Decentralized and Collaborative Subspace Pursuit: A Communication-Efficient Algorithm for Joint Sparsity Pattern Recovery With Sensor Networks

In this paper, we consider the problem of joint sparsity pattern recovery in a distributed sensor network. The sparse multiple measurement vector signals (MMVs) observed by all the nodes are assumed to have a common (but unknown) sparsity pattern. To accurately recover the common sparsity pattern in...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 64; no. 3; pp. 556 - 566
Main Authors: Gang Li, Wimalajeewa, Thakshila, Varshney, Pramod K.
Format: Journal Article
Language:English
Published: IEEE 01.02.2016
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we consider the problem of joint sparsity pattern recovery in a distributed sensor network. The sparse multiple measurement vector signals (MMVs) observed by all the nodes are assumed to have a common (but unknown) sparsity pattern. To accurately recover the common sparsity pattern in a decentralized manner with a low communication overhead of the network, we develop an algorithm named decentralized and collaborative subspace pursuit (DCSP). In DCSP, each node is required to perform three kinds of operations per iteration: 1) estimate the local sparsity pattern by finding the subspace that its measurement vector most probably lies in; 2) share its local sparsity pattern estimate with one-hop neighboring nodes; and 3) update the final sparsity pattern estimate by majority vote based fusion of all the local sparsity pattern estimates obtained in its neighborhood. The convergence of DCSP is proved and its communication overhead is quantitatively analyzed. We also propose another decentralized algorithm named generalized DCSP (GDCSP) by allowing more information exchange among neighboring nodes to further improve the accuracy of sparsity pattern recovery at the cost of increased communication overhead. Experimental results show that, 1) compared with existing decentralized algorithms, DCSP provides much better accuracy of sparsity pattern recovery at a comparable communication cost; and 2) the accuracy of GDCSP is very close to that of centralized processing.
AbstractList In this paper, we consider the problem of joint sparsity pattern recovery in a distributed sensor network. The sparse multiple measurement vector signals (MMVs) observed by all the nodes are assumed to have a common (but unknown) sparsity pattern. To accurately recover the common sparsity pattern in a decentralized manner with a low communication overhead of the network, we develop an algorithm named decentralized and collaborative subspace pursuit (DCSP). In DCSP, each node is required to perform three kinds of operations per iteration: 1) estimate the local sparsity pattern by finding the subspace that its measurement vector most probably lies in; 2) share its local sparsity pattern estimate with one-hop neighboring nodes; and 3) update the final sparsity pattern estimate by majority vote based fusion of all the local sparsity pattern estimates obtained in its neighborhood. The convergence of DCSP is proved and its communication overhead is quantitatively analyzed. We also propose another decentralized algorithm named generalized DCSP (GDCSP) by allowing more information exchange among neighboring nodes to further improve the accuracy of sparsity pattern recovery at the cost of increased communication overhead. Experimental results show that, 1) compared with existing decentralized algorithms, DCSP provides much better accuracy of sparsity pattern recovery at a comparable communication cost; and 2) the accuracy of GDCSP is very close to that of centralized processing.
Author Varshney, Pramod K.
Gang Li
Wimalajeewa, Thakshila
Author_xml – sequence: 1
  surname: Gang Li
  fullname: Gang Li
  email: gangli@tsinghua.edu.cn
  organization: Dept. of Electron. Eng., Tsinghua Univ., Beijing, China
– sequence: 2
  givenname: Thakshila
  surname: Wimalajeewa
  fullname: Wimalajeewa, Thakshila
  email: twwewelw@syr.edu
  organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA
– sequence: 3
  givenname: Pramod K.
  surname: Varshney
  fullname: Varshney, Pramod K.
