Robust machine-learned algorithms for efficient grid operation

Increasing penetration of variable and intermittent renewable energy resources on the energy grid poses a challenge for reliable and efficient grid operation, necessitating the development of algorithms that are robust to this uncertainty. However, standard algorithms incorporating uncertainty for g...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental Data Science Ročník 4
Hlavní autoři: Christianson, Nicolas, Yeh, Christopher, Li, Tongxin, Hosseini, Mehdi, Torabi Rad, Mahdi, Golmohammadi, Azarang, Wierman, Adam
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge University Press 22.04.2025
Témata:
ISSN:2634-4602, 2634-4602
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Increasing penetration of variable and intermittent renewable energy resources on the energy grid poses a challenge for reliable and efficient grid operation, necessitating the development of algorithms that are robust to this uncertainty. However, standard algorithms incorporating uncertainty for generation dispatch are computationally intractable when costs are nonconvex, and machine learning-based approaches lack worst-case guarantees on their performance. In this work, we propose a learning-augmented algorithm, R obust ML, that exploits the good average-case performance of a machine-learned algorithm for minimizing dispatch and ramping costs of dispatchable generation resources while providing provable worst-case guarantees on cost. We evaluate the algorithm on a realistic model of a combined cycle cogeneration plant, where it exhibits robustness to distribution shift while enabling improved efficiency as renewables penetration increases.
ISSN:2634-4602
2634-4602
DOI:10.1017/eds.2024.28