Decentralized and Collaborative Subspace Pursuit: A Communication-Efficient Algorithm for Joint Sparsity Pattern Recovery With Sensor Networks
In this paper, we consider the problem of joint sparsity pattern recovery in a distributed sensor network. The sparse multiple measurement vector signals (MMVs) observed by all the nodes are assumed to have a common (but unknown) sparsity pattern. To accurately recover the common sparsity pattern in...
Saved in:
| Published in: | IEEE transactions on signal processing Vol. 64; no. 3; pp. 556 - 566 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.02.2016
|
| Subjects: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we consider the problem of joint sparsity pattern recovery in a distributed sensor network. The sparse multiple measurement vector signals (MMVs) observed by all the nodes are assumed to have a common (but unknown) sparsity pattern. To accurately recover the common sparsity pattern in a decentralized manner with a low communication overhead of the network, we develop an algorithm named decentralized and collaborative subspace pursuit (DCSP). In DCSP, each node is required to perform three kinds of operations per iteration: 1) estimate the local sparsity pattern by finding the subspace that its measurement vector most probably lies in; 2) share its local sparsity pattern estimate with one-hop neighboring nodes; and 3) update the final sparsity pattern estimate by majority vote based fusion of all the local sparsity pattern estimates obtained in its neighborhood. The convergence of DCSP is proved and its communication overhead is quantitatively analyzed. We also propose another decentralized algorithm named generalized DCSP (GDCSP) by allowing more information exchange among neighboring nodes to further improve the accuracy of sparsity pattern recovery at the cost of increased communication overhead. Experimental results show that, 1) compared with existing decentralized algorithms, DCSP provides much better accuracy of sparsity pattern recovery at a comparable communication cost; and 2) the accuracy of GDCSP is very close to that of centralized processing. |
|---|---|
| AbstractList | In this paper, we consider the problem of joint sparsity pattern recovery in a distributed sensor network. The sparse multiple measurement vector signals (MMVs) observed by all the nodes are assumed to have a common (but unknown) sparsity pattern. To accurately recover the common sparsity pattern in a decentralized manner with a low communication overhead of the network, we develop an algorithm named decentralized and collaborative subspace pursuit (DCSP). In DCSP, each node is required to perform three kinds of operations per iteration: 1) estimate the local sparsity pattern by finding the subspace that its measurement vector most probably lies in; 2) share its local sparsity pattern estimate with one-hop neighboring nodes; and 3) update the final sparsity pattern estimate by majority vote based fusion of all the local sparsity pattern estimates obtained in its neighborhood. The convergence of DCSP is proved and its communication overhead is quantitatively analyzed. We also propose another decentralized algorithm named generalized DCSP (GDCSP) by allowing more information exchange among neighboring nodes to further improve the accuracy of sparsity pattern recovery at the cost of increased communication overhead. Experimental results show that, 1) compared with existing decentralized algorithms, DCSP provides much better accuracy of sparsity pattern recovery at a comparable communication cost; and 2) the accuracy of GDCSP is very close to that of centralized processing. |
| Author | Varshney, Pramod K. Gang Li Wimalajeewa, Thakshila |
| Author_xml | – sequence: 1 surname: Gang Li fullname: Gang Li email: gangli@tsinghua.edu.cn organization: Dept. of Electron. Eng., Tsinghua Univ., Beijing, China – sequence: 2 givenname: Thakshila surname: Wimalajeewa fullname: Wimalajeewa, Thakshila email: twwewelw@syr.edu organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA – sequence: 3 givenname: Pramod K. surname: Varshney fullname: Varshney, Pramod K. email: varshney@syr.edu organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA |
| BookMark | eNp9kU9PGzEQxa2KSgXKvVIvPnLZ1PZ6_7i3KATaKoKoAcFt5fWOwbBrB9tLFT4En7kOQT1w6GlGo9970pt3gPass4DQF0omlBLx7XK1nDBCiwnjdc5r9gHtU8FpRnhV7qWdFHlW1NXNJ3QQwj0hlHNR7qOXE1Bgo5e9eYYOS9vhmet72Tovo3kCvBrbsJYK8HL0YTTxO54mYhhGa1QinM3mWhtlkgme9rfOm3g3YO08_uVMuq3W0gcTN3gpYwRv8W9Q7gn8Bl8nEq_AhsSeQ_zj_EP4jD5q2Qc4epuH6Op0fjn7kS0uzn7OpotMMVHGrBC8rgiXXBZM6lZoLUoAxTshylLTlnPZMsVIwVtJlaKsq0XeVVqSXFLWQn6Ijne-a-8eRwixGUxQkIJbcGNoaM2KoiKMioSWO1R5F4IH3SgTX5Onr5m-oaTZFtCkApptAc1bAUlI3gnX3gzSb_4n-bqTGAD4h1esElTU-V90DZaj |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_TSP_2019_2932884 crossref_primary_10_1109_TSP_2019_2903034 crossref_primary_10_1109_TSP_2023_3267995 crossref_primary_10_1016_j_inffus_2022_03_002 crossref_primary_10_1109_TSP_2019_2931204 crossref_primary_10_1109_TSP_2017_2679693 crossref_primary_10_1109_TSP_2020_2988598 crossref_primary_10_1109_TII_2016_2607124 crossref_primary_10_1016_j_ins_2016_06_032 crossref_primary_10_1109_LSP_2018_2861222 |
| Cites_doi | 10.3150/12-BEJSP10 10.1049/iet-rsn:20060100 10.1186/1687-6180-2012-98 10.1109/TSP.2007.893220 10.1137/1.9781611971484 10.1016/j.sigpro.2009.11.009 10.1109/TSP.2007.906734 10.1016/j.sigpro.2014.05.027 10.1080/01621459.1963.10500830 10.1109/TSP.2011.2182347 10.1109/JSTSP.2010.2055037 10.1109/ICASSP.2014.6854224 10.1109/TSP.2013.2254478 10.1109/TSP.2009.2023936 10.1016/j.neuroimage.2008.02.059 10.1109/MSP.2007.914731 10.1109/TSP.2009.2038417 10.1109/TAES.2012.6178106 10.1109/TIT.2009.2016006 10.21236/ADA521228 10.1109/MSP.2007.4286571 10.1109/ICC.2010.5502562 10.1109/6979.892150 10.1016/j.sigpro.2005.05.030 10.1016/j.sigpro.2013.03.028 10.1109/TSP.2014.2343947 10.1109/TSP.2005.850882 10.1109/TSP.2014.2340812 10.1109/TSP.2004.832153 10.1109/ICASSP.2011.5946288 10.1109/MSP.2007.914728 10.1109/JSTARS.2012.2215915 10.1016/j.acha.2008.07.002 10.1109/ICDCS.2011.35 10.1109/TIT.2005.858979 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2015.2483482 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 566 |
| ExternalDocumentID | 10_1109_TSP_2015_2483482 7279198 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61422110; 41271011 funderid: 10.13039/501100001809 – fundername: Tsinghua University funderid: 10.13039/501100004147 – fundername: National Science Foundation grantid: 1307775 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AJQPL AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 3EH 53G 5VS AAYXX ABFSI ACKIV AETIX AI. AIBXA AKJIK ALLEH CITATION E.L H~9 ICLAB IFJZH VH1 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c296t-5948704a4a52afb9ff96eec4d9966f1b44ab2c2054ba1cc12d893d7fa03a12be3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369437500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Sun Nov 09 11:30:47 EST 2025 Tue Nov 18 21:59:35 EST 2025 Sat Nov 29 04:10:38 EST 2025 Tue Aug 26 16:43:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-5948704a4a52afb9ff96eec4d9966f1b44ab2c2054ba1cc12d893d7fa03a12be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1825570219 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1825570219 crossref_citationtrail_10_1109_TSP_2015_2483482 ieee_primary_7279198 crossref_primary_10_1109_TSP_2015_2483482 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Feb.1, 2016-2-00 20160201 |
| PublicationDateYYYYMMDD | 2016-02-01 |
| PublicationDate_xml | – month: 02 year: 2016 text: 2016-Feb.1, day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref31 ref30 ref33 ref11 ref10 sundman (ref27) 2014; 105 beck (ref40) 2009 ref2 ref1 ref17 ref38 ref16 ref18 ender (ref6) 2010; 90 baron (ref19) 2009 ref24 ref23 ref26 ref25 feng (ref20) 2013 ref22 ref21 ref28 fletcher (ref36) 2009 ref29 ref8 ref7 goebel (ref32) 1996 ref9 ref4 ref3 lugosi (ref39) 2004 ref5 |
| References_xml | – ident: ref35 doi: 10.3150/12-BEJSP10 – ident: ref17 doi: 10.1049/iet-rsn:20060100 – ident: ref11 doi: 10.1186/1687-6180-2012-98 – ident: ref30 doi: 10.1109/TSP.2007.893220 – year: 2004 ident: ref39 publication-title: ?Concentration-of-measure inequalities ? Lecture nodes – ident: ref34 doi: 10.1137/1.9781611971484 – volume: 90 start-page: 1402 year: 2010 ident: ref6 article-title: On compressive sensing applied to radar publication-title: Signal Process doi: 10.1016/j.sigpro.2009.11.009 – ident: ref24 doi: 10.1109/TSP.2007.906734 – volume: 105 start-page: 298 year: 2014 ident: ref27 article-title: Distributed greedy pursuit algorithms publication-title: Signal Process doi: 10.1016/j.sigpro.2014.05.027 – ident: ref38 doi: 10.1080/01621459.1963.10500830 – start-page: 540 year: 2009 ident: ref36 article-title: Orthogonal matching pursuit from noisy random measurements: A new analysis publication-title: Proc NIPS – ident: ref22 doi: 10.1109/TSP.2011.2182347 – ident: ref12 doi: 10.1109/JSTSP.2010.2055037 – ident: ref29 doi: 10.1109/ICASSP.2014.6854224 – ident: ref23 doi: 10.1109/TSP.2013.2254478 – ident: ref25 doi: 10.1109/TSP.2009.2023936 – ident: ref4 doi: 10.1016/j.neuroimage.2008.02.059 – year: 1996 ident: ref32 article-title: An architecture for fuzzy sensor validation and fusion for vehicle following in automated highways publication-title: 29th Int Symp Automot Technol Autom (ISATA) – ident: ref2 doi: 10.1109/MSP.2007.914731 – ident: ref21 doi: 10.1109/TSP.2009.2038417 – ident: ref7 doi: 10.1109/TAES.2012.6178106 – ident: ref33 doi: 10.1109/TIT.2009.2016006 – year: 2009 ident: ref19 publication-title: ?Distributed compressed sensing ? doi: 10.21236/ADA521228 – ident: ref3 doi: 10.1109/MSP.2007.4286571 – ident: ref15 doi: 10.1109/ICC.2010.5502562 – ident: ref31 doi: 10.1109/6979.892150 – ident: ref18 doi: 10.1016/j.sigpro.2005.05.030 – ident: ref10 doi: 10.1016/j.sigpro.2013.03.028 – ident: ref28 doi: 10.1109/TSP.2014.2343947 – ident: ref9 doi: 10.1109/TSP.2005.850882 – ident: ref26 doi: 10.1109/TSP.2014.2340812 – ident: ref16 doi: 10.1109/TSP.2004.832153 – ident: ref13 doi: 10.1109/ICASSP.2011.5946288 – ident: ref5 doi: 10.1109/MSP.2007.914728 – year: 2009 ident: ref40 publication-title: Inevitable Randomness in Discrete Mathematics – ident: ref8 doi: 10.1109/JSTARS.2012.2215915 – ident: ref37 doi: 10.1016/j.acha.2008.07.002 – start-page: 2874 year: 2013 ident: ref20 article-title: Generalized subspace pursuit for signal recovery from multiple-measurement vectors publication-title: Proc IEEE Wireless Commun Netw Conf (WCNC) – ident: ref14 doi: 10.1109/ICDCS.2011.35 – ident: ref1 doi: 10.1109/TIT.2005.858979 |
| SSID | ssj0014496 |
| Score | 2.2694345 |
| Snippet | In this paper, we consider the problem of joint sparsity pattern recovery in a distributed sensor network. The sparse multiple measurement vector signals... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 556 |
| SubjectTerms | Algorithm design and analysis Algorithms Collaboration compressive sensing Decentralized Estimates information fusion Joint sparsity pattern recovery Matching pursuit algorithms Mathematical analysis Networks Recovery Signal processing algorithms Sparse representation subspace pursuit Subspaces Vectors (mathematics) |
| Title | Decentralized and Collaborative Subspace Pursuit: A Communication-Efficient Algorithm for Joint Sparsity Pattern Recovery With Sensor Networks |
| URI | https://ieeexplore.ieee.org/document/7279198 https://www.proquest.com/docview/1825570219 |
| Volume | 64 |
| WOSCitedRecordID | wos000369437500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB7a0gd9qNYqXq2ygi-C6W02mx_bt6O2FJHj4CreW9jsTjRQk3KXFNo_wr_Z2U3utChC38KymwS-7Mx8mdlvAN6RB5FcFsROrMoCqTUGikci4CY1NkYtZK-u_zmdTrPFQs224MPmLAwi-uIzPHaXPpdvG9O5X2Vj8rWKSPI2bKdp0p_V2mQMpPS9uChciII4SxfrlCRX48v5zNVwxcfC_TnLxD0X5Huq_GWIvXc5f_Kw93oKe0MUySY97PuwhfUzePyHtuAB_PyIQ-FldYeW6dqy09-Y3yBzJoMIM7JZt1x1VXvCJuzecZHgzMtL0E3Y5Opbs6za7z8YxbjsU1PR2Pxa-4IONvMSnTVzTJY2xi37SjPZnPgxzZ32Zear5_Dl_Ozy9CIYmi8ERqikDZyMS8qlljoWuixUWaoE0UjrCFIZFlLqQhhBEV-hQ2NCYSnysWmpeaRDUWD0AnbqpsaXwJQOabw0yHlBJkPpLMoSw-MMU5voIhnBeI1HbgZlctcg4yr3DIWrnBDMHYL5gOAI3m9WXPeqHP-Ze-AQ28wbwBrB2zXkOe0olybRNTbdKifG5XTJyJQf_nvpK3hEDxhqt49gp112-Bp2zU1brZZv_Gf5C-0w42A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tb9MwED6NgcT4wNs2UV6NxBcksjqO82K-VWPTgFJVahH9Fjn2BSKNZGqTSfAj-M2c3bQwgZD4Fll2EumJ7-7JnZ8DeEEeRHJZEDuxKguk1hgoHomAm9TYGLWQa3X9cTqZZIuFmu7Aq-1ZGET0xWd45C59Lt82pnO_yobkaxWR5Gtw3XXO6k9rbXMGUvpuXBQwREGcpYtNUpKr4Xw2dVVc8ZFw_84yccUJ-a4qf5hi719O7_zfm92F230cyUZr4O_BDtb34dZv6oL78OMN9qWX1Xe0TNeWHf9C_RKZMxpEmZFNu-Wqq9rXbMSuHBgJTrzABN2Ejc4_N8uq_fKVUZTL3jUVjc0utC_pYFMv0lkzx2Vpa3xjn2gmmxFDprmTdaH56gA-np7Mj8-Cvv1CYIRK2sAJuaRcaqljoctClaVKEI20jiKVYSGlLoQRFPMVOjQmFJZiH5uWmkc6FAVGh7BbNzU-AKZ0SOOlQc4LMhpKZ1GWGB5nmNpEF8kAhhs8ctNrk7sWGee55yhc5YRg7hDMewQH8HK74mKty_GPufsOse28HqwBPN9AntOecokSXWPTrXLiXE6ZjIz5w78vfQY3z-Yfxvn47eT9I9ijh_WV3I9ht112-ARumMu2Wi2f-k_0J-Yw5qk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+and+Collaborative+Subspace+Pursuit%3A+A+Communication-Efficient+Algorithm+for+Joint+Sparsity+Pattern+Recovery+With+Sensor+Networks&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Li%2C+Gang&rft.au=Wimalajeewa%2C+Thakshila&rft.au=Varshney%2C+Pramod+K.&rft.date=2016-02-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=64&rft.issue=3&rft.spage=556&rft.epage=566&rft_id=info:doi/10.1109%2FTSP.2015.2483482&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2015_2483482 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |