Personalized Federated Learning for Cellular VR: Online Learning and Dynamic Caching
Delivering an immersive experience to virtual reality (VR) users through wireless connectivity offers the freedom to engage from anywhere at any time. Nevertheless, it is challenging to ensure seamless wireless connectivity that delivers real-time and high-quality videos to the VR users. This paper...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on communications Jg. 73; H. 8; S. 6006 - 6022 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0090-6778, 1558-0857 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Delivering an immersive experience to virtual reality (VR) users through wireless connectivity offers the freedom to engage from anywhere at any time. Nevertheless, it is challenging to ensure seamless wireless connectivity that delivers real-time and high-quality videos to the VR users. This paper proposes a field of view (FoV) aware caching for mobile edge computing (MEC)-enabled wireless VR network. In particular, the FoV of each VR user is cached/prefetched at the base stations (BSs) based on the caching strategies tailored to each BS. Specifically, decentralized and personalized federated learning (DP-FL) based caching strategies with guarantees are presented. Considering VR systems composed of multiple VR devices and BSs, a DP-FL caching algorithm is implemented at each BS to personalize content delivery for VR users. The utilized DP-FL algorithm guarantees a probably approximately correct (PAC) bound on the conditional average cache hit. Further, to reduce the cost of communicating gradients, one-bit quantization of the stochastic gradient descent (OBSGD) is proposed, and a convergence guarantee of <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(1/\sqrt {T}) </tex-math></inline-formula> is obtained for the proposed algorithm, where T is the number of iterations. Additionally, to better account for the wireless channel dynamics, the FoVs are grouped into multicast or unicast groups based on the number of requesting VR users. The performance of the proposed DP-FL algorithm is validated through realistic VR head-tracking dataset, and the proposed algorithm is shown to have better performance in terms of average delay and cache hit as compared to baseline algorithms. |
|---|---|
| AbstractList | Delivering an immersive experience to virtual reality (VR) users through wireless connectivity offers the freedom to engage from anywhere at any time. Nevertheless, it is challenging to ensure seamless wireless connectivity that delivers real-time and high-quality videos to the VR users. This paper proposes a field of view (FoV) aware caching for mobile edge computing (MEC)-enabled wireless VR network. In particular, the FoV of each VR user is cached/prefetched at the base stations (BSs) based on the caching strategies tailored to each BS. Specifically, decentralized and personalized federated learning (DP-FL) based caching strategies with guarantees are presented. Considering VR systems composed of multiple VR devices and BSs, a DP-FL caching algorithm is implemented at each BS to personalize content delivery for VR users. The utilized DP-FL algorithm guarantees a probably approximately correct (PAC) bound on the conditional average cache hit. Further, to reduce the cost of communicating gradients, one-bit quantization of the stochastic gradient descent (OBSGD) is proposed, and a convergence guarantee of [Formula Omitted] is obtained for the proposed algorithm, where T is the number of iterations. Additionally, to better account for the wireless channel dynamics, the FoVs are grouped into multicast or unicast groups based on the number of requesting VR users. The performance of the proposed DP-FL algorithm is validated through realistic VR head-tracking dataset, and the proposed algorithm is shown to have better performance in terms of average delay and cache hit as compared to baseline algorithms. Delivering an immersive experience to virtual reality (VR) users through wireless connectivity offers the freedom to engage from anywhere at any time. Nevertheless, it is challenging to ensure seamless wireless connectivity that delivers real-time and high-quality videos to the VR users. This paper proposes a field of view (FoV) aware caching for mobile edge computing (MEC)-enabled wireless VR network. In particular, the FoV of each VR user is cached/prefetched at the base stations (BSs) based on the caching strategies tailored to each BS. Specifically, decentralized and personalized federated learning (DP-FL) based caching strategies with guarantees are presented. Considering VR systems composed of multiple VR devices and BSs, a DP-FL caching algorithm is implemented at each BS to personalize content delivery for VR users. The utilized DP-FL algorithm guarantees a probably approximately correct (PAC) bound on the conditional average cache hit. Further, to reduce the cost of communicating gradients, one-bit quantization of the stochastic gradient descent (OBSGD) is proposed, and a convergence guarantee of <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(1/\sqrt {T}) </tex-math></inline-formula> is obtained for the proposed algorithm, where T is the number of iterations. Additionally, to better account for the wireless channel dynamics, the FoVs are grouped into multicast or unicast groups based on the number of requesting VR users. The performance of the proposed DP-FL algorithm is validated through realistic VR head-tracking dataset, and the proposed algorithm is shown to have better performance in terms of average delay and cache hit as compared to baseline algorithms. |
| Author | Al-Naffouri, Tareq Y. Dahrouj, Hayssam Kouzayha, Nour Tharakan, Krishnendu S. ElSawy, Hesham |
| Author_xml | – sequence: 1 givenname: Krishnendu S. orcidid: 0000-0003-4172-8279 surname: Tharakan fullname: Tharakan, Krishnendu S. email: k.tharakan@queensu.ca organization: School of Computing, Queen's University, Kingston, ON, Canada – sequence: 2 givenname: Hayssam orcidid: 0000-0002-0737-6372 surname: Dahrouj fullname: Dahrouj, Hayssam email: hayssam.dahrouj@gmail.com organization: Department of Electrical Engineering, University of Sharjah, Sharjah, United Arab Emirates – sequence: 3 givenname: Nour orcidid: 0000-0002-0660-2737 surname: Kouzayha fullname: Kouzayha, Nour email: nour.kouzayha@kaust.edu.sa organization: Electrical and Computer Engineering Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia – sequence: 4 givenname: Hesham orcidid: 0000-0003-4201-6126 surname: ElSawy fullname: ElSawy, Hesham email: hesham.elsawy@queensu.ca organization: School of Computing, Queen's University, Kingston, ON, Canada – sequence: 5 givenname: Tareq Y. orcidid: 0000-0001-6955-4720 surname: Al-Naffouri fullname: Al-Naffouri, Tareq Y. email: tareq.alnaffouri@kaust.edu.sa organization: Electrical and Computer Engineering Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia |
| BookMark | eNp9kU1LAzEQhoMoWKt_QDwseN6aj81u4k1Wq0JLRarXJZtMNGWbrcn2UH-9W1tQPHjKEN5nhnnmBB361gNC5wSPCMHyal7OptMRxZSPGGdcFOIADQjnIsWCF4dogLHEaV4U4hidxLjAGGeYsQGaP0GIrVeN-wSTjMFAUF1fTUAF7_xbYtuQlNA060aF5PX5Opn5xnn4CShvktuNV0unk1Lp9_7vFB1Z1UQ4279D9DK-m5cP6WR2_1jeTFJNZd6lPCuwtlYKqUktalnXxtZ1BiY3jBYWtOaEgVR5DpnJwWiQtSJMGkGtJFSyIbrc9V2F9mMNsasW7Tr0y8SK0SznXAqM-xTdpXRoYwxgq1VwSxU2FcHV1l71ba_a2qv29npI_IG061TnWt8F5Zr_0Ysd6gDg16z-EAxz9gXwR4A0 |
| CODEN | IECMBT |
| CitedBy_id | crossref_primary_10_1016_j_displa_2025_103210 crossref_primary_10_3390_app15084201 |
| Cites_doi | 10.1109/JSTSP.2023.3276595 10.1109/TMC.2024.3365951 10.1109/TCOMM.2018.2850303 10.1109/TIP.2022.3228521 10.1145/3097895.3097901 10.1109/JSAC.2021.3119144 10.1109/TIT.2022.3175900 10.1109/TWC.2022.3229134 10.1090/cbms/107 10.1109/TVT.2022.3212868 10.1109/TWC.2021.3073623 10.1109/LWC.2023.3273318 10.1109/TVCG.2018.2794119 10.1109/TCOMM.2021.3132048 10.1109/TWC.2022.3178618 10.1109/LWC.2019.2926726 10.1109/MCOM.001.1900511 10.1109/TCOMM.2018.2835479 10.1145/3083187.3083210 10.1109/JPROC.2019.2894817 10.1109/TSP.2020.2981904 10.1109/MSP.2020.2975749 10.1109/TMLCN.2024.3388975 10.1109/OJCOMS.2024.3429198 10.1145/3083187.3083219 10.1109/JSAC.2023.3345427 10.1007/978-94-009-2438-3 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCOMM.2025.3535878 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0857 |
| EndPage | 6022 |
| ExternalDocumentID | 10_1109_TCOMM_2025_3535878 10857305 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: King Abdullah University of Science and Technology Research Funding (KRF) grantid: ORFS-2023-OFP-5615.2 funderid: 10.13039/501100004052 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c296t-5470cff989c1b8b9bbdfbb4ed6d327fecc513e9a66e4d6edce9ba139d82f91293 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001551608400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0090-6778 |
| IngestDate | Sat Nov 01 15:03:53 EDT 2025 Sat Nov 29 07:37:29 EST 2025 Tue Nov 18 21:55:21 EST 2025 Wed Aug 27 07:40:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-5470cff989c1b8b9bbdfbb4ed6d327fecc513e9a66e4d6edce9ba139d82f91293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4172-8279 0000-0002-0737-6372 0000-0002-0660-2737 0000-0001-6955-4720 0000-0003-4201-6126 |
| PQID | 3246559800 |
| PQPubID | 85472 |
| PageCount | 17 |
| ParticipantIDs | crossref_citationtrail_10_1109_TCOMM_2025_3535878 proquest_journals_3246559800 ieee_primary_10857305 crossref_primary_10_1109_TCOMM_2025_3535878 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on communications |
| PublicationTitleAbbrev | TCOMM |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref14 ref36 ref31 ref33 ref10 Paria (ref11); 34 ref2 ref17 ref16 ref19 McMahan (ref22); 54 ref18 Anava (ref30) Bernstein (ref29); 80 Smith (ref25) Konečný (ref32) 2016 ref24 ref26 ref20 ref21 ref28 Hazan (ref34) ref27 ref8 ref7 ref9 Karimireddy (ref23); 119 ref4 ref3 (ref1) 2023 ref6 ref5 |
| References_xml | – ident: ref17 doi: 10.1109/JSTSP.2023.3276595 – ident: ref27 doi: 10.1109/TMC.2024.3365951 – volume-title: Virtual Reality (VR) Market Size and Share Report year: 2023 ident: ref1 – volume: 119 start-page: 5132 volume-title: Proc. 37th Int. Conf. Mach. Learn. ident: ref23 article-title: SCAFFOLD: Stochastic controlled averaging for federated learning – volume: 80 start-page: 560 volume-title: Proc. 35th Int. Conf. Mach. Learn. ident: ref29 article-title: SignSGD: Compressed optimisation for non-convex problems – ident: ref6 doi: 10.1109/TCOMM.2018.2850303 – start-page: 4424 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref25 article-title: Federated multitask learning – ident: ref13 doi: 10.1109/TIP.2022.3228521 – ident: ref28 doi: 10.1145/3097895.3097901 – ident: ref16 doi: 10.1109/JSAC.2021.3119144 – ident: ref9 doi: 10.1109/TIT.2022.3175900 – ident: ref15 doi: 10.1109/TWC.2022.3229134 – ident: ref33 doi: 10.1090/cbms/107 – ident: ref14 doi: 10.1109/TVT.2022.3212868 – ident: ref5 doi: 10.1109/TWC.2021.3073623 – ident: ref19 doi: 10.1109/LWC.2023.3273318 – ident: ref8 doi: 10.1109/TVCG.2018.2794119 – ident: ref21 doi: 10.1109/TCOMM.2021.3132048 – ident: ref12 doi: 10.1109/TWC.2022.3178618 – ident: ref4 doi: 10.1109/LWC.2019.2926726 – start-page: 172 volume-title: Proc. Conf. Learn. Theory ident: ref30 article-title: Online learning for time series prediction – ident: ref3 doi: 10.1109/MCOM.001.1900511 – volume: 54 start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. ident: ref22 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref10 doi: 10.1109/TCOMM.2018.2835479 – ident: ref36 doi: 10.1145/3083187.3083210 – ident: ref7 doi: 10.1109/JPROC.2019.2894817 – year: 2016 ident: ref32 article-title: Federated learning: Strategies for improving communication efficiency publication-title: arxiv.1610.05492 – ident: ref20 doi: 10.1109/TSP.2020.2981904 – ident: ref24 doi: 10.1109/MSP.2020.2975749 – ident: ref31 doi: 10.1109/TMLCN.2024.3388975 – start-page: 1433 volume-title: Proc. 35th Int. Conf. Mach. Learn. ident: ref34 article-title: Efficient regret minimization in non-convex games – ident: ref18 doi: 10.1109/OJCOMS.2024.3429198 – ident: ref35 doi: 10.1145/3083187.3083219 – volume: 34 start-page: 4435 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref11 article-title: Leadcache: Regret-optimal caching in networks – ident: ref2 doi: 10.1109/JSAC.2023.3345427 – ident: ref26 doi: 10.1007/978-94-009-2438-3 |
| SSID | ssj0004033 |
| Score | 2.4959137 |
| Snippet | Delivering an immersive experience to virtual reality (VR) users through wireless connectivity offers the freedom to engage from anywhere at any time.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6006 |
| SubjectTerms | Algorithms Approximation algorithms Caching Communication Customization Delays Distance learning distributed online learning Edge computing Federated learning federated learning (FL) Field of view (FoV) Mobile computing Multicast algorithms Real time Real-time systems Resource management Servers Stochastic processes Videos Virtual reality virtual reality (VR) Wireless communication |
| Title | Personalized Federated Learning for Cellular VR: Online Learning and Dynamic Caching |
| URI | https://ieeexplore.ieee.org/document/10857305 https://www.proquest.com/docview/3246559800 |
| Volume | 73 |
| WOSCitedRecordID | wos001551608400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0857 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004033 issn: 0090-6778 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5ueNCDPydOp-TgTbqlTds03qQ6vGwOmbJbSZNUhNHJfnjwrzcvTd1AFLyUHpJS3pc232u_9z2ErgjjRNE4NEmONAlK5CtPUKo9rgXYfwmdCGGbTbDhMJlM-MgVq9taGK21FZ_pLpzaf_lqJlfwqawHSnmzIqMGajDGqmKtdREkoc5yEvTsLKkrZAjvjdPHwcDkgkHUpRGNEuiptrEL2bYqP97FdoPp7__z1g7QnmOS-LaC_hBt6fII7W74Cx6j8aim2p9a4T74RhhqqbAzVX3FhrHiVE-noEXFL083uHIeXQ8QpcJ3VdN6nFa6yxZ67t-P0wfPtVHwZMDjpReFjMii4AmXfp7kPM9VkeehVrGiASsMhpFPNRdxrEMVgyqU58IQQ5UEBQc6cIKa5azUpwjHVEjNfHMQJFScJKEvwS2nUBEUM_A28uuwZtJ5jEOri2lmcw3CMwtFBlBkDoo2uv6e8145bPw5ugXB3xhZxb2NOjV8mXsKF5khizEY0BNy9su0c7QDV68UfR3UXM5X-gJty4_l22J-aRfYFwlazTE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB38AvXg54rrZw7epJo2Tdt4k9Vlxd1VpIq3kiapCEsVd9eDv95M2tUFUfBSekhomZc2b9o3bwCOaCyoZlFokxxlExTua08yZjxhJNp_SZNI6ZpNxP1-8vgobutidVcLY4xx4jNzgqfuX75-UWP8VHaKSnm7IvkszPMwDPyqXOu7DJKy2nQSFe1xMqmRoeI0bd30ejYbDPgJ44wn2FVtah9yjVV-vI3dFtNe_efNrcFKzSXJeQX-OsyYcgOWpxwGNyG9nZDtD6NJG50jLLnUpLZVfSKWs5KWGQxQjUoe7s5I5T36PUCWmlxUbetJq1JeNuC-fZm2Ol7dSMFTgYhGHg9jqopCJEL5eZKLPNdFnodGR5oFcWFR5D4zQkaRCXWEulCRS0sNdRIUAgnBFsyVL6XZBhIxqUzs24OkoRY0CX2FfjmF5ljOIJrgT8KaqdplHJtdDDKXbVCROSgyhCKroWjC8dec18pj48_RDQz-1Mgq7k3Ym8CX1c_hMLN0MUILekp3fpl2CIudtNfNulf9611YwitV-r49mBu9jc0-LKj30fPw7cAttk_fbdB4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Federated+Learning+for+Cellular+VR%3A+Online+Learning+and+Dynamic+Caching&rft.jtitle=IEEE+transactions+on+communications&rft.au=Tharakan%2C+Krishnendu+S.&rft.au=Dahrouj%2C+Hayssam&rft.au=Kouzayha%2C+Nour&rft.au=ElSawy%2C+Hesham&rft.date=2025-08-01&rft.pub=IEEE&rft.issn=0090-6778&rft.volume=73&rft.issue=8&rft.spage=6006&rft.epage=6022&rft_id=info:doi/10.1109%2FTCOMM.2025.3535878&rft.externalDocID=10857305 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |