Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning
This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) m...
Uloženo v:
| Vydáno v: | IEEE communications letters Ročník 28; číslo 8; s. 1845 - 1849 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1089-7798, 1558-2558 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) modulation system. We design an end-to-end deep convolutional neural network (CNN) to capture the channel features and determine the optimal modulation and coding scheme. Additionally, we utilize a meta-learning algorithm to address environment mismatch in real-world UWA applications. This algorithm effectively adapts the CNN model from a given UWA environment to a new UWA environment with only a small amount of data. The performance of the proposed scheme is verified through real-world measured channels. Simulation results demonstrate that the proposed method outperforms existing machine learning-based AMC and fixed modulation and coding schemes in various UWA scenarios, offering better communication throughput and stronger learning capabilities. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1089-7798 1558-2558 |
| DOI: | 10.1109/LCOMM.2024.3418192 |