  email: varshney@syr.edu
  organization: Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA
BookMark eNp9kU9PGzEQxa2KSgXKvVIvPnLZ1PZ6_7i3KATaKoKoAcFt5fWOwbBrB9tLFT4En7kOQT1w6GlGo9970pt3gPass4DQF0omlBLx7XK1nDBCiwnjdc5r9gHtU8FpRnhV7qWdFHlW1NXNJ3QQwj0hlHNR7qOXE1Bgo5e9eYYOS9vhmet72Tovo3kCvBrbsJYK8HL0YTTxO54mYhhGa1QinM3mWhtlkgme9rfOm3g3YO08_uVMuq3W0gcTN3gpYwRv8W9Q7gn8Bl8nEq_AhsSeQ_zj_EP4jD5q2Qc4epuH6Op0fjn7kS0uzn7OpotMMVHGrBC8rgiXXBZM6lZoLUoAxTshylLTlnPZMsVIwVtJlaKsq0XeVVqSXFLWQn6Ijne-a-8eRwixGUxQkIJbcGNoaM2KoiKMioSWO1R5F4IH3SgTX5Onr5m-oaTZFtCkApptAc1bAUlI3gnX3gzSb_4n-bqTGAD4h1esElTU-V90DZaj
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TSP_2019_2932884
crossref_primary_10_1109_TSP_2019_2903034
crossref_primary_10_1109_TSP_2023_3267995
crossref_primary_10_1016_j_inffus_2022_03_002
crossref_primary_10_1109_TSP_2019_2931204
crossref_primary_10_1109_TSP_2017_2679693
crossref_primary_10_1109_TSP_2020_2988598
crossref_primary_10_1109_TII_2016_2607124
crossref_primary_10_1016_j_ins_2016_06_032
crossref_primary_10_1109_LSP_2018_2861222
Cites_doi 10.3150/12-BEJSP10
10.1049/iet-rsn:20060100
10.1186/1687-6180-2012-98
10.1109/TSP.2007.893220
10.1137/1.9781611971484
10.1016/j.sigpro.2009.11.009
10.1109/TSP.2007.906734
10.1016/j.sigpro.2014.05.027
10.1080/01621459.1963.10500830
10.1109/TSP.2011.2182347
10.1109/JSTSP.2010.2055037
10.1109/ICASSP.2014.6854224
10.1109/TSP.2013.2254478
10.1109/TSP.2009.2023936
10.1016/j.neuroimage.2008.02.059
10.1109/MSP.2007.914731
10.1109/TSP.2009.2038417
10.1109/TAES.2012.6178106
10.1109/TIT.2009.2016006
10.21236/ADA521228
10.1109/MSP.2007.4286571
10.1109/ICC.2010.5502562
10.1109/6979.892150
10.1016/j.sigpro.2005.05.030
10.1016/j.sigpro.2013.03.028
10.1109/TSP.2014.2343947
10.1109/TSP.2005.850882
10.1109/TSP.2014.2340812
10.1109/TSP.2004.832153
10.1109/ICASSP.2011.5946288
10.1109/MSP.2007.914728
10.1109/JSTARS.2012.2215915
10.1016/j.acha.2008.07.002
10.1109/ICDCS.2011.35
10.1109/TIT.2005.858979
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2015.2483482
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 566
ExternalDocumentID 10_1109_TSP_2015_2483482
7279198
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61422110; 41271011
  funderid: 10.13039/501100001809
– fundername: Tsinghua University
  funderid: 10.13039/501100004147
– fundername: National Science Foundation
  grantid: 1307775
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
VH1
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-5948704a4a52afb9ff96eec4d9966f1b44ab2c2054ba1cc12d893d7fa03a12be3
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369437500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sun Nov 09 11:30:47 EST 2025
Tue Nov 18 21:59:35 EST 2025
Sat Nov 29 04:10:38 EST 2025
Tue Aug 26 16:43:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-5948704a4a52afb9ff96eec4d9966f1b44ab2c2054ba1cc12d893d7fa03a12be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825570219
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1825570219
crossref_citationtrail_10_1109_TSP_2015_2483482
ieee_primary_7279198
crossref_primary_10_1109_TSP_2015_2483482
PublicationCentury 2000
PublicationDate 2016-Feb.1,
2016-2-00
20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-Feb.1,
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref10
sundman (ref27) 2014; 105
beck (ref40) 2009
ref2
ref1
ref17
ref38
ref16
ref18
ender (ref6) 2010; 90
baron (ref19) 2009
ref24
ref23
ref26
ref25
feng (ref20) 2013
ref22
ref21
ref28
fletcher (ref36) 2009
ref29
ref8
ref7
goebel (ref32) 1996
ref9
ref4
ref3
lugosi (ref39) 2004
ref5
References_xml – ident: ref35
  doi: 10.3150/12-BEJSP10
– ident: ref17
  doi: 10.1049/iet-rsn:20060100
– ident: ref11
  doi: 10.1186/1687-6180-2012-98
– ident: ref30
  doi: 10.1109/TSP.2007.893220
– year: 2004
  ident: ref39
  publication-title: ?Concentration-of-measure inequalities ? Lecture nodes
– ident: ref34
  doi: 10.1137/1.9781611971484
– volume: 90
  start-page: 1402
  year: 2010
  ident: ref6
  article-title: On compressive sensing applied to radar
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2009.11.009
– ident: ref24
  doi: 10.1109/TSP.2007.906734
– volume: 105
  start-page: 298
  year: 2014
  ident: ref27
  article-title: Distributed greedy pursuit algorithms
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2014.05.027
– ident: ref38
  doi: 10.1080/01621459.1963.10500830
– start-page: 540
  year: 2009
  ident: ref36
  article-title: Orthogonal matching pursuit from noisy random measurements: A new analysis
  publication-title: Proc NIPS
– ident: ref22
  doi: 10.1109/TSP.2011.2182347
– ident: ref12
  doi: 10.1109/JSTSP.2010.2055037
– ident: ref29
  doi: 10.1109/ICASSP.2014.6854224
– ident: ref23
  doi: 10.1109/TSP.2013.2254478
– ident: ref25
  doi: 10.1109/TSP.2009.2023936
– ident: ref4
  doi: 10.1016/j.neuroimage.2008.02.059
– year: 1996
  ident: ref32
  article-title: An architecture for fuzzy sensor validation and fusion for vehicle following in automated highways
  publication-title: 29th Int Symp Automot Technol Autom (ISATA)
– ident: ref2
  doi: 10.1109/MSP.2007.914731
– ident: ref21
  doi: 10.1109/TSP.2009.2038417
– ident: ref7
  doi: 10.1109/TAES.2012.6178106
– ident: ref33
  doi: 10.1109/TIT.2009.2016006
– year: 2009
  ident: ref19
  publication-title: ?Distributed compressed sensing ?
  doi: 10.21236/ADA521228
– ident: ref3
  doi: 10.1109/MSP.2007.4286571
– ident: ref15
  doi: 10.1109/ICC.2010.5502562
– ident: ref31
  doi: 10.1109/6979.892150
– ident: ref18
  doi: 10.1016/j.sigpro.2005.05.030
– ident: ref10
  doi: 10.1016/j.sigpro.2013.03.028
– ident: ref28
  doi: 10.1109/TSP.2014.2343947
– ident: ref9
  doi: 10.1109/TSP.2005.850882
– ident: ref26
  doi: 10.1109/TSP.2014.2340812
– ident: ref16
  doi: 10.1109/TSP.2004.832153
– ident: ref13
  doi: 10.1109/ICASSP.2011.5946288
– ident: ref5
  doi: 10.1109/MSP.2007.914728
– year: 2009
  ident: ref40
  publication-title: Inevitable Randomness in Discrete Mathematics
– ident: ref8
  doi: 10.1109/JSTARS.2012.2215915
– ident: ref37
  doi: 10.1016/j.acha.2008.07.002
– start-page: 2874
  year: 2013
  ident: ref20
  article-title: Generalized subspace pursuit for signal recovery from multiple-measurement vectors
  publication-title: Proc IEEE Wireless Commun Netw Conf (WCNC)
– ident: ref14
  doi: 10.1109/ICDCS.2011.35
– ident: ref1
  doi: 10.1109/TIT.2005.858979
SSID ssj0014496
Score 2.2693372
Snippet In this paper, we consider the problem of joint sparsity pattern recovery in a distributed sensor network. The sparse multiple measurement vector signals...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 556
SubjectTerms Algorithm design and analysis
Algorithms
Collaboration
compressive sensing
Decentralized
Estimates
information fusion
Joint sparsity pattern recovery
Matching pursuit algorithms
Mathematical analysis
Networks
Recovery
Signal processing algorithms
Sparse representation
subspace pursuit
Subspaces
Vectors (mathematics)
Title Decentralized and Collaborative Subspace Pursuit: A Communication-Efficient Algorithm for Joint Sparsity Pattern Recovery With Sensor Networks
URI https://ieeexplore.ieee.org/document/7279198
https://www.proquest.com/docview/1825570219
Volume 64
WOSCitedRecordID wos000369437500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swED7a0oftod3WjaXthgZ7GcyNYymW1bfQtYw-hEA6ljcjWafV0NklsQvtj-hv7klxspWNQt-MubMNnyXdpzt9B_DZZSmKVMuIBpMjghKrSFlrIiOQ64wbKYcuNJuQ43E2m6nJBnxdn4VBxFB8hkf-MuTybV20fqusT2utIpK8CZtSpsuzWuuMgRChFxeFCzwaZnK2SknGqn8xnfgaruFR4nfOsuTREhR6qvwzEYfV5Wz3ed_1Cna6KJKNlrC_hg2s3sDLv7QF9-D-G3aFl-UdWqYry07-YH6DzE8ZRJiRTdr5oi2bYzZij46LRKdBXoIewkZXv-p52Vz-ZhTjsvO6pHvTax0KOtgkSHRWzDNZGhi37CdZsinxY7IdL8vMF2_hx9npxcn3qGu-EBWJSpvIy7jIWGihh4l2RjmnUsRCWE-Q3MAIoU1SJBTxGT0oikFiKfKx0umY60FikL-Draqu8D0w6eMKbkyakr_kWklLSKDjljtnVdyD_gqPvOiUyX2DjKs8MJRY5YRg7hHMOwR78GXtcb1U5XjCds8jtrbrwOrBpxXkOY0onybRFdbtIifG5XXJaCrf_7_rAbygF3S124ew1cxb_ADbxU1TLuYfw2_5ACN347E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgQQ8jB8boowfRuIFiaxp7MYxb9XYNGBUlVpE3yI7PkOkkUxtMgn-iP3NO7tpYQIh8RZFd0mkL7bv852_A3jlshRFqmVEg8kRQYlVpKw1kRHIdcaNlEMXmk3I8Tibz9VkC95szsIgYig-wwN_GXL5ti5av1XWp7VWEUm-ATd956zutNYmZyBE6MZFAQOPhpmcr5OSserPphNfxTU8SPzeWZZcW4RCV5U_puKwvhzf-78vuw87XRzJRivgH8AWVg_h7m_qgrtw-Q670svyJ1qmK8sOf6F-gcxPGkSZkU3axbItm7dsxK4dGImOgsAEPYSNzr7Wi7L59p1RlMs-1CXdm57rUNLBJkGks2Key9LQ-MG-kCWbEkMm2_Gq0Hy5B5-Pj2aHJ1HXfiEqEpU2kRdykbHQQg8T7YxyTqWIhbCeIrmBEUKbpEgo5jN6UBSDxFLsY6XTMdeDxCB_BNtVXeFjYNJHFtyYNCV_ybWSlpBAxy13zqq4B_01HnnRaZP7FhlneeAoscoJwdwjmHcI9uD1xuN8pcvxD9tdj9jGrgOrBy_XkOc0pnyiRFdYt8ucOJdXJqPJ_MnfXV_A7ZPZp9P89P344z7coZd1ldxPYbtZtPgMbhUXTblcPA-_6BUhMeb6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decentralized+and+Collaborative+Subspace+Pursuit%3A+A+Communication-Efficient+Algorithm+for+Joint+Sparsity+Pattern+Recovery+With+Sensor+Networks&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Li%2C+Gang&rft.au=Wimalajeewa%2C+Thakshila&rft.au=Varshney%2C+Pramod+K.&rft.date=2016-02-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=64&rft.issue=3&rft.spage=556&rft.epage=566&rft_id=info:doi/10.1109%2FTSP.2015.2483482&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2015_2483482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon