Rethinking Multiple Instance Learning for Whole Slide Image Classification: A Good Instance Classifier Is All You Need

Weakly supervised whole slide image classification is usually formulated as a multiple instance learning (MIL) problem, where each slide is treated as a bag, and the patches cut out of it are treated as instances. Existing methods either train an instance classifier through pseudo-labeling or aggreg...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems for video technology Ročník 34; číslo 10; s. 9732 - 9744
Hlavní autoři: Qu, Linhao, Ma, Yingfan, Luo, Xiaoyuan, Guo, Qinhao, Wang, Manning, Song, Zhijian
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1051-8215, 1558-2205
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Weakly supervised whole slide image classification is usually formulated as a multiple instance learning (MIL) problem, where each slide is treated as a bag, and the patches cut out of it are treated as instances. Existing methods either train an instance classifier through pseudo-labeling or aggregate instance features into a bag feature through attention mechanisms and then train a bag classifier, where the attention scores can be used for instance-level classification. However, the pseudo instance labels constructed by the former usually contain a lot of noise, and the attention scores constructed by the latter are not accurate enough, both of which affect their performance. In this paper, we propose an instance-level MIL framework based on contrastive learning and prototype learning to effectively accomplish both instance classification and bag classification tasks. To this end, we propose an instance-level weakly supervised contrastive learning algorithm for the first time under the MIL setting to effectively learn instance feature representation. We also propose an accurate pseudo label generation method through prototype learning. We then develop a joint training strategy for weakly supervised contrastive learning, prototype learning, and instance classifier training. Extensive experiments and visualizations on four datasets demonstrate the powerful performance of our method. Codes are available at https://github.com/miccaiif/INS .
AbstractList Weakly supervised whole slide image classification is usually formulated as a multiple instance learning (MIL) problem, where each slide is treated as a bag, and the patches cut out of it are treated as instances. Existing methods either train an instance classifier through pseudo-labeling or aggregate instance features into a bag feature through attention mechanisms and then train a bag classifier, where the attention scores can be used for instance-level classification. However, the pseudo instance labels constructed by the former usually contain a lot of noise, and the attention scores constructed by the latter are not accurate enough, both of which affect their performance. In this paper, we propose an instance-level MIL framework based on contrastive learning and prototype learning to effectively accomplish both instance classification and bag classification tasks. To this end, we propose an instance-level weakly supervised contrastive learning algorithm for the first time under the MIL setting to effectively learn instance feature representation. We also propose an accurate pseudo label generation method through prototype learning. We then develop a joint training strategy for weakly supervised contrastive learning, prototype learning, and instance classifier training. Extensive experiments and visualizations on four datasets demonstrate the powerful performance of our method. Codes are available at https://github.com/miccaiif/INS .
Author Song, Zhijian
Luo, Xiaoyuan
Guo, Qinhao
Ma, Yingfan
Qu, Linhao
Wang, Manning
Author_xml – sequence: 1
  givenname: Linhao
  orcidid: 0000-0001-8815-7050
  surname: Qu
  fullname: Qu, Linhao
  email: lhqu20@fudan.edu.cn
  organization: Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai, China
– sequence: 2
  givenname: Yingfan
  surname: Ma
  fullname: Ma, Yingfan
  email: 22211010089@m.fudan.edu.cn
  organization: Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai, China
– sequence: 3
  givenname: Xiaoyuan
  orcidid: 0000-0002-8456-5847
  surname: Luo
  fullname: Luo, Xiaoyuan
  email: 19111010030@fudan.edu.cn
  organization: Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai, China
– sequence: 4
  givenname: Qinhao
  surname: Guo
  fullname: Guo, Qinhao
  email: 18111230017@fudan.edu.cn
  organization: Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
– sequence: 5
  givenname: Manning
  orcidid: 0000-0002-9255-3897
  surname: Wang
  fullname: Wang, Manning
  email: mnwang@fudan.edu.cn
  organization: Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai, China
– sequence: 6
  givenname: Zhijian
  orcidid: 0000-0001-9873-216X
  surname: Song
  fullname: Song, Zhijian
  email: zjsong@fudan.edu.cn
  organization: Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai, China
BookMark eNp9kU9LAzEQxYMoqNUvIB4Cnrcm2WQ3660UrYWqYKviacnuTjS6JjXZCn570z-iePA0A-_9Zpg3-2jbOgsIHVHSp5QUp7Ph9H7WZ4TxfsoJkXm2hfaoEDJhjIjt2BNBE8mo2EX7IbwQQrnk-R76uIXu2dhXY5_w1aLtzLwFPLahU7YGPAHl7VLSzuOHZxe1aWua6HhTT4CHrQrBaFOrzjh7hgd45Fzzg3_r4PE44EHb4ke3wNcAzQHa0aoNcLipPXR3cT4bXiaTm9F4OJgkNSuyLhFFxTnjoskF1ULJrE41ZZkgGYWGNnWhCGSSUy25ziRjVcUISWWEa5nrSqY9dLKeO_fufQGhK1_cwtu4skwpY3GJLIrokmtX7V0IHnRZm251U-eVaUtKymXK5SrlcplyuUk5ouwPOvfmTfnP_6HjNWQA4Bcg0viWIv0CebeKHA
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_modpat_2024_100648
crossref_primary_10_1016_j_prp_2025_156006
crossref_primary_10_1016_j_compbiomed_2025_110075
crossref_primary_10_1016_j_cmpb_2024_108491
crossref_primary_10_1109_ACCESS_2025_3578651
crossref_primary_10_1016_j_jiixd_2025_05_001
crossref_primary_10_1007_s10489_025_06300_z
crossref_primary_10_1109_TCSVT_2025_3528625
crossref_primary_10_1007_s13369_025_10320_9
crossref_primary_10_1016_j_media_2025_103631
crossref_primary_10_1038_s41746_025_01580_8
crossref_primary_10_1016_j_media_2025_103647
crossref_primary_10_3390_electronics13224445
crossref_primary_10_1109_TMI_2025_3564976
crossref_primary_10_1016_j_compbiomed_2025_110634
crossref_primary_10_3390_math13132178
Cites_doi 10.1109/TMI.2022.3227066
10.1088/1361-6560/ac910a
10.1109/TCSVT.2023.3294938
10.1007/978-3-030-87237-3_32
10.1109/TMI.2022.3176598
10.1038/s41591-019-0508-1
10.1109/CVPR42600.2020.00975
10.1109/CVPR46437.2021.01409
10.1007/978-3-031-16434-7_3
10.1109/CVPR52688.2022.01567
10.59275/j.melba.2023-5g54
10.1109/TMI.2023.3241204
10.1109/tmi.2023.3253760
10.1109/TMI.2020.3021387
10.1038/s41586-021-03512-4
10.1007/978-3-031-26387-3_26
10.1609/aaai.v34i04.6030
10.1109/TCSVT.2021.3128054
10.1016/j.media.2023.102748
10.1093/bioinformatics/btw252
10.1002/path.6027
10.1038/s41598-020-66333-x
10.1109/ICCV48922.2021.00398
10.1109/TCSVT.2022.3219893
10.1109/TCSVT.2022.3141051
10.1109/TCSVT.2022.3169469
10.1016/j.patcog.2017.08.026
10.1109/CVPR52688.2022.01824
10.1109/TMI.2019.2927182
10.1016/j.media.2020.101789
10.1109/CVPR42600.2020.00391
10.1109/TCSVT.2023.3281151
10.1016/j.modpat.2023.100316
10.1109/TCSVT.2020.2992276
10.1016/j.media.2019.03.009
10.1007/978-3-030-59722-1_50
10.1109/ICCV48922.2021.00951
10.1109/TCSVT.2022.3209209
10.1038/s41551-020-00682-w
10.1109/CVPR.2009.5206848
10.5555/3524938.3525087
10.1016/j.media.2021.102298
10.1016/j.media.2020.101813
10.1109/TCSVT.2022.3207174
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2024.3400876
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 9744
ExternalDocumentID 10_1109_TCSVT_2024_3400876
10530149
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 82072021
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-59b44245d751f5a86c3f1265061ed1dc9a0e6841f84f6822bb20038c29c87fb83
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346503100074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Mon Jun 30 10:20:29 EDT 2025
Sat Nov 29 01:44:28 EST 2025
Tue Nov 18 22:38:11 EST 2025
Wed Aug 27 01:58:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-59b44245d751f5a86c3f1265061ed1dc9a0e6841f84f6822bb20038c29c87fb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8456-5847
0000-0002-9255-3897
0000-0001-9873-216X
0000-0001-8815-7050
PQID 3122296899
PQPubID 85433
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2024_3400876
proquest_journals_3122296899
ieee_primary_10530149
crossref_primary_10_1109_TCSVT_2024_3400876
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref52
ref55
ref10
ref17
ref16
ref19
ref51
ref50
ref46
ref45
ref48
Yang (ref53) 2023
ref47
ref42
ref41
ref44
ref43
Lu (ref11) 2019
ref49
ref8
Shao (ref24); 34
ref9
Qu (ref14); 35
ref4
ref3
ref6
ref5
Qu (ref7); 36
ref40
ref35
ref34
Chen (ref38) 2022
ref37
ref36
ref30
ref33
ref32
ref2
Ilse (ref18)
ref1
ref39
Wang (ref54) 2022
Yan (ref28)
Maron (ref31); 10
ref23
ref26
ref25
ref20
ref22
Wang (ref27); 35
ref21
ref29
References_xml – ident: ref33
  doi: 10.1109/TMI.2022.3227066
– ident: ref1
  doi: 10.1088/1361-6560/ac910a
– ident: ref6
  doi: 10.1109/TCSVT.2023.3294938
– start-page: 2127
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref18
  article-title: Attention-based deep multiple instance learning
– ident: ref26
  doi: 10.1007/978-3-030-87237-3_32
– ident: ref34
  doi: 10.1109/TMI.2022.3176598
– ident: ref15
  doi: 10.1038/s41591-019-0508-1
– volume: 35
  start-page: 18009
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: SCL-WC: Cross-slide contrastive learning for weakly-supervised whole-slide image classification
– ident: ref41
  doi: 10.1109/CVPR42600.2020.00975
– ident: ref22
  doi: 10.1109/CVPR46437.2021.01409
– ident: ref13
  doi: 10.1007/978-3-031-16434-7_3
– ident: ref37
  doi: 10.1109/CVPR52688.2022.01567
– ident: ref8
  doi: 10.59275/j.melba.2023-5g54
– ident: ref36
  doi: 10.1109/TMI.2023.3241204
– ident: ref35
  doi: 10.1109/tmi.2023.3253760
– volume: 10
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref31
  article-title: A framework for multiple-instance learning
– ident: ref10
  doi: 10.1109/TMI.2020.3021387
– ident: ref3
  doi: 10.1038/s41586-021-03512-4
– volume: 34
  start-page: 2136
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref24
  article-title: TransMIL: Transformer based correlated multiple instance learning for whole slide image classification
– start-page: 662
  volume-title: Proc. Asian Conf. Mach. Learn. (ACML)
  ident: ref28
  article-title: Deep multi-instance learning with dynamic pooling
– year: 2022
  ident: ref38
  article-title: Self-supervised vision transformers learn visual concepts in histopathology
  publication-title: arXiv:2203.00585
– ident: ref51
  doi: 10.1007/978-3-031-26387-3_26
– ident: ref21
  doi: 10.1609/aaai.v34i04.6030
– ident: ref48
  doi: 10.1109/TCSVT.2021.3128054
– ident: ref52
  doi: 10.1016/j.media.2023.102748
– ident: ref30
  doi: 10.1093/bioinformatics/btw252
– ident: ref39
  doi: 10.1002/path.6027
– ident: ref17
  doi: 10.1038/s41598-020-66333-x
– ident: ref25
  doi: 10.1109/ICCV48922.2021.00398
– ident: ref44
  doi: 10.1109/TCSVT.2022.3219893
– ident: ref46
  doi: 10.1109/TCSVT.2022.3141051
– year: 2023
  ident: ref53
  article-title: TPMIL: Trainable prototype enhanced multiple instance learning for whole slide image classification
  publication-title: arXiv:2305.00696
– ident: ref45
  doi: 10.1109/TCSVT.2022.3169469
– year: 2019
  ident: ref11
  article-title: Semi-supervised histology classification using deep multiple instance learning and contrastive predictive coding
  publication-title: arXiv:1910.10825
– ident: ref29
  doi: 10.1016/j.patcog.2017.08.026
– ident: ref23
  doi: 10.1109/CVPR52688.2022.01824
– year: 2022
  ident: ref54
  article-title: PiCO+: Contrastive label disambiguation for robust partial label learning
  publication-title: arXiv:2201.08984
– ident: ref4
  doi: 10.1109/TMI.2019.2927182
– ident: ref20
  doi: 10.1016/j.media.2020.101789
– ident: ref19
  doi: 10.1109/CVPR42600.2020.00391
– volume: 36
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref7
  article-title: The rise of ai language pathologists: Exploring two-level prompt learning for few-shot weakly-supervised whole slide image classification
– ident: ref50
  doi: 10.1109/TCSVT.2023.3281151
– ident: ref32
  doi: 10.1016/j.modpat.2023.100316
– ident: ref47
  doi: 10.1109/TCSVT.2020.2992276
– ident: ref9
  doi: 10.1016/j.media.2019.03.009
– ident: ref16
  doi: 10.1007/978-3-030-59722-1_50
– ident: ref42
  doi: 10.1109/ICCV48922.2021.00951
– ident: ref49
  doi: 10.1109/TCSVT.2022.3209209
– ident: ref12
  doi: 10.1038/s41551-020-00682-w
– ident: ref55
  doi: 10.1109/CVPR.2009.5206848
– ident: ref40
  doi: 10.5555/3524938.3525087
– volume: 35
  start-page: 15368
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref14
  article-title: Bi-directional weakly supervised knowledge distillation for whole slide image classification
– ident: ref5
  doi: 10.1016/j.media.2021.102298
– ident: ref2
  doi: 10.1016/j.media.2020.101813
– ident: ref43
  doi: 10.1109/TCSVT.2022.3207174
SSID ssj0014847
Score 2.55881
Snippet Weakly supervised whole slide image classification is usually formulated as a multiple instance learning (MIL) problem, where each slide is treated as a bag,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9732
SubjectTerms Aggregates
Algorithms
Attention
Circuits and systems
Classification
Contrastive learning
Feature extraction
Image classification
Labels
Machine learning
Multiple instance learning
Noise measurement
prototype learning
Prototypes
Training
whole slide image classification
Title Rethinking Multiple Instance Learning for Whole Slide Image Classification: A Good Instance Classifier Is All You Need
URI https://ieeexplore.ieee.org/document/10530149
https://www.proquest.com/docview/3122296899
Volume 34
WOSCitedRecordID wos001346503100074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-UeNCDnxhRND14M8OVtV3rjRBREiVGULktW_emJBMMDP5-225DjNHE25K9tyz7tX3v7X38EDpPhEiUjhscIShzKKjQiUJGHR4ClUIpj8Z2ZP6d3-uJ4VA-FM3qthcGAGzxGTTMpc3lxxM1N7_K9A5nJgKQ62jd93nerLVMGVBh2cS0DHGENmRlh4wrLwft_vNAx4JN2vCoHcL2zQpZWpUfZ7E1MJ2df77aLtouPEncyqHfQ2sw3kdbK_MFD9DiEbK3nBwB3xeVg7hrHUIFuBit-oq134pfDE8u7qejWEu860MGW7pMU0hksbvCLXwzmcRf6uV9mOLuDLfSFOuTA_e0Nayip871oH3rFEQLjmpKnjlMRtRkQGOfkYSFgisvIU3tu3ECMYmVDF3ggpJE0IRrjyKKTEmb0MpK-EkkvENUGU_GcIQwQDPioRu7wEIqiQq1ywO-GzGPR8CoqiFSfvhAFVPIDRlGGthoxJWBBSswYAUFWDV0sdT5yGdw_CldNfCsSObI1FC9BDgo9uks8IjhM-c66Dz-Re0EbZqn5_V7dVTJpnM4RRtqkY1m0zO7BD8BktnX9g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xScCBHVFWH7ihlLixXZtbhVgq2gpBgd6ixJkAUmlRW_h-bMctIAQSt0iZUaI82zOTWR7AYS5lrk3cEEjJeMBQJ0GacBaIBJmSWkcscyPzG9VWS3Y66to3q7teGER0xWdYtpcul5_19Zv9VWZ2OLcRgJqGWUud5du1JkkDJh2fmJGigTSmbNwjE6rj9untfdtEgxVWjpgbw_bNDjlilR-nsTMx58v_fLkVWPK-JKkV4K_CFPbWYPHLhMF1eL_B0VNBj0CavnaQ1J1LqJH44aqPxHiu5MEy5ZLb7nNmJF7MMUMcYaYtJXLonZAauej3s0_18X0ckPqQ1LpdYs4O0jL2cAPuzs_ap5eBp1oIdEWJUcBVymwONKtymvNECh3ltGK8N0Exo5lWSYhCMppLlgvjU6SpLWqTRlnLap7KaBNmev0ebgFBrKQiCbMQecIU1YlxerAapjwSKXKmS0DHHz7Wfg65pcPoxi4eCVXswIotWLEHqwRHE53XYgrHn9IbFp4vkgUyJdgdAxz7nTqMI2oZzYUJO7d_UTuA-ct2sxE36q2rHViwTyqq-XZhZjR4wz2Y0--j5-Fg3y3HD_0A2z8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rethinking+Multiple+Instance+Learning+for+Whole+Slide+Image+Classification%3A+A+Good+Instance+Classifier+Is+All+You+Need&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Qu%2C+Linhao&rft.au=Ma%2C+Yingfan&rft.au=Luo%2C+Xiaoyuan&rft.au=Guo%2C+Qinhao&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=34&rft.issue=10&rft.spage=9732&rft.epage=9744&rft_id=info:doi/10.1109%2FTCSVT.2024.3400876&rft.externalDocID=10530149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon