Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning

This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE communications letters Ročník 28; číslo 8; s. 1845 - 1849
Hlavní autoři: Jing, Lianyou, Dong, Chaofan, He, Chengbing, Shi, Wentao, Wang, Han, Zhou, Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-7798, 1558-2558
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) modulation system. We design an end-to-end deep convolutional neural network (CNN) to capture the channel features and determine the optimal modulation and coding scheme. Additionally, we utilize a meta-learning algorithm to address environment mismatch in real-world UWA applications. This algorithm effectively adapts the CNN model from a given UWA environment to a new UWA environment with only a small amount of data. The performance of the proposed scheme is verified through real-world measured channels. Simulation results demonstrate that the proposed method outperforms existing machine learning-based AMC and fixed modulation and coding schemes in various UWA scenarios, offering better communication throughput and stronger learning capabilities.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2024.3418192