Toward Robust LiDAR-Camera Fusion in BEV Space via Mutual Deformable Attention and Temporal Aggregation

LiDAR and camera are two critical sensors that can provide complementary information for accurate 3D object detection. Most works are devoted to improving the detection performance of fusion models on the clean and well-collected datasets. However, the collected point clouds and images in real scena...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems for video technology Ročník 34; číslo 7; s. 5753 - 5764
Hlavní autoři: Wang, Jian, Li, Fan, An, Yi, Zhang, Xuchong, Sun, Hongbin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1051-8215, 1558-2205
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract LiDAR and camera are two critical sensors that can provide complementary information for accurate 3D object detection. Most works are devoted to improving the detection performance of fusion models on the clean and well-collected datasets. However, the collected point clouds and images in real scenarios may be corrupted to various degrees due to potential sensor malfunctions, which greatly affects the robustness of the fusion model and poses a threat to safe deployment. In this paper, we first analyze the shortcomings of most fusion detectors, which rely mainly on the LiDAR branch, and the potential of the bird's eye-view (BEV) paradigm in dealing with partial sensor failures. Based on that, we present a robust LiDAR-camera fusion pipeline in unified BEV space with two novel designs under four typical LiDAR-camera malfunction cases. Specifically, a mutual deformable attention is proposed to dynamically model the spatial feature relationship and reduce the interference caused by the corrupted modality, and a temporal aggregation module is devised to fully utilize the rich information in the temporal domain. Together with the decoupled feature extraction for each modality and holistic BEV space fusion, the proposed detector, termed RobBEV, can work stably regardless of single-modality data corruption. Extensive experiments on the large-scale nuScenes dataset under robust settings demonstrate the effectiveness of our approach.
AbstractList LiDAR and camera are two critical sensors that can provide complementary information for accurate 3D object detection. Most works are devoted to improving the detection performance of fusion models on the clean and well-collected datasets. However, the collected point clouds and images in real scenarios may be corrupted to various degrees due to potential sensor malfunctions, which greatly affects the robustness of the fusion model and poses a threat to safe deployment. In this paper, we first analyze the shortcomings of most fusion detectors, which rely mainly on the LiDAR branch, and the potential of the bird’s eye-view (BEV) paradigm in dealing with partial sensor failures. Based on that, we present a robust LiDAR-camera fusion pipeline in unified BEV space with two novel designs under four typical LiDAR-camera malfunction cases. Specifically, a mutual deformable attention is proposed to dynamically model the spatial feature relationship and reduce the interference caused by the corrupted modality, and a temporal aggregation module is devised to fully utilize the rich information in the temporal domain. Together with the decoupled feature extraction for each modality and holistic BEV space fusion, the proposed detector, termed RobBEV, can work stably regardless of single-modality data corruption. Extensive experiments on the large-scale nuScenes dataset under robust settings demonstrate the effectiveness of our approach.
Author Li, Fan
Wang, Jian
Sun, Hongbin
Zhang, Xuchong
An, Yi
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0002-4091-2165
  surname: Wang
  fullname: Wang, Jian
  email: wj851329121@stu.xjtu.edu.cn
  organization: Shaanxi Key Laboratory of Deep Space Exploration Intelligent Information Technology, School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Fan
  orcidid: 0000-0002-7566-1634
  surname: Li
  fullname: Li, Fan
  email: lifan@mail.xjtu.edu.cn
  organization: Shaanxi Key Laboratory of Deep Space Exploration Intelligent Information Technology, School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 3
  givenname: Yi
  surname: An
  fullname: An, Yi
  email: an_yi31@stu.xjtu.edu.cn
  organization: Shaanxi Key Laboratory of Deep Space Exploration Intelligent Information Technology, School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 4
  givenname: Xuchong
  orcidid: 0000-0003-2772-2700
  surname: Zhang
  fullname: Zhang, Xuchong
  email: zhangxc0329@mail.xjtu.edu.cn
  organization: College of Artificial Intelligence, Xi'an Jiaotong University, Xi'an, China
– sequence: 5
  givenname: Hongbin
  orcidid: 0000-0003-2153-2906
  surname: Sun
  fullname: Sun, Hongbin
  email: hsun@mail.xjtu.edu.cn
  organization: College of Artificial Intelligence, Xi'an Jiaotong University, Xi'an, China
BookMark eNp9kE1PwkAQhjcGEwH9A8bDJp6L-9luj8iHmmBMoHJtljJLSqCL263Gf-8WOBgPzmUmmfedN_P0UKeyFSB0S8mAUpI-ZKPFMhswwsSA8ziUuEBdKqWKGCOyE2YiaaQYlVeoV9dbQqhQIumiTWa_tFvjuV01tcezcjycRyO9B6fxtKlLW-Gywo-TJV4cdAH4s9T4tfGN3uExGOv2erUDPPQeKt-KdbXGGewP1gXFcLNxsNHt4hpdGr2r4ebc--h9OslGz9Hs7ellNJxFBUtjH3GVKENJnIpU85U2AKvEMLWOQ5cmjjktwkPKKGGoTCEhUjJqFPBY8DUzjPfR_enuwdmPBmqfb23jqhCZc5JIwQIbElTspCqcrWsHJj-4cq_dd05J3gLNj0DzFmh-BhpM6o-pKP3xOe90ufvfeneylgDwK0twJRTnP-ythOw
CODEN ITCTEM
CitedBy_id crossref_primary_10_1111_exsy_13615
crossref_primary_10_4018_JOEUC_344452
crossref_primary_10_4018_JOEUC_355709
crossref_primary_10_1109_TCSVT_2025_3527235
crossref_primary_10_4018_JOEUC_349987
crossref_primary_10_1109_TCSVT_2024_3486019
crossref_primary_10_4018_JOEUC_348654
crossref_primary_10_1111_exsy_13650
crossref_primary_10_4018_JOEUC_346230
crossref_primary_10_1109_TIP_2025_3526056
crossref_primary_10_1016_j_displa_2024_102857
crossref_primary_10_3389_fpsyg_2024_1459446
crossref_primary_10_1109_TCSVT_2024_3523049
crossref_primary_10_4018_JOEUC_350224
crossref_primary_10_1109_TCSVT_2025_3556711
crossref_primary_10_1109_JSTARS_2025_3540925
crossref_primary_10_4018_JOEUC_347914
crossref_primary_10_1109_TCSVT_2025_3554182
crossref_primary_10_1109_TGRS_2024_3476089
crossref_primary_10_1364_AO_565799
crossref_primary_10_3390_s24206766
crossref_primary_10_4018_JOEUC_354707
crossref_primary_10_1109_JIOT_2024_3481236
crossref_primary_10_1038_s41598_024_76915_8
crossref_primary_10_1109_TCSVT_2025_3525725
crossref_primary_10_4018_JOEUC_355765
crossref_primary_10_3389_fpls_2024_1452502
crossref_primary_10_3389_fenvs_2024_1437644
crossref_primary_10_1016_j_imavis_2025_105484
crossref_primary_10_4018_JOEUC_351242
crossref_primary_10_4018_JOEUC_345929
crossref_primary_10_3389_fpsyt_2024_1418969
crossref_primary_10_4018_JOEUC_345925
crossref_primary_10_1109_TITS_2024_3431671
crossref_primary_10_3389_fenrg_2024_1364445
crossref_primary_10_4018_JOEUC_345245
crossref_primary_10_3390_rs16162888
crossref_primary_10_3389_fnut_2024_1454466
crossref_primary_10_1109_TCSVT_2024_3492289
crossref_primary_10_1109_TCSVT_2025_3557950
crossref_primary_10_1109_TCYB_2024_3455760
crossref_primary_10_1109_JSEN_2024_3493952
crossref_primary_10_4018_JOEUC_347217
crossref_primary_10_3390_s24237702
crossref_primary_10_3389_fnins_2024_1380886
crossref_primary_10_3390_wevj16060306
crossref_primary_10_4018_JOEUC_354413
crossref_primary_10_4018_JOEUC_358939
crossref_primary_10_4018_JOEUC_357249
crossref_primary_10_3390_rs16173184
crossref_primary_10_3389_fenrg_2024_1418907
crossref_primary_10_3390_electronics13153071
crossref_primary_10_1016_j_heliyon_2024_e37229
crossref_primary_10_4018_JOEUC_370005
crossref_primary_10_3390_jimaging11090319
crossref_primary_10_4018_JOEUC_350096
crossref_primary_10_4018_JOEUC_358454
Cites_doi 10.1109/CVPRW53098.2021.00023
10.1109/CVPR52688.2022.00116
10.1109/CVPR.2019.00752
10.1109/ITSC48978.2021.9564951
10.1109/tcsvt.2023.3296583
10.1109/CVPR46437.2021.01162
10.1007/978-3-030-58583-9_43
10.1007/978-3-031-20077-9_1
10.1007/978-3-030-58568-6_12
10.1109/cvpr52729.2023.02069
10.48550/ARXIV.1706.03762
10.1109/CVPR52729.2023.02073
10.1109/CVPR52729.2023.01712
10.3390/s18103337
10.1109/CVPR42600.2020.00466
10.1109/TCSVT.2023.3260115
10.1109/TCSVT.2023.3248656
10.1007/978-3-030-58452-8_13
10.1109/TIV.2016.2578706
10.1109/CVPR52688.2022.01838
10.1109/TCSVT.2021.3082763
10.1109/CVPR42600.2020.01105
10.1007/978-3-030-01270-0_39
10.1609/aaai.v37i2.25233
10.1109/CVPR46437.2021.01161
10.1109/TCSVT.2023.3237579
10.1109/ICCV51070.2023.00637
10.1109/CVPR42600.2020.01164
10.1109/CVPR.2018.00472
10.1109/CVPRW59228.2023.00321
10.1109/ICRA48891.2023.10160968
10.1109/CVPRW.2019.00158
10.1109/CVPR52688.2022.01667
10.1109/IROS.2018.8594049
10.1109/ICRA.2019.8794195
10.1109/CVPR52688.2022.01588
10.1109/CVPR52729.2023.01710
10.1109/TCSVT.2022.3197212
10.24963/ijcai.2022/116
10.1109/CVPR.2019.00086
10.1109/tcsvt.2023.3268849
10.1109/CVPR.2019.01298
10.1109/CVPR.2018.00102
10.1109/CVPR.2017.691
10.1109/TCSVT.2021.3100848
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2024.3366664
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 5764
ExternalDocumentID 10_1109_TCSVT_2024_3366664
10438483
Genre orig-research
GrantInformation_xml – fundername: Key Research and Development Project in Shaanxi Province
  grantid: 2023-ZDLNY-65
– fundername: National Key Research and Development Program of China
  grantid: 2022ZD0115803
– fundername: Natural Science Basic Research Plan in Shaanxi Province of China
  grantid: 2023-JC-JQ-51
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-3878f106949a3bafeeb7f28d6eb75f6631c2208f84f159e705521f8e3643d2f23
IEDL.DBID RIE
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001263608800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Mon Jun 30 10:23:14 EDT 2025
Sat Nov 29 01:44:27 EST 2025
Tue Nov 18 22:38:11 EST 2025
Wed Aug 27 01:58:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-3878f106949a3bafeeb7f28d6eb75f6631c2208f84f159e705521f8e3643d2f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2772-2700
0000-0003-2153-2906
0000-0002-4091-2165
0000-0002-7566-1634
PQID 3075426660
PQPubID 85433
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2024_3366664
proquest_journals_3075426660
crossref_primary_10_1109_TCSVT_2024_3366664
ieee_primary_10438483
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
Mao (ref18) 2022
ref58
ref52
ref55
ref10
ref54
Zhu (ref59) 2020
ref17
ref16
ref19
Xie (ref14) 2023
ref50
Contributors (ref60) 2020
ref46
ref45
ref42
ref41
Qi (ref49)
ref44
ref43
Huang (ref53) 2022
Xie (ref15)
ref8
ref7
ref4
ref3
ref6
ref40
ref35
ref34
Zhu (ref47) 2019
ref37
ref36
ref31
ref30
Wang (ref56); 164
ref33
Qi (ref48)
ref32
ref2
ref1
ref39
ref38
Sun (ref11)
Liang (ref9); 35
Ma (ref5) 2022
ref24
ref23
ref26
ref25
ref20
Huang (ref51) 2021
ref22
ref21
ref28
ref27
Yin (ref29)
References_xml – ident: ref4
  doi: 10.1109/CVPRW53098.2021.00023
– ident: ref31
  doi: 10.1109/CVPR52688.2022.00116
– ident: ref35
  doi: 10.1109/CVPR.2019.00752
– year: 2022
  ident: ref5
  article-title: Vision-centric BEV perception: A survey
  publication-title: arXiv:2208.02797
– volume-title: Proc. Int. Conf. Learn. Represent. Workshop Scene Represent. Auton. Driving
  ident: ref15
  article-title: Benchmarking bird’s eye view detection robustness to real-world corruptions
– ident: ref28
  doi: 10.1109/ITSC48978.2021.9564951
– ident: ref3
  doi: 10.1109/tcsvt.2023.3296583
– ident: ref23
  doi: 10.1109/CVPR46437.2021.01162
– ident: ref33
  doi: 10.1007/978-3-030-58583-9_43
– year: 2023
  ident: ref14
  article-title: On the adversarial robustness of camera-based 3D object detection
  publication-title: arXiv:2301.10766
– ident: ref54
  doi: 10.1007/978-3-031-20077-9_1
– ident: ref50
  doi: 10.1007/978-3-030-58568-6_12
– ident: ref16
  doi: 10.1109/cvpr52729.2023.02069
– ident: ref57
  doi: 10.48550/ARXIV.1706.03762
– ident: ref26
  doi: 10.1109/CVPR52729.2023.02073
– ident: ref6
  doi: 10.1109/CVPR52729.2023.01712
– start-page: 652
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
  ident: ref48
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
– ident: ref42
  doi: 10.3390/s18103337
– ident: ref27
  doi: 10.1109/CVPR42600.2020.00466
– ident: ref20
  doi: 10.1109/TCSVT.2023.3260115
– ident: ref45
  doi: 10.1109/TCSVT.2023.3248656
– ident: ref58
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref1
  doi: 10.1109/TIV.2016.2578706
– volume: 35
  start-page: 10421
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref9
  article-title: BEVFusion: A simple and robust LiDAR-camera fusion framework
– ident: ref40
  doi: 10.1109/CVPR52688.2022.01838
– ident: ref19
  doi: 10.1109/TCSVT.2021.3082763
– ident: ref39
  doi: 10.1109/CVPR42600.2020.01105
– ident: ref34
  doi: 10.1007/978-3-030-01270-0_39
– ident: ref52
  doi: 10.1609/aaai.v37i2.25233
– ident: ref44
  doi: 10.1109/CVPR46437.2021.01161
– year: 2022
  ident: ref53
  article-title: BEVDet4D: Exploit temporal cues in multi-camera 3D object detection
  publication-title: arXiv:2203.17054
– year: 2022
  ident: ref18
  article-title: 3D object detection for autonomous driving: A comprehensive survey
  publication-title: arXiv:2206.09474
– year: 2020
  ident: ref59
  article-title: Deformable DETR: Deformable transformers for end-to-end object detection
  publication-title: arXiv:2010.04159
– volume-title: MMDetection3D: OpenMMLab Next-generation Platform for General 3D Object Detection
  year: 2020
  ident: ref60
– ident: ref2
  doi: 10.1109/TCSVT.2023.3237579
– year: 2021
  ident: ref51
  article-title: BEVDet: High-performance multi-camera 3D object detection in bird-eye-view
  publication-title: arXiv:2112.11790
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref49
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
– ident: ref7
  doi: 10.1109/ICCV51070.2023.00637
– ident: ref8
  doi: 10.1109/CVPR42600.2020.01164
– start-page: 877
  volume-title: Proc. 29th USENIX Secur. Symp. (USENIX Secur.)
  ident: ref11
  article-title: Towards robust LiDAR-based perception in autonomous driving: General black-box adversarial sensor attack and countermeasures
– volume: 164
  start-page: 180
  volume-title: Proc. Conf. Robot Learn.
  ident: ref56
  article-title: DETR3D: 3D object detection from multi-view images via 3D-to-2D queries
– ident: ref41
  doi: 10.1109/CVPR.2018.00472
– ident: ref13
  doi: 10.1109/CVPRW59228.2023.00321
– ident: ref10
  doi: 10.1109/ICRA48891.2023.10160968
– ident: ref30
  doi: 10.1109/CVPRW.2019.00158
– ident: ref25
  doi: 10.1109/CVPR52688.2022.01667
– ident: ref37
  doi: 10.1109/IROS.2018.8594049
– ident: ref22
  doi: 10.1109/ICRA.2019.8794195
– ident: ref12
  doi: 10.1109/CVPR52688.2022.01588
– ident: ref55
  doi: 10.1109/CVPR52729.2023.01710
– ident: ref17
  doi: 10.1109/TCSVT.2022.3197212
– ident: ref24
  doi: 10.24963/ijcai.2022/116
– ident: ref38
  doi: 10.1109/CVPR.2019.00086
– ident: ref46
  doi: 10.1109/tcsvt.2023.3268849
– ident: ref43
  doi: 10.1109/CVPR.2019.01298
– start-page: 16494
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref29
  article-title: Multimodal virtual point 3D detection
– ident: ref32
  doi: 10.1109/CVPR.2018.00102
– ident: ref36
  doi: 10.1109/CVPR.2017.691
– year: 2019
  ident: ref47
  article-title: Class-balanced grouping and sampling for point cloud 3D object detection
  publication-title: arXiv:1908.09492
– ident: ref21
  doi: 10.1109/TCSVT.2021.3100848
SSID ssj0014847
Score 2.6529272
Snippet LiDAR and camera are two critical sensors that can provide complementary information for accurate 3D object detection. Most works are devoted to improving the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5753
SubjectTerms 3D object detection
Cameras
Datasets
Detection algorithms
Effectiveness
Feature extraction
Formability
Laser radar
Lidar
LiDAR-camera fusion
Malfunctions
model robustness
Object detection
Object recognition
Robustness
Sensors
Three-dimensional displays
Title Toward Robust LiDAR-Camera Fusion in BEV Space via Mutual Deformable Attention and Temporal Aggregation
URI https://ieeexplore.ieee.org/document/10438483
https://www.proquest.com/docview/3075426660
Volume 34
WOSCitedRecordID wos001263608800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFG7c4kEP_pxxOk0P3gwTSgflOPcjHuZiNlx2I4W2C8nCzAb7--0rbNEYTTzBgQLho6_fe33vewg9dLgdC-ILS9s916JBrCzt2TJLEJ4EIB_uG53u2cgfj9l8HrxVxeqmFkZKaZLPZBtOzV6-WCUFhMr0DKcuo8ytoZrv-2Wx1n7LgDLTTUzzBcdieiHbVcjYwVPYm85C7QsS2nZdzdc9-m0VMm1Vfthis8AMT__5amfopGKSuFtCf44OZHaBjr_oC16iRWiSYvFkFRebHI_Sfndi9TjEofCwgDgZTjP8PJjhqXadJd6mHL8WUFGC-9Kw2XgpcTfPy5xIzDOBw1LLSj94oV31hQG2gd6Hg7D3YlWdFayEBF4OgrpMOVDzGnA35krK2FeECU8fO0qTECchxGaKUaXpjgTFHeIoJl3NXwRRxL1C9WyVyWuEHQhLSZjI0qZcOy8dm0PZoQf2QrC4iZzdl46SSnYcul8sI-N-2EFk0IkAnahCp4ke92M-StGNP69uAB5friyhaKLWDtGompibSJu0DpASz775ZdgtOoK7lym5LVTP14W8Q4fJNk8363vzz30CPZvQ2Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50CuqDPyfOn3nwTaptmnbp49wcinPIVsfeStomYyCduHZ_v7m0E0UUfGofGlL6NZfvLnffAVx6wo5T2kwtbfdciwWxsrRny62UiiRA-fCm0eke9Zr9Ph-Pg-eqWN3UwkgpTfKZvMZbc5afzpICQ2V6hTOXM-6uwprHGHXKcq3PQwPGTT8xzRgci-utbFkjYwc3YXs4CrU3SNm162rG7rNv-5BprPLDGpstprvzz5fbhe2KS5JWCf4erMhsH7a-KAwewCQ0abFkMIuLeU56005rYLUFRqJIt8BIGZlm5PZuRIbaeZZkMRXkqcCaEtKRhs_Gr5K08rzMiiQiS0lYqlnpiSfaWZ8YaOvw0r0L2_dW1VvBSmjg5yipy5WDVa-BcGOhpIybivLU11dPaRriJJTaXHGmNOGRqLlDHcWlqxlMShV1D6GWzTJ5BMTBwJTEpSxtJrT74tkCCw99tBgpjxvgLL90lFTC49j_4jUyDogdRAadCNGJKnQacPU55q2U3fjz6Tri8eXJEooGnC4RjaqlOY-0UfOQlvj28S_DLmDjPnzqRb2H_uMJbOJMZYLuKdTy90KewXqyyKfz93Pz_30ARg7UIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Robust+LiDAR-Camera+Fusion+in+BEV+Space+via+Mutual+Deformable+Attention+and+Temporal+Aggregation&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Wang%2C+Jian&rft.au=Li%2C+Fan&rft.au=An%2C+Yi&rft.au=Zhang%2C+Xuchong&rft.date=2024-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=34&rft.issue=7&rft.spage=5753&rft_id=info:doi/10.1109%2FTCSVT.2024.3366664&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon