Deep Joint Source-Channel Coding for DNA Image Storage: A Novel Approach With Enhanced Error Resilience and Biological Constraint Optimization
In the current era, DeoxyriboNucleic Acid (DNA) based data storage emerges as an intriguing approach, garnering substantial academic interest and investigation. This paper introduces a novel deep joint source-channel coding (DJSCC) scheme for DNA image storage, designated as DJSCC-DNA. This paradigm...
Saved in:
| Published in: | IEEE transactions on molecular, biological, and multi-scale communications Vol. 9; no. 4; pp. 461 - 471 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2372-2061, 2372-2061 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In the current era, DeoxyriboNucleic Acid (DNA) based data storage emerges as an intriguing approach, garnering substantial academic interest and investigation. This paper introduces a novel deep joint source-channel coding (DJSCC) scheme for DNA image storage, designated as DJSCC-DNA. This paradigm distinguishes itself from conventional DNA storage techniques through three key modifications: 1) it employs advanced deep learning methodologies, employing convolutional neural networks for DNA encoding and decoding processes; 2) it seamlessly integrates DNA polymerase chain reaction (PCR) amplification into the network architecture, thereby augmenting data recovery precision; and 3) it restructures the loss function by targeting biological constraints for optimization. The performance of the proposed model is demonstrated via numerical results from specific channel testing, suggesting that it surpasses conventional deep learning methodologies in terms of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Additionally, the model effectively ensures positive constraints on both homopolymer run-length and GC content. |
|---|---|
| AbstractList | In the current era, DeoxyriboNucleic Acid (DNA) based data storage emerges as an intriguing approach, garnering substantial academic interest and investigation. This paper introduces a novel deep joint source-channel coding (DJSCC) scheme for DNA image storage, designated as DJSCC-DNA. This paradigm distinguishes itself from conventional DNA storage techniques through three key modifications: 1) it employs advanced deep learning methodologies, employing convolutional neural networks for DNA encoding and decoding processes; 2) it seamlessly integrates DNA polymerase chain reaction (PCR) amplification into the network architecture, thereby augmenting data recovery precision; and 3) it restructures the loss function by targeting biological constraints for optimization. The performance of the proposed model is demonstrated via numerical results from specific channel testing, suggesting that it surpasses conventional deep learning methodologies in terms of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Additionally, the model effectively ensures positive constraints on both homopolymer run-length and GC content. |
| Author | Wu, Wenfeng Liu, Qiang Xiang, Luping Yang, Kun |
| Author_xml | – sequence: 1 givenname: Wenfeng surname: Wu fullname: Wu, Wenfeng email: wenfengwu@std.uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Luping orcidid: 0000-0003-1465-6708 surname: Xiang fullname: Xiang, Luping email: luping.xiang@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Qiang orcidid: 0000-0003-1123-6193 surname: Liu fullname: Liu, Qiang email: liuqiang@uestc.edu.cn organization: Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China – sequence: 4 givenname: Kun orcidid: 0000-0002-6782-6689 surname: Yang fullname: Yang, Kun email: kunyang@essex.ac.uk organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K |
| BookMark | eNp9kMlOwzAURS0EElN_ALGwxDrFQ0Z2JS1QxCDRIpaRkzy3RqkdHIMEH8E347QsKhasrmXd89679xDtaqMBoRNKhpSS7Hx-f3mfDxlhfMg5p1GS7aADxhMWMBLT3a33Php03SshhMaE8CQ-QN9jgBbfGqUdnpl3W0GQL4XW0ODc1EovsDQWjx9GeLoSC8AzZ6zXCzzCD-bDu0Zta42olvhFuSWeaA9XUOOJtZ57gk41CvwPFrrGl8o0ZqEq0Q_XnbOiX_vYOrVSX8Ipo4_RnhRNB4NfPULPV5N5fhPcPV5P89FdULEsdkGYxhmXIMu0rGUYhSJKZF1ndSITGqZSCBCyriSjKS0hFhGXpSzDUBIRp14kP0Jnm7n--Ld36Fzx6sNrv7JgGQmjJKUZ9y62cVXWdJ0FWbRWrYT9LCgp-uqLdfVFX33xW72H0j9Qpdw6XJ-3-R893aAKALZ2cRpSnvIfNieVig |
| CODEN | ITMBDH |
| CitedBy_id | crossref_primary_10_1093_bib_bbae463 crossref_primary_10_1038_s43588_025_00793_x crossref_primary_10_1016_j_csbj_2025_06_003 crossref_primary_10_1109_JIOT_2024_3477314 crossref_primary_10_1109_TNB_2025_3544401 |
| Cites_doi | 10.1109/TCCN.2019.2919300 10.1186/gb-2013-14-5-r51 10.1145/2872362.2872397 10.1093/nsr/nwaa007 10.1016/j.procs.2016.05.398 10.1038/nbt.4079 10.1126/science.7725109 10.1109/TCSVT.2017.2734838 10.1002/anie.201411378 10.1016/B978-012119792-6/50124-8 10.1109/RTEICT42901.2018.9012507 10.1109/CVPR.2016.302 10.1073/pnas.2004821117 10.1038/nmat4594 10.1038/s41576-019-0125-3 10.1038/nbt.1716 10.1038/s41587-019-0240-x 10.1109/TWC.2021.3090048 10.1126/science.293.5536.1763c 10.1038/s41587-019-0281-1 10.1038/s41598-019-45832-6 10.1109/ICCV.2015.73 10.1126/science.1226355 10.1093/nsr/nwab028 10.1038/s41587-019-0356-z 10.1007/s13205-021-02882-w 10.1109/VCIP53242.2021.9675366 10.1126/science.aaj2038 10.1038/nature23017 10.1038/nature11875 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TMBMC.2023.3331579 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2372-2061 |
| EndPage | 471 |
| ExternalDocumentID | 10_1109_TMBMC_2023_3331579 10314138 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Sichuan Science and Technology Program grantid: 2023NSFSC1375 funderid: 10.13039/100012542 – fundername: Fundamental Research Funds for the Central Universities grantid: ZYGX2019J001 funderid: 10.13039/501100012226 – fundername: Natural Science Foundation of China grantid: 62301122; 62071101 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF O9- OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c296t-48693fefb8bdf454a57fdd9d7f7148faaeafdcf2181be6a53fbfb44f0a6844ff3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001132984500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2372-2061 |
| IngestDate | Sun Jun 29 12:17:49 EDT 2025 Sat Nov 29 04:52:51 EST 2025 Tue Nov 18 22:42:17 EST 2025 Wed Aug 27 02:35:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c296t-48693fefb8bdf454a57fdd9d7f7148faaeafdcf2181be6a53fbfb44f0a6844ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1465-6708 0000-0002-6782-6689 0000-0003-1123-6193 |
| PQID | 2904578193 |
| PQPubID | 4437211 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TMBMC_2023_3331579 proquest_journals_2904578193 crossref_primary_10_1109_TMBMC_2023_3331579 ieee_primary_10314138 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on molecular, biological, and multi-scale communications |
| PublicationTitleAbbrev | TMBMC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Bar-Lev (ref21) 2021 ref23 ref26 ref25 ref20 Neiman (ref5) 1964; 1 Ballé (ref24) 2016 ref22 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 |
| References_xml | – ident: ref26 doi: 10.1109/TCCN.2019.2919300 – ident: ref31 doi: 10.1186/gb-2013-14-5-r51 – ident: ref2 doi: 10.1145/2872362.2872397 – ident: ref4 doi: 10.1093/nsr/nwaa007 – ident: ref17 doi: 10.1016/j.procs.2016.05.398 – ident: ref12 doi: 10.1038/nbt.4079 – ident: ref6 doi: 10.1126/science.7725109 – ident: ref29 doi: 10.1109/TCSVT.2017.2734838 – ident: ref9 doi: 10.1002/anie.201411378 – ident: ref25 doi: 10.1016/B978-012119792-6/50124-8 – ident: ref28 doi: 10.1109/RTEICT42901.2018.9012507 – ident: ref23 doi: 10.1109/CVPR.2016.302 – ident: ref30 doi: 10.1073/pnas.2004821117 – ident: ref18 doi: 10.1038/nmat4594 – ident: ref3 doi: 10.1038/s41576-019-0125-3 – ident: ref32 doi: 10.1038/nbt.1716 – ident: ref15 doi: 10.1038/s41587-019-0240-x – volume: 1 start-page: 3 issue: 1 year: 1964 ident: ref5 article-title: Some fundamental issues of microminiaturization publication-title: Radiotekhnika – ident: ref27 doi: 10.1109/TWC.2021.3090048 – ident: ref1 doi: 10.1126/science.293.5536.1763c – ident: ref14 doi: 10.1038/s41587-019-0281-1 – year: 2021 ident: ref21 article-title: Deep DNA storage: Scalable and robust DNA storage via coding theory and deep learning publication-title: arXiv:2109.00031 – ident: ref33 doi: 10.1038/s41598-019-45832-6 – ident: ref22 doi: 10.1109/ICCV.2015.73 – ident: ref7 doi: 10.1126/science.1226355 – ident: ref16 doi: 10.1093/nsr/nwab028 – year: 2016 ident: ref24 article-title: End-to-end optimized image compression publication-title: arXiv:1611.01704 – ident: ref13 doi: 10.1038/s41587-019-0356-z – ident: ref20 doi: 10.1007/s13205-021-02882-w – ident: ref19 doi: 10.1109/VCIP53242.2021.9675366 – ident: ref10 doi: 10.1126/science.aaj2038 – ident: ref11 doi: 10.1038/nature23017 – ident: ref8 doi: 10.1038/nature11875 |
| SSID | ssj0001600376 |
| Score | 2.314364 |
| Snippet | In the current era, DeoxyriboNucleic Acid (DNA) based data storage emerges as an intriguing approach, garnering substantial academic interest and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 461 |
| SubjectTerms | Artificial neural networks biological constraints Biological information theory Constraint modelling Data recovery Data storage Decoding Deep learning Deoxyribonucleic acid DNA DNA polymerase DNA storage Encoding Image coding Image enhancement Image storage joint source-channel coding Neural networks Optimization Polymerase chain reaction Signal to noise ratio |
| Title | Deep Joint Source-Channel Coding for DNA Image Storage: A Novel Approach With Enhanced Error Resilience and Biological Constraint Optimization |
| URI | https://ieeexplore.ieee.org/document/10314138 https://www.proquest.com/docview/2904578193 |
| Volume | 9 |
| WOSCitedRecordID | wos001132984500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2372-2061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001600376 issn: 2372-2061 databaseCode: RIE dateStart: 20150101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWg4sCFRRRRNs2BG0o3O07MrbRFgGhBLIJb5MS2WqlNUBv4DL6ZsZNCJQQSJ-fgiSw9Z_zGmTdDyAkyfiT5ofRaijOP6YR5IQ8xVKG-VAmVUmgnFL4JhsPw5UXclWJ1p4XRWrvkM123j-5fvsqSN3tV1rAtCdDphqtkNQh4Idb6vlDhtpYKXwhjmqLxODgfdOu2P3idUtrybbrW0uHjuqn8cMHuXLnY_OeKtshGSSChUyC-TVZ0ukM-elq_wnU2TnN4cNfxnpUNpHoC3cyeToDcFHrDDlxN0YHAA0baOJ5BB4bZO87qlKXF4Xmcj6CfjlxiAPRnM7S71_PxxLkAkKmCon2lBRdsu0_XZCKHW_Q901LUWSVPF_3H7qVXdlrwkrbgucdCLqjRJg5jZZjPpB8YpYQKTIDhkpFSS6MSY-lArLn0qYlNzJhpSh7iYOguqaRZqvcIYMwrqUS7thKMxr5gElmQUdaEi6BVI60FBFFSliG3C51ELhxpisjBFlnYohK2Gjn9snktinD8ObtqgVqaWWBUI4cLqKPyQ51HbYGcNkBaRPd_MTsg6_btRQrLIankszd9RNaS93w8nx27PfgJA0PcFg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swELY2mLS9ANOY6CjjHnibUtraceK9lVIEo82m0Wm8RU5sq5VKgtrQn7HfzJ2TbkjTJvHkPPgUS59z_s65u4-xE2T8SPJjHfSMFIGwuQhiGWOowkNtcq61sr5QeBwlSXx7q741xeq-FsZa65PPbIce_b98U-YPdFV2SpIE6HTjl2ybpLPCulzrz5WKpG4qclMa01Wn08nZZNghhfAO57wXUsLWk-PH66n85YT9yXKx-8w17bGdhkLCoMb8LXthi3fs17m19_ClnBcV3PgL-YAKBwq7gGFJ5xMgO4XzZABXd-hC4AZjbRw_wwCSco2zBk1zcfg5r2YwKmY-NQBGyyXafber-cI7AdCFgVrAkuAFEvz0MhMVfEXvc9eUde6zHxej6fAyaLQWgryvZBWIWCrurMvizDgRCh1GzhhlIhdhwOS0ttqZ3BEhyKzUIXeZy4RwXS1jHBx_z7aKsrAHDDDq1VyjXd8owbNQCY08yBkykSrqtVhvA0GaN43IaaGL1AckXZV62FKCLW1ga7FPv23u6zYc_529T0A9mVlj1GLtDdRp86mu0r5CVhshMeIf_mF2zF5fTifjdHyVXB-yN_SmOqGlzbaq5YM9Yq_ydTVfLT_6_fgIo4HfYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Joint+Source-Channel+Coding+for+DNA+Image+Storage%3A+A+Novel+Approach+With+Enhanced+Error+Resilience+and+Biological+Constraint+Optimization&rft.jtitle=IEEE+transactions+on+molecular%2C+biological%2C+and+multi-scale+communications&rft.au=Wu%2C+Wenfeng&rft.au=Xiang%2C+Luping&rft.au=Liu%2C+Qiang&rft.au=Yang%2C+Kun&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2372-2061&rft.volume=9&rft.issue=4&rft.spage=461&rft_id=info:doi/10.1109%2FTMBMC.2023.3331579&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2372-2061&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2372-2061&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2372-2061&client=summon |