Deep Joint Source-Channel Coding for DNA Image Storage: A Novel Approach With Enhanced Error Resilience and Biological Constraint Optimization

In the current era, DeoxyriboNucleic Acid (DNA) based data storage emerges as an intriguing approach, garnering substantial academic interest and investigation. This paper introduces a novel deep joint source-channel coding (DJSCC) scheme for DNA image storage, designated as DJSCC-DNA. This paradigm...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on molecular, biological, and multi-scale communications Vol. 9; no. 4; pp. 461 - 471
Main Authors: Wu, Wenfeng, Xiang, Luping, Liu, Qiang, Yang, Kun
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2372-2061, 2372-2061
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the current era, DeoxyriboNucleic Acid (DNA) based data storage emerges as an intriguing approach, garnering substantial academic interest and investigation. This paper introduces a novel deep joint source-channel coding (DJSCC) scheme for DNA image storage, designated as DJSCC-DNA. This paradigm distinguishes itself from conventional DNA storage techniques through three key modifications: 1) it employs advanced deep learning methodologies, employing convolutional neural networks for DNA encoding and decoding processes; 2) it seamlessly integrates DNA polymerase chain reaction (PCR) amplification into the network architecture, thereby augmenting data recovery precision; and 3) it restructures the loss function by targeting biological constraints for optimization. The performance of the proposed model is demonstrated via numerical results from specific channel testing, suggesting that it surpasses conventional deep learning methodologies in terms of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Additionally, the model effectively ensures positive constraints on both homopolymer run-length and GC content.
AbstractList In the current era, DeoxyriboNucleic Acid (DNA) based data storage emerges as an intriguing approach, garnering substantial academic interest and investigation. This paper introduces a novel deep joint source-channel coding (DJSCC) scheme for DNA image storage, designated as DJSCC-DNA. This paradigm distinguishes itself from conventional DNA storage techniques through three key modifications: 1) it employs advanced deep learning methodologies, employing convolutional neural networks for DNA encoding and decoding processes; 2) it seamlessly integrates DNA polymerase chain reaction (PCR) amplification into the network architecture, thereby augmenting data recovery precision; and 3) it restructures the loss function by targeting biological constraints for optimization. The performance of the proposed model is demonstrated via numerical results from specific channel testing, suggesting that it surpasses conventional deep learning methodologies in terms of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Additionally, the model effectively ensures positive constraints on both homopolymer run-length and GC content.
Author Wu, Wenfeng
Liu, Qiang
Xiang, Luping
Yang, Kun
Author_xml – sequence: 1
  givenname: Wenfeng
  surname: Wu
  fullname: Wu, Wenfeng
  email: wenfengwu@std.uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Luping
  orcidid: 0000-0003-1465-6708
  surname: Xiang
  fullname: Xiang, Luping
  email: luping.xiang@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Qiang
  orcidid: 0000-0003-1123-6193
  surname: Liu
  fullname: Liu, Qiang
  email: liuqiang@uestc.edu.cn
  organization: Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
– sequence: 4
  givenname: Kun
  orcidid: 0000-0002-6782-6689
  surname: Yang
  fullname: Yang, Kun
  email: kunyang@essex.ac.uk
  organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K
BookMark eNp9kMlOwzAURS0EElN_ALGwxDrFQ0Z2JS1QxCDRIpaRkzy3RqkdHIMEH8E347QsKhasrmXd89679xDtaqMBoRNKhpSS7Hx-f3mfDxlhfMg5p1GS7aADxhMWMBLT3a33Php03SshhMaE8CQ-QN9jgBbfGqUdnpl3W0GQL4XW0ODc1EovsDQWjx9GeLoSC8AzZ6zXCzzCD-bDu0Zta42olvhFuSWeaA9XUOOJtZ57gk41CvwPFrrGl8o0ZqEq0Q_XnbOiX_vYOrVSX8Ipo4_RnhRNB4NfPULPV5N5fhPcPV5P89FdULEsdkGYxhmXIMu0rGUYhSJKZF1ndSITGqZSCBCyriSjKS0hFhGXpSzDUBIRp14kP0Jnm7n--Ld36Fzx6sNrv7JgGQmjJKUZ9y62cVXWdJ0FWbRWrYT9LCgp-uqLdfVFX33xW72H0j9Qpdw6XJ-3-R893aAKALZ2cRpSnvIfNieVig
CODEN ITMBDH
CitedBy_id crossref_primary_10_1093_bib_bbae463
crossref_primary_10_1038_s43588_025_00793_x
crossref_primary_10_1016_j_csbj_2025_06_003
crossref_primary_10_1109_JIOT_2024_3477314
crossref_primary_10_1109_TNB_2025_3544401
Cites_doi 10.1109/TCCN.2019.2919300
10.1186/gb-2013-14-5-r51
10.1145/2872362.2872397
10.1093/nsr/nwaa007
10.1016/j.procs.2016.05.398
10.1038/nbt.4079
10.1126/science.7725109
10.1109/TCSVT.2017.2734838
10.1002/anie.201411378
10.1016/B978-012119792-6/50124-8
10.1109/RTEICT42901.2018.9012507
10.1109/CVPR.2016.302
10.1073/pnas.2004821117
10.1038/nmat4594
10.1038/s41576-019-0125-3
10.1038/nbt.1716
10.1038/s41587-019-0240-x
10.1109/TWC.2021.3090048
10.1126/science.293.5536.1763c
10.1038/s41587-019-0281-1
10.1038/s41598-019-45832-6
10.1109/ICCV.2015.73
10.1126/science.1226355
10.1093/nsr/nwab028
10.1038/s41587-019-0356-z
10.1007/s13205-021-02882-w
10.1109/VCIP53242.2021.9675366
10.1126/science.aaj2038
10.1038/nature23017
10.1038/nature11875
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TMBMC.2023.3331579
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2372-2061
EndPage 471
ExternalDocumentID 10_1109_TMBMC_2023_3331579
10314138
Genre orig-research
GrantInformation_xml – fundername: Sichuan Science and Technology Program
  grantid: 2023NSFSC1375
  funderid: 10.13039/100012542
– fundername: Fundamental Research Funds for the Central Universities
  grantid: ZYGX2019J001
  funderid: 10.13039/501100012226
– fundername: Natural Science Foundation of China
  grantid: 62301122; 62071101
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IES
IFIPE
IPLJI
JAVBF
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c296t-48693fefb8bdf454a57fdd9d7f7148faaeafdcf2181be6a53fbfb44f0a6844ff3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001132984500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2372-2061
IngestDate Sun Jun 29 12:17:49 EDT 2025
Sat Nov 29 04:52:51 EST 2025
Tue Nov 18 22:42:17 EST 2025
Wed Aug 27 02:35:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-48693fefb8bdf454a57fdd9d7f7148faaeafdcf2181be6a53fbfb44f0a6844ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1465-6708
0000-0002-6782-6689
0000-0003-1123-6193
PQID 2904578193
PQPubID 4437211
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TMBMC_2023_3331579
proquest_journals_2904578193
crossref_primary_10_1109_TMBMC_2023_3331579
ieee_primary_10314138
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on molecular, biological, and multi-scale communications
PublicationTitleAbbrev TMBMC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Bar-Lev (ref21) 2021
ref23
ref26
ref25
ref20
Neiman (ref5) 1964; 1
Ballé (ref24) 2016
ref22
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref26
  doi: 10.1109/TCCN.2019.2919300
– ident: ref31
  doi: 10.1186/gb-2013-14-5-r51
– ident: ref2
  doi: 10.1145/2872362.2872397
– ident: ref4
  doi: 10.1093/nsr/nwaa007
– ident: ref17
  doi: 10.1016/j.procs.2016.05.398
– ident: ref12
  doi: 10.1038/nbt.4079
– ident: ref6
  doi: 10.1126/science.7725109
– ident: ref29
  doi: 10.1109/TCSVT.2017.2734838
– ident: ref9
  doi: 10.1002/anie.201411378
– ident: ref25
  doi: 10.1016/B978-012119792-6/50124-8
– ident: ref28
  doi: 10.1109/RTEICT42901.2018.9012507
– ident: ref23
  doi: 10.1109/CVPR.2016.302
– ident: ref30
  doi: 10.1073/pnas.2004821117
– ident: ref18
  doi: 10.1038/nmat4594
– ident: ref3
  doi: 10.1038/s41576-019-0125-3
– ident: ref32
  doi: 10.1038/nbt.1716
– ident: ref15
  doi: 10.1038/s41587-019-0240-x
– volume: 1
  start-page: 3
  issue: 1
  year: 1964
  ident: ref5
  article-title: Some fundamental issues of microminiaturization
  publication-title: Radiotekhnika
– ident: ref27
  doi: 10.1109/TWC.2021.3090048
– ident: ref1
  doi: 10.1126/science.293.5536.1763c
– ident: ref14
  doi: 10.1038/s41587-019-0281-1
– year: 2021
  ident: ref21
  article-title: Deep DNA storage: Scalable and robust DNA storage via coding theory and deep learning
  publication-title: arXiv:2109.00031
– ident: ref33
  doi: 10.1038/s41598-019-45832-6
– ident: ref22
  doi: 10.1109/ICCV.2015.73
– ident: ref7
  doi: 10.1126/science.1226355
– ident: ref16
  doi: 10.1093/nsr/nwab028
– year: 2016
  ident: ref24
  article-title: End-to-end optimized image compression
  publication-title: arXiv:1611.01704
– ident: ref13
  doi: 10.1038/s41587-019-0356-z
– ident: ref20
  doi: 10.1007/s13205-021-02882-w
– ident: ref19
  doi: 10.1109/VCIP53242.2021.9675366
– ident: ref10
  doi: 10.1126/science.aaj2038
– ident: ref11
  doi: 10.1038/nature23017
– ident: ref8
  doi: 10.1038/nature11875
SSID ssj0001600376
Score 2.314364
Snippet In the current era, DeoxyriboNucleic Acid (DNA) based data storage emerges as an intriguing approach, garnering substantial academic interest and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 461
SubjectTerms Artificial neural networks
biological constraints
Biological information theory
Constraint modelling
Data recovery
Data storage
Decoding
Deep learning
Deoxyribonucleic acid
DNA
DNA polymerase
DNA storage
Encoding
Image coding
Image enhancement
Image storage
joint source-channel coding
Neural networks
Optimization
Polymerase chain reaction
Signal to noise ratio
Title Deep Joint Source-Channel Coding for DNA Image Storage: A Novel Approach With Enhanced Error Resilience and Biological Constraint Optimization
URI https://ieeexplore.ieee.org/document/10314138
https://www.proquest.com/docview/2904578193
Volume 9
WOSCitedRecordID wos001132984500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2372-2061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001600376
  issn: 2372-2061
  databaseCode: RIE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWg4sCFRRRRNs2BG0o3O07MrbRFgGhBLIJb5MS2WqlNUBv4DL6ZsZNCJQQSJ-fgiSw9Z_zGmTdDyAkyfiT5ofRaijOP6YR5IQ8xVKG-VAmVUmgnFL4JhsPw5UXclWJ1p4XRWrvkM123j-5fvsqSN3tV1rAtCdDphqtkNQh4Idb6vlDhtpYKXwhjmqLxODgfdOu2P3idUtrybbrW0uHjuqn8cMHuXLnY_OeKtshGSSChUyC-TVZ0ukM-elq_wnU2TnN4cNfxnpUNpHoC3cyeToDcFHrDDlxN0YHAA0baOJ5BB4bZO87qlKXF4Xmcj6CfjlxiAPRnM7S71_PxxLkAkKmCon2lBRdsu0_XZCKHW_Q901LUWSVPF_3H7qVXdlrwkrbgucdCLqjRJg5jZZjPpB8YpYQKTIDhkpFSS6MSY-lArLn0qYlNzJhpSh7iYOguqaRZqvcIYMwrqUS7thKMxr5gElmQUdaEi6BVI60FBFFSliG3C51ELhxpisjBFlnYohK2Gjn9snktinD8ObtqgVqaWWBUI4cLqKPyQ51HbYGcNkBaRPd_MTsg6_btRQrLIankszd9RNaS93w8nx27PfgJA0PcFg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swELY2mLS9ANOY6CjjHnibUtraceK9lVIEo82m0Wm8RU5sq5VKgtrQn7HfzJ2TbkjTJvHkPPgUS59z_s65u4-xE2T8SPJjHfSMFIGwuQhiGWOowkNtcq61sr5QeBwlSXx7q741xeq-FsZa65PPbIce_b98U-YPdFV2SpIE6HTjl2ybpLPCulzrz5WKpG4qclMa01Wn08nZZNghhfAO57wXUsLWk-PH66n85YT9yXKx-8w17bGdhkLCoMb8LXthi3fs17m19_ClnBcV3PgL-YAKBwq7gGFJ5xMgO4XzZABXd-hC4AZjbRw_wwCSco2zBk1zcfg5r2YwKmY-NQBGyyXafber-cI7AdCFgVrAkuAFEvz0MhMVfEXvc9eUde6zHxej6fAyaLQWgryvZBWIWCrurMvizDgRCh1GzhhlIhdhwOS0ttqZ3BEhyKzUIXeZy4RwXS1jHBx_z7aKsrAHDDDq1VyjXd8owbNQCY08yBkykSrqtVhvA0GaN43IaaGL1AckXZV62FKCLW1ga7FPv23u6zYc_529T0A9mVlj1GLtDdRp86mu0r5CVhshMeIf_mF2zF5fTifjdHyVXB-yN_SmOqGlzbaq5YM9Yq_ydTVfLT_6_fgIo4HfYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Joint+Source-Channel+Coding+for+DNA+Image+Storage%3A+A+Novel+Approach+With+Enhanced+Error+Resilience+and+Biological+Constraint+Optimization&rft.jtitle=IEEE+transactions+on+molecular%2C+biological%2C+and+multi-scale+communications&rft.au=Wu%2C+Wenfeng&rft.au=Xiang%2C+Luping&rft.au=Liu%2C+Qiang&rft.au=Yang%2C+Kun&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2372-2061&rft.volume=9&rft.issue=4&rft.spage=461&rft_id=info:doi/10.1109%2FTMBMC.2023.3331579&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2372-2061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2372-2061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2372-2061&client=summon