Intelligent Event-Triggered Control Supervised by Mini-Batch Machine Learning and Data Compression Mechanism for T-S Fuzzy NCSs Under DoS Attacks

This article presents a comprehensive solution to mitigate network congestion in T-S fuzzy networked control systems caused by denial-of-service (DoS) attacks and quality-of-service (QoS) queuing mechanisms. We develop a novel data compression mechanism to alleviate network congestion and use a mini...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 32; číslo 3; s. 804 - 815
Hlavní autoři: Cai, Xiao, Shi, Kaibo, Sun, Yanbin, Cao, Jinde, Wen, Shiping, Tian, Zhihong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article presents a comprehensive solution to mitigate network congestion in T-S fuzzy networked control systems caused by denial-of-service (DoS) attacks and quality-of-service (QoS) queuing mechanisms. We develop a novel data compression mechanism to alleviate network congestion and use a mini-batch descent gradient algorithm to optimize trigger thresholds, thereby reducing bandwidth usage. In addition, we introduce asymmetric Lyapunov-Krasovