Robust machine-learned algorithms for efficient grid operation

Increasing penetration of variable and intermittent renewable energy resources on the energy grid poses a challenge for reliable and efficient grid operation, necessitating the development of algorithms that are robust to this uncertainty. However, standard algorithms incorporating uncertainty for g...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Environmental Data Science Ročník 4
Hlavní autori: Christianson, Nicolas, Yeh, Christopher, Li, Tongxin, Hosseini, Mehdi, Torabi Rad, Mahdi, Golmohammadi, Azarang, Wierman, Adam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge University Press 22.04.2025
Predmet:
ISSN:2634-4602, 2634-4602
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Increasing penetration of variable and intermittent renewable energy resources on the energy grid poses a challenge for reliable and efficient grid operation, necessitating the development of algorithms that are robust to this uncertainty. However, standard algorithms incorporating uncertainty for generation dispatch are computationally intractable when costs are nonconvex, and machine learning-based approaches lack worst-case guarantees on their performance. In this work, we propose a learning-augmented algorithm, R obust ML, that exploits the good average-case performance of a machine-learned algorithm for minimizing dispatch and ramping costs of dispatchable generation resources while providing provable worst-case guarantees on cost. We evaluate the algorithm on a realistic model of a combined cycle cogeneration plant, where it exhibits robustness to distribution shift while enabling improved efficiency as renewables penetration increases.
ISSN:2634-4602
2634-4602
DOI:10.1017/eds.2024.28