Moreover, to resolve this optimization task in SR, we develop an evolutionary algorithm with supervised learning approach to obtain the Pareto-optimal solutions of the formulated problem. Comprehensive experiments on four real-world datasets demonstrate the effectiveness of the proposed DMORec for dynamic multi-objective recommendation in sequential recommender systems. |
|---|---|
| AbstractList | In contrast to traditional recommender systems which usually pay attention to users' general and long-term preferences, sequential recommendation (SR) can model users' dynamic intents based on their behaviour sequences and suggest the next item(s) to them. However, most of existing sequential models learn the ranking score of an item only based on its relevance property, and the personalized user demands in terms of different learning objectives, such as diversity, tail novelty or recency, which have been played essential roles in multi-objective recommendation (MOR), are often neglected in SR. In this paper, we first discuss the importance of considering multiple different objectives within a learning model for recommender system. Next, to capture users' objective-level preferences by utilizing interactive information in the sequential context, we propose a novel Dynamic Multi-objective Recommendation (DMORec) framework with interactive evolution for SR. In particular, DMORec formulates a dynamic multi-objective optimization task to simultaneously optimize more than two varying objectives in an interactive recommendation process. Moreover, to resolve this optimization task in SR, we develop an evolutionary algorithm with supervised learning approach to obtain the Pareto-optimal solutions of the formulated problem. Comprehensive experiments on four real-world datasets demonstrate the effectiveness of the proposed DMORec for dynamic multi-objective recommendation in sequential recommender systems. |
| Author | Feng, Liang Li, Min Wang, Yu Zhu, Zexuan Zhou, Wei Liu, Yong Shen, Zhiqi |
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0001-8681-7326 surname: Zhou fullname: Zhou, Wei email: jerryzhou.cqu@foxmail.com organization: National Engineering Laboratory for Big Data System Computing Technology, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Yong orcidid: 0000-0001-9031-9696 surname: Liu fullname: Liu, Yong email: stephenliu@ntu.edu.sg organization: Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY), Nanyang Technological University, Singapore – sequence: 3 givenname: Min orcidid: 0000-0001-9013-2020 surname: Li fullname: Li, Min email: limin606@jd.com organization: Department of User Growth and Operations, Jing Dong Retail, Beijing, China – sequence: 4 givenname: Yu surname: Wang fullname: Wang, Yu email: wangyu1393@jd.com organization: Department of User Growth and Operations, Jing Dong Retail, Beijing, China – sequence: 5 givenname: Zhiqi orcidid: 0000-0001-7626-7295 surname: Shen fullname: Shen, Zhiqi email: zqshen@ntu.edu.sg organization: Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY) & School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 6 givenname: Liang orcidid: 0000-0002-8356-7242 surname: Feng fullname: Feng, Liang email: liangf@cqu.edu.cn organization: College of Computer Science, Chongqing University, Chongqing, China – sequence: 7 givenname: Zexuan orcidid: 0000-0001-8479-6904 surname: Zhu fullname: Zhu, Zexuan email: zhuzx@szu.edu.cn organization: National Engineering Laboratory for Big Data System Computing Technology, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China |
| BookMark | eNp9kDFPwzAQhS0EEqXwBxBDJOYU--wm8YgKhUqgSlAEW-Q4F3BJ4uI4IPj1pAkDYmC6G7733t07ILu1rZGQY0YnjFF5trpczRYToMAnHKaMT2GHjEDELIRk-rT7a98nR02zppSC3HJiRJ4vPmtVGR3ctqU34TJbo_bmHYPlxpvKfClvbB3Mnarww7rX4NH4l2BRe3Rq4C7fbdn2UGFdcI9vLdbeqDK4Q22rCuu8tzgke4UqGzz6mWPyMO_Ovg5vlleL2flNqEFGPoyyjEUi4TSSLFcokUFc6FgiR57HkMVUQJGAzHKRS6pFBhqnSQzIIyWwoHxMTgffjbPdKY1P17Z1dReZQiIoTyQw3lEwUNrZpnFYpBtnKuU-U0bTbadp32m67TT96bQTJX9E2vj-Oe-UKf-XngxSg4i_smhMGRX8G-hIiEw |
| CODEN | ITETCU |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123344 crossref_primary_10_1016_j_eswa_2024_125765 crossref_primary_10_1016_j_swevo_2025_102011 crossref_primary_10_1109_TETCI_2024_3353615 crossref_primary_10_3390_app132011378 crossref_primary_10_1007_s40747_025_01955_0 crossref_primary_10_1016_j_knosys_2023_111227 crossref_primary_10_1109_TNNLS_2024_3491827 crossref_primary_10_1016_j_swevo_2025_102031 crossref_primary_10_1109_TETCI_2024_3436869 crossref_primary_10_1016_j_ins_2024_121192 crossref_primary_10_1016_j_ejor_2025_06_012 crossref_primary_10_1109_TETCI_2024_3389769 crossref_primary_10_1109_TKDE_2025_3544510 crossref_primary_10_1016_j_asoc_2024_111950 crossref_primary_10_1177_18724981251332564 crossref_primary_10_1145_3754459 crossref_primary_10_1007_s10844_023_00825_w crossref_primary_10_1016_j_ipm_2025_104267 crossref_primary_10_1016_j_swevo_2025_101876 crossref_primary_10_1109_TAI_2024_3414289 crossref_primary_10_1109_TETCI_2024_3485731 crossref_primary_10_1109_TETCI_2024_3442872 |
| Cites_doi | 10.1145/3447548.3467189 10.1109/TKDE.2018.2831682 10.1145/2766462.2767694 10.1109/TETCI.2021.3102619 10.1145/3038912.3052656 10.1145/290941.291025 10.1145/1401890.1401944 10.1109/TEVC.2021.3135020 10.1109/TEVC.2007.892759 10.1007/s12293-009-0026-7 10.1145/3357384.3357895 10.1007/978-0-85729-652-8_1 10.24963/ijcai.2019/380 10.1609/aaai.v35i5.16524 10.1145/3397271.3401131 10.1145/2766462.2767755 10.1145/3159652.3159656 10.1007/s12293-017-0227-4 10.1145/3038912.3052569 10.1109/TKDE.2012.119 10.1109/TKDE.2011.15 10.1109/TETCI.2018.2812897 10.1109/TCYB.2020.3017017 10.1016/j.knosys.2016.04.018 10.1609/aaai.v34i04.5931 10.1109/ICDE.2018.00023 10.1016/j.jpdc.2016.10.014 10.1145/3442381.3450039 10.1145/3404835.3462957 10.1109/TKDE.2021.3049692 10.1145/3038912.3052585 10.1142/9789812799524_0068 10.1145/3340531.3411897 10.1145/2959100.2959167 10.1109/TETCI.2022.3189084 10.1109/ICDM.2018.00035 10.1007/978-1-4899-7637-6_26 10.1145/3269206.3271761 10.1145/3109859.3109896 10.1109/MCI.2006.1597059 10.24963/ijcai.2019/537 10.1145/3209978.3210017 10.1109/TMM.2018.2863598 10.24963/ijcai.2022/333 10.1145/3097983.3098173 10.1145/3109859.3109887 10.1109/TETCI.2020.3023155 10.1016/j.ins.2019.11.028 10.1109/4235.996017 10.1007/s12293-021-00330-z 10.1109/ICDM.2016.0030 10.1109/TKDE.2005.99 10.1145/3298689.3346998 10.14778/2311906.2311916 10.1145/2629350 10.1109/TETCI.2019.2952908 10.1145/1772690.1772773 10.1109/CEC.2002.1004388 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TETCI.2023.3251352 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2471-285X |
| EndPage | 1241 |
| ExternalDocumentID | 10_1109_TETCI_2023_3251352 10070104 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: JD User Growth Engine grantid: H20211431 – fundername: National Natural Science Foundation of China grantid: 61871272 funderid: 10.13039/501100001809 – fundername: Venture and Innovation Support Program for Chongqing Overseas Returnees grantid: cx2018044; cx2019020 funderid: 10.13039/501100013160 – fundername: Open Project of BGIShenzhen grantid: BGIRSZ20200002 – fundername: Shenzhen Fundamental Research Program grantid: JCYJ20190808173617147 |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c296t-6bb164830691dae9e127fc79e3e3d72b7042f829bd4d90c4b2ce5872e36a4ef03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000953740900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2471-285X |
| IngestDate | Mon Jun 30 06:04:53 EDT 2025 Tue Nov 18 21:46:38 EST 2025 Sat Nov 29 05:12:08 EST 2025 Wed Aug 27 02:18:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-6bb164830691dae9e127fc79e3e3d72b7042f829bd4d90c4b2ce5872e36a4ef03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8356-7242 0000-0001-9031-9696 0000-0001-7626-7295 0000-0001-8479-6904 0000-0001-9013-2020 0000-0001-8681-7326 |
| PQID | 2840389213 |
| PQPubID | 4437216 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2840389213 ieee_primary_10070104 crossref_primary_10_1109_TETCI_2023_3251352 crossref_citationtrail_10_1109_TETCI_2023_3251352 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on emerging topics in computational intelligence |
| PublicationTitleAbbrev | TETCI |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref59 ref14 ref58 ref53 ref52 ref55 ref54 ref17 ref16 ref18 Pareto (ref15) 2014 Ashkan (ref40) 2015; 15 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Sha (ref19) 2016; 16 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref28 ref27 ref29 Liu (ref11) 2015 ref60 Chen (ref41) 2018 ref62 ref61 Rendle (ref10) 2009 |
| References_xml | – start-page: 1792 volume-title: Proc. 24th Int. Joint Conf. Artif. Intell. year: 2015 ident: ref11 article-title: A boosting algorithm for item recommendation with implicit feedback – ident: ref4 doi: 10.1145/3447548.3467189 – ident: ref35 doi: 10.1109/TKDE.2018.2831682 – ident: ref28 doi: 10.1145/2766462.2767694 – ident: ref5 doi: 10.1109/TETCI.2021.3102619 – ident: ref46 doi: 10.1145/3038912.3052656 – ident: ref39 doi: 10.1145/290941.291025 – ident: ref9 doi: 10.1145/1401890.1401944 – ident: ref56 doi: 10.1109/TEVC.2021.3135020 – ident: ref58 doi: 10.1109/TEVC.2007.892759 – ident: ref54 doi: 10.1007/s12293-009-0026-7 – ident: ref13 doi: 10.1145/3357384.3357895 – ident: ref51 doi: 10.1007/978-0-85729-652-8_1 – ident: ref25 doi: 10.24963/ijcai.2019/380 – ident: ref26 doi: 10.1609/aaai.v35i5.16524 – ident: ref61 doi: 10.1145/3397271.3401131 – start-page: 452 volume-title: Proc. 25th Conf. Uncertainty Artif. Intell. year: 2009 ident: ref10 article-title: BPR: Bayesian personalized ranking from implicit feedback – ident: ref60 doi: 10.1145/2766462.2767755 – ident: ref37 doi: 10.1145/3159652.3159656 – ident: ref2 doi: 10.1007/s12293-017-0227-4 – ident: ref27 doi: 10.1145/3038912.3052569 – ident: ref48 doi: 10.1109/TKDE.2012.119 – ident: ref43 doi: 10.1109/TKDE.2011.15 – ident: ref55 doi: 10.1109/TETCI.2018.2812897 – ident: ref53 doi: 10.1109/TCYB.2020.3017017 – volume-title: Manual of political economy: A critical and variorum edition year: 2014 ident: ref15 – ident: ref50 doi: 10.1016/j.knosys.2016.04.018 – ident: ref42 doi: 10.1609/aaai.v34i04.5931 – ident: ref64 doi: 10.1109/ICDE.2018.00023 – ident: ref21 doi: 10.1016/j.jpdc.2016.10.014 – ident: ref17 doi: 10.1145/3442381.3450039 – ident: ref63 doi: 10.1145/3404835.3462957 – ident: ref36 doi: 10.1109/TKDE.2021.3049692 – ident: ref22 doi: 10.1145/3038912.3052585 – ident: ref8 doi: 10.1142/9789812799524_0068 – ident: ref24 doi: 10.1145/3340531.3411897 – ident: ref33 doi: 10.1145/2959100.2959167 – volume: 16 start-page: 3868 volume-title: Proc. 25th Int. Joint Conf. Artif. Intell. year: 2016 ident: ref19 article-title: A framework for recommending relevant and diverse items – start-page: 5627 volume-title: Proc. NeuIPS year: 2018 ident: ref41 article-title: Fast greedy map inference for determinantal point process to improve recommendation diversity – ident: ref6 doi: 10.1109/TETCI.2022.3189084 – ident: ref38 doi: 10.1109/ICDM.2018.00035 – ident: ref47 doi: 10.1007/978-1-4899-7637-6_26 – ident: ref30 doi: 10.1145/3269206.3271761 – ident: ref34 doi: 10.1145/3109859.3109896 – ident: ref16 doi: 10.1109/MCI.2006.1597059 – ident: ref23 doi: 10.24963/ijcai.2019/537 – ident: ref31 doi: 10.1145/3209978.3210017 – ident: ref1 doi: 10.1109/TMM.2018.2863598 – ident: ref14 doi: 10.24963/ijcai.2022/333 – ident: ref44 doi: 10.1145/3097983.3098173 – ident: ref45 doi: 10.1145/3109859.3109887 – ident: ref7 doi: 10.1109/TETCI.2020.3023155 – ident: ref20 doi: 10.1016/j.ins.2019.11.028 – ident: ref57 doi: 10.1109/4235.996017 – ident: ref52 doi: 10.1007/s12293-021-00330-z – ident: ref29 doi: 10.1109/ICDM.2016.0030 – ident: ref62 doi: 10.1109/TKDE.2005.99 – ident: ref3 doi: 10.1145/3298689.3346998 – ident: ref49 doi: 10.14778/2311906.2311916 – ident: ref18 doi: 10.1145/2629350 – volume: 15 start-page: 1742 volume-title: Proc. 24th Int. Joint Conf. Artif. Intell. year: 2015 ident: ref40 article-title: Optimal greedy diversity for recommendation – ident: ref32 doi: 10.1109/TETCI.2019.2952908 – ident: ref12 doi: 10.1145/1772690.1772773 – ident: ref59 doi: 10.1109/CEC.2002.1004388 |
| SSID | ssj0002951354 |
| Score | 2.3577645 |
| Snippet | In contrast to traditional recommender systems which usually pay attention to users' general and long-term preferences, sequential recommendation (SR) can... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1228 |
| SubjectTerms | Behavioral sciences Dynamic multi-objective optimization Evolutionary algorithms Machine learning multi-objective recommendation Multiple objective analysis Optimization Pareto optimization Recommender systems sequential recommendation Supervised learning Tail Task analysis Training Tuning |
| Title | Dynamic Multi-Objective Optimization Framework With Interactive Evolution for Sequential Recommendation |
| URI | https://ieeexplore.ieee.org/document/10070104 https://www.proquest.com/docview/2840389213 |
| Volume | 7 |
| WOSCitedRecordID | wos000953740900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2471-285X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951354 issn: 2471-285X databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA9uePDiAydOp-TgTbq1SZo0R9ENvWyCE3crTfpVJ3vIXn-_ebRDEQVPLTQpSX7J90i-Lz-ErmQYF6EkRaAEyIBBlgVZpFlAdch1RjXEXDmyCdHvJ6ORfCyT1V0uDAC44DNo21d3lp_P9dpulXXsib71H2qoJgT3yVrbDRVibAUasyoxJpSdYXd4-9C2_OBtSuxH8k35ODaVHyLY6ZXewT9bdIj2SwMS33jEj9AOzI7R650nlscunzYYqHcvx_DASIRpmWqJe1UgFn4Zr96w2wzMfLnuppyC2Bix-MnFV5u1P8HWPZ2aRnjqpQZ67pnu3gclhUKgieSrgCtl_KHE-AUyyjOQEBFRaCGBAs0FUcKs2SIhUuUsl6Fmihh0EkGA8oxBEdITVJ_NZ3CKMAeIpWaSJhyYMSQy82A8t_YSE1zRJoqqsU11eb-4pbmYpM7PCGXq8EgtHmmJRxNdb-t8-Ns1_izdsAh8KekHv4laFYZpuQKXqVG79u5AEtGzX6qdoz37dx_N10L11WINF2hXb1bj5eLSTa5Pz-rOmQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7eQF-8oOK85sE36dYmado8im5sqJvgRN9Kk57qRDfZxd9vbh2KKPjUQhOa5EvOJTknH0KnIozLUJAykAmIgEGeB3mkWEBVyFVOFcRcWrKJpNtNHx_FrU9Wt7kwAGCDz6BuXu1ZfjFSM7NV1jAn-sZ_WETLMWMkdOla8y0Voq0FGrMqNSYUjX6zf9GpG4bwOiXmI_mmfiyfyg8hbDVLa-OfbdpE696ExOcO8y20AMNt9HTpqOWxzagNevLFSTLc0zLhzSdb4lYVioUfBtNnbLcDc1eu-eEnIdZmLL6zEdZ69b9i46C-6UY48qUddN_S3W0HnkQhUETwacCl1B5Rqj0DERU5CIhIUqpEAAVaJEQmetWWKRGyYIUIFZNE45MmBCjPGZQh3UVLw9EQ9hDmALFQTNCUA9OmRK4fjBfGYmIJl7SGompsM-VvGDdEF6-Z9TRCkVk8MoNH5vGoobN5nXd3v8afpXcMAl9KusGvocMKw8yvwUmmFa-5PZBEdP-Xaidotd2_uc6uO92rA7Rm_uRi-w7R0nQ8gyO0oj6mg8n42E60T7bq0eA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Multi-Objective+Optimization+Framework+With+Interactive+Evolution+for+Sequential+Recommendation&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Zhou%2C+Wei&rft.au=Liu%2C+Yong&rft.au=Li%2C+Min&rft.au=Wang%2C+Yu&rft.date=2023-08-01&rft.issn=2471-285X&rft.eissn=2471-285X&rft.volume=7&rft.issue=4&rft.spage=1228&rft.epage=1241&rft_id=info:doi/10.1109%2FTETCI.2023.3251352&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TETCI_2023_3251352 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon |