Dynamic Multi-Objective Optimization Framework With Interactive Evolution for Sequential Recommendation

In contrast to traditional recommender systems which usually pay attention to users' general and long-term preferences, sequential recommendation (SR) can model users' dynamic intents based on their behaviour sequences and suggest the next item(s) to them. However, most of existing sequent...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on emerging topics in computational intelligence Ročník 7; číslo 4; s. 1228 - 1241
Hlavní autoři: Zhou, Wei, Liu, Yong, Li, Min, Wang, Yu, Shen, Zhiqi, Feng, Liang, Zhu, Zexuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2471-285X, 2471-285X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In contrast to traditional recommender systems which usually pay attention to users' general and long-term preferences, sequential recommendation (SR) can model users' dynamic intents based on their behaviour sequences and suggest the next item(s) to them. However, most of existing sequential models learn the ranking score of an item only based on its relevance property, and the personalized user demands in terms of different learning objectives, such as diversity, tail novelty or recency, which have been played essential roles in multi-objective recommendation (MOR), are often neglected in SR. In this paper, we first discuss the importance of considering multiple different objectives within a learning model for recommender system. Next, to capture users' objective-level preferences by utilizing interactive information in the sequential context, we propose a novel Dynamic Multi-objective Recommendation (DMORec) framework with interactive evolution for SR. In particular, DMORec formulates a dynamic multi-objective optimization task to simultaneously optimize more than two varying objectives in an interactive recommendation process. Moreover, to resolve this optimization task in SR, we develop an evolutionary algorithm with supervised learning approach to obtain the Pareto-optimal solutions of the formulated problem. Comprehensive experiments on four real-world datasets demonstrate the effectiveness of the proposed DMORec for dynamic multi-objective recommendation in sequential recommender systems.
AbstractList In contrast to traditional recommender systems which usually pay attention to users' general and long-term preferences, sequential recommendation (SR) can model users' dynamic intents based on their behaviour sequences and suggest the next item(s) to them. However, most of existing sequential models learn the ranking score of an item only based on its relevance property, and the personalized user demands in terms of different learning objectives, such as diversity, tail novelty or recency, which have been played essential roles in multi-objective recommendation (MOR), are often neglected in SR. In this paper, we first discuss the importance of considering multiple different objectives within a learning model for recommender system. Next, to capture users' objective-level preferences by utilizing interactive information in the sequential context, we propose a novel Dynamic Multi-objective Recommendation (DMORec) framework with interactive evolution for SR. In particular, DMORec formulates a dynamic multi-objective optimization task to simultaneously optimize more than two varying objectives in an interactive recommendation process. Moreover, to resolve this optimization task in SR, we develop an evolutionary algorithm with supervised learning approach to obtain the Pareto-optimal solutions of the formulated problem. Comprehensive experiments on four real-world datasets demonstrate the effectiveness of the proposed DMORec for dynamic multi-objective recommendation in sequential recommender systems.
Author Feng, Liang
Li, Min
Wang, Yu
Zhu, Zexuan
Zhou, Wei
Liu, Yong
Shen, Zhiqi
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0001-8681-7326
  surname: Zhou
  fullname: Zhou, Wei
  email: jerryzhou.cqu@foxmail.com
  organization: National Engineering Laboratory for Big Data System Computing Technology, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Yong
  orcidid: 0000-0001-9031-9696
  surname: Liu
  fullname: Liu, Yong
  email: stephenliu@ntu.edu.sg
  organization: Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY), Nanyang Technological University, Singapore
– sequence: 3
  givenname: Min
  orcidid: 0000-0001-9013-2020
  surname: Li
  fullname: Li, Min
  email: limin606@jd.com
  organization: Department of User Growth and Operations, Jing Dong Retail, Beijing, China
– sequence: 4
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  email: wangyu1393@jd.com
  organization: Department of User Growth and Operations, Jing Dong Retail, Beijing, China
– sequence: 5
  givenname: Zhiqi
  orcidid: 0000-0001-7626-7295
  surname: Shen
  fullname: Shen, Zhiqi
  email: zqshen@ntu.edu.sg
  organization: Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY) & School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 6
  givenname: Liang
  orcidid: 0000-0002-8356-7242
  surname: Feng
  fullname: Feng, Liang
  email: liangf@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 7
  givenname: Zexuan
  orcidid: 0000-0001-8479-6904
  surname: Zhu
  fullname: Zhu, Zexuan
  email: zhuzx@szu.edu.cn
  organization: National Engineering Laboratory for Big Data System Computing Technology, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
BookMark eNp9kDFPwzAQhS0EEqXwBxBDJOYU--wm8YgKhUqgSlAEW-Q4F3BJ4uI4IPj1pAkDYmC6G7733t07ILu1rZGQY0YnjFF5trpczRYToMAnHKaMT2GHjEDELIRk-rT7a98nR02zppSC3HJiRJ4vPmtVGR3ctqU34TJbo_bmHYPlxpvKfClvbB3Mnarww7rX4NH4l2BRe3Rq4C7fbdn2UGFdcI9vLdbeqDK4Q22rCuu8tzgke4UqGzz6mWPyMO_Ovg5vlleL2flNqEFGPoyyjEUi4TSSLFcokUFc6FgiR57HkMVUQJGAzHKRS6pFBhqnSQzIIyWwoHxMTgffjbPdKY1P17Z1dReZQiIoTyQw3lEwUNrZpnFYpBtnKuU-U0bTbadp32m67TT96bQTJX9E2vj-Oe-UKf-XngxSg4i_smhMGRX8G-hIiEw
CODEN ITETCU
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123344
crossref_primary_10_1016_j_eswa_2024_125765
crossref_primary_10_1016_j_swevo_2025_102011
crossref_primary_10_1109_TETCI_2024_3353615
crossref_primary_10_3390_app132011378
crossref_primary_10_1007_s40747_025_01955_0
crossref_primary_10_1016_j_knosys_2023_111227
crossref_primary_10_1109_TNNLS_2024_3491827
crossref_primary_10_1016_j_swevo_2025_102031
crossref_primary_10_1109_TETCI_2024_3436869
crossref_primary_10_1016_j_ins_2024_121192
crossref_primary_10_1016_j_ejor_2025_06_012
crossref_primary_10_1109_TETCI_2024_3389769
crossref_primary_10_1109_TKDE_2025_3544510
crossref_primary_10_1016_j_asoc_2024_111950
crossref_primary_10_1177_18724981251332564
crossref_primary_10_1145_3754459
crossref_primary_10_1007_s10844_023_00825_w
crossref_primary_10_1016_j_ipm_2025_104267
crossref_primary_10_1016_j_swevo_2025_101876
crossref_primary_10_1109_TAI_2024_3414289
crossref_primary_10_1109_TETCI_2024_3485731
crossref_primary_10_1109_TETCI_2024_3442872
Cites_doi 10.1145/3447548.3467189
10.1109/TKDE.2018.2831682
10.1145/2766462.2767694
10.1109/TETCI.2021.3102619
10.1145/3038912.3052656
10.1145/290941.291025
10.1145/1401890.1401944
10.1109/TEVC.2021.3135020
10.1109/TEVC.2007.892759
10.1007/s12293-009-0026-7
10.1145/3357384.3357895
10.1007/978-0-85729-652-8_1
10.24963/ijcai.2019/380
10.1609/aaai.v35i5.16524
10.1145/3397271.3401131
10.1145/2766462.2767755
10.1145/3159652.3159656
10.1007/s12293-017-0227-4
10.1145/3038912.3052569
10.1109/TKDE.2012.119
10.1109/TKDE.2011.15
10.1109/TETCI.2018.2812897
10.1109/TCYB.2020.3017017
10.1016/j.knosys.2016.04.018
10.1609/aaai.v34i04.5931
10.1109/ICDE.2018.00023
10.1016/j.jpdc.2016.10.014
10.1145/3442381.3450039
10.1145/3404835.3462957
10.1109/TKDE.2021.3049692
10.1145/3038912.3052585
10.1142/9789812799524_0068
10.1145/3340531.3411897
10.1145/2959100.2959167
10.1109/TETCI.2022.3189084
10.1109/ICDM.2018.00035
10.1007/978-1-4899-7637-6_26
10.1145/3269206.3271761
10.1145/3109859.3109896
10.1109/MCI.2006.1597059
10.24963/ijcai.2019/537
10.1145/3209978.3210017
10.1109/TMM.2018.2863598
10.24963/ijcai.2022/333
10.1145/3097983.3098173
10.1145/3109859.3109887
10.1109/TETCI.2020.3023155
10.1016/j.ins.2019.11.028
10.1109/4235.996017
10.1007/s12293-021-00330-z
10.1109/ICDM.2016.0030
10.1109/TKDE.2005.99
10.1145/3298689.3346998
10.14778/2311906.2311916
10.1145/2629350
10.1109/TETCI.2019.2952908
10.1145/1772690.1772773
10.1109/CEC.2002.1004388
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2023.3251352
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 1241
ExternalDocumentID 10_1109_TETCI_2023_3251352
10070104
Genre orig-research
GrantInformation_xml – fundername: JD User Growth Engine
  grantid: H20211431
– fundername: National Natural Science Foundation of China
  grantid: 61871272
  funderid: 10.13039/501100001809
– fundername: Venture and Innovation Support Program for Chongqing Overseas Returnees
  grantid: cx2018044; cx2019020
  funderid: 10.13039/501100013160
– fundername: Open Project of BGIShenzhen
  grantid: BGIRSZ20200002
– fundername: Shenzhen Fundamental Research Program
  grantid: JCYJ20190808173617147
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c296t-6bb164830691dae9e127fc79e3e3d72b7042f829bd4d90c4b2ce5872e36a4ef03
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000953740900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Mon Jun 30 06:04:53 EDT 2025
Tue Nov 18 21:46:38 EST 2025
Sat Nov 29 05:12:08 EST 2025
Wed Aug 27 02:18:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-6bb164830691dae9e127fc79e3e3d72b7042f829bd4d90c4b2ce5872e36a4ef03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8356-7242
0000-0001-9031-9696
0000-0001-7626-7295
0000-0001-8479-6904
0000-0001-9013-2020
0000-0001-8681-7326
PQID 2840389213
PQPubID 4437216
PageCount 14
ParticipantIDs proquest_journals_2840389213
ieee_primary_10070104
crossref_primary_10_1109_TETCI_2023_3251352
crossref_citationtrail_10_1109_TETCI_2023_3251352
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref59
ref14
ref58
ref53
ref52
ref55
ref54
ref17
ref16
ref18
Pareto (ref15) 2014
Ashkan (ref40) 2015; 15
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Sha (ref19) 2016; 16
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref28
ref27
ref29
Liu (ref11) 2015
ref60
Chen (ref41) 2018
ref62
ref61
Rendle (ref10) 2009
References_xml – start-page: 1792
  volume-title: Proc. 24th Int. Joint Conf. Artif. Intell.
  year: 2015
  ident: ref11
  article-title: A boosting algorithm for item recommendation with implicit feedback
– ident: ref4
  doi: 10.1145/3447548.3467189
– ident: ref35
  doi: 10.1109/TKDE.2018.2831682
– ident: ref28
  doi: 10.1145/2766462.2767694
– ident: ref5
  doi: 10.1109/TETCI.2021.3102619
– ident: ref46
  doi: 10.1145/3038912.3052656
– ident: ref39
  doi: 10.1145/290941.291025
– ident: ref9
  doi: 10.1145/1401890.1401944
– ident: ref56
  doi: 10.1109/TEVC.2021.3135020
– ident: ref58
  doi: 10.1109/TEVC.2007.892759
– ident: ref54
  doi: 10.1007/s12293-009-0026-7
– ident: ref13
  doi: 10.1145/3357384.3357895
– ident: ref51
  doi: 10.1007/978-0-85729-652-8_1
– ident: ref25
  doi: 10.24963/ijcai.2019/380
– ident: ref26
  doi: 10.1609/aaai.v35i5.16524
– ident: ref61
  doi: 10.1145/3397271.3401131
– start-page: 452
  volume-title: Proc. 25th Conf. Uncertainty Artif. Intell.
  year: 2009
  ident: ref10
  article-title: BPR: Bayesian personalized ranking from implicit feedback
– ident: ref60
  doi: 10.1145/2766462.2767755
– ident: ref37
  doi: 10.1145/3159652.3159656
– ident: ref2
  doi: 10.1007/s12293-017-0227-4
– ident: ref27
  doi: 10.1145/3038912.3052569
– ident: ref48
  doi: 10.1109/TKDE.2012.119
– ident: ref43
  doi: 10.1109/TKDE.2011.15
– ident: ref55
  doi: 10.1109/TETCI.2018.2812897
– ident: ref53
  doi: 10.1109/TCYB.2020.3017017
– volume-title: Manual of political economy: A critical and variorum edition
  year: 2014
  ident: ref15
– ident: ref50
  doi: 10.1016/j.knosys.2016.04.018
– ident: ref42
  doi: 10.1609/aaai.v34i04.5931
– ident: ref64
  doi: 10.1109/ICDE.2018.00023
– ident: ref21
  doi: 10.1016/j.jpdc.2016.10.014
– ident: ref17
  doi: 10.1145/3442381.3450039
– ident: ref63
  doi: 10.1145/3404835.3462957
– ident: ref36
  doi: 10.1109/TKDE.2021.3049692
– ident: ref22
  doi: 10.1145/3038912.3052585
– ident: ref8
  doi: 10.1142/9789812799524_0068
– ident: ref24
  doi: 10.1145/3340531.3411897
– ident: ref33
  doi: 10.1145/2959100.2959167
– volume: 16
  start-page: 3868
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell.
  year: 2016
  ident: ref19
  article-title: A framework for recommending relevant and diverse items
– start-page: 5627
  volume-title: Proc. NeuIPS
  year: 2018
  ident: ref41
  article-title: Fast greedy map inference for determinantal point process to improve recommendation diversity
– ident: ref6
  doi: 10.1109/TETCI.2022.3189084
– ident: ref38
  doi: 10.1109/ICDM.2018.00035
– ident: ref47
  doi: 10.1007/978-1-4899-7637-6_26
– ident: ref30
  doi: 10.1145/3269206.3271761
– ident: ref34
  doi: 10.1145/3109859.3109896
– ident: ref16
  doi: 10.1109/MCI.2006.1597059
– ident: ref23
  doi: 10.24963/ijcai.2019/537
– ident: ref31
  doi: 10.1145/3209978.3210017
– ident: ref1
  doi: 10.1109/TMM.2018.2863598
– ident: ref14
  doi: 10.24963/ijcai.2022/333
– ident: ref44
  doi: 10.1145/3097983.3098173
– ident: ref45
  doi: 10.1145/3109859.3109887
– ident: ref7
  doi: 10.1109/TETCI.2020.3023155
– ident: ref20
  doi: 10.1016/j.ins.2019.11.028
– ident: ref57
  doi: 10.1109/4235.996017
– ident: ref52
  doi: 10.1007/s12293-021-00330-z
– ident: ref29
  doi: 10.1109/ICDM.2016.0030
– ident: ref62
  doi: 10.1109/TKDE.2005.99
– ident: ref3
  doi: 10.1145/3298689.3346998
– ident: ref49
  doi: 10.14778/2311906.2311916
– ident: ref18
  doi: 10.1145/2629350
– volume: 15
  start-page: 1742
  volume-title: Proc. 24th Int. Joint Conf. Artif. Intell.
  year: 2015
  ident: ref40
  article-title: Optimal greedy diversity for recommendation
– ident: ref32
  doi: 10.1109/TETCI.2019.2952908
– ident: ref12
  doi: 10.1145/1772690.1772773
– ident: ref59
  doi: 10.1109/CEC.2002.1004388
SSID ssj0002951354
Score 2.3577645
Snippet In contrast to traditional recommender systems which usually pay attention to users' general and long-term preferences, sequential recommendation (SR) can...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1228
SubjectTerms Behavioral sciences
Dynamic multi-objective optimization
Evolutionary algorithms
Machine learning
multi-objective recommendation
Multiple objective analysis
Optimization
Pareto optimization
Recommender systems
sequential recommendation
Supervised learning
Tail
Task analysis
Training
Tuning
Title Dynamic Multi-Objective Optimization Framework With Interactive Evolution for Sequential Recommendation
URI https://ieeexplore.ieee.org/document/10070104
https://www.proquest.com/docview/2840389213
Volume 7
WOSCitedRecordID wos000953740900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcDCQxRRKMgDG0qb2E4cjwhawdIiUUS3KLYvUNQH6uv340dSgRBIbJFyjhyffS_f3YfQlVGBSkdFHBRQqICxWAciLWigQGsdR5BEkjmwCd7vp6OReCyL1V0tDAC45DNo20d3l6_nam1DZR17o2_9hxqqcZ74Yq1tQIUYW4HGrCqMCUVn2B3ePrQtPnibEvuSfFM-Dk3lhwh2eqV38M8ZHaL90oDEN57jR2gHZsfo9c4Dy2NXTxsM5LuXY3hgJMK0LLXEvSoRC7-MV2_YBQNzT9fdlFsQGyMWP7n8anP2J9i6p1MzCQ-91EDPPfO790EJoRAoIpJVkEhp_KHU-AUi0jkIiAgvFBdAgWpOJDdntkiJkJppESomiYI45QRokjMoQnqC6rP5DE4RjlUqU24GEgZMx1IkeVIwY3BIoLbxWhNF1dpmquwvbmEuJpnzM0KROX5klh9ZyY8mut6O-fDdNf6kblgOfKH0i99ErYqHWXkCl5lRu7Z3IIno2S_DztGe_brP5muh-mqxhgu0qzar8XJx6TbXJx1Lz3A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEA5aBX3xwIrVqnnwTbbdTbJHHkVbWqytYMW-LU0yq5Ue0uv3m2NbFFHwbWEnbDaTzJWZ-RC60ipQqiALvQwy6TEWKo8nGfUkKKXCAKJAMAs2EbfbSa_HH_NidVsLAwA2-Qwq5tHe5auJXJhQWdXc6Bv_YRNthYwR35VrrUMqRFsLNGSr0hifV7u17m2zYhDCK5SYl-Sb-rF4Kj-EsNUs9f1_zukA7eUmJL5xPD9EGzA-Qq93Dloe24paryPenSTDHS0TRnmxJa6vUrHwy2D-hm04sO_oast8E2JtxuInm2GtT_8QGwd1pCfhwJeK6Lmuf7fh5SAKniQ8mnuRENojSrRnwAPVBw4BiTMZc6BAVUxErE9tlhAuFFPcl0wQCWESE6BRn0Hm02NUGE_GcIJwKBORxHogYcBUKHjUjzKmTQ4B1LReK6FgtbapzDuMG6CLYWo9DZ-nlh-p4Uea86OErtdjPlx_jT-pi4YDXyjd4pdQecXDND-Ds1QrXtM9kAT09Jdhl2in0X1opa1m-_4M7Zovudy-MirMpws4R9tyOR_Mphd2o30CDvPStw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Multi-Objective+Optimization+Framework+With+Interactive+Evolution+for+Sequential+Recommendation&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Zhou%2C+Wei&rft.au=Liu%2C+Yong&rft.au=Li%2C+Min&rft.au=Wang%2C+Yu&rft.date=2023-08-01&rft.pub=IEEE&rft.eissn=2471-285X&rft.volume=7&rft.issue=4&rft.spage=1228&rft.epage=1241&rft_id=info:doi/10.1109%2FTETCI.2023.3251352&rft.externalDocID=10070104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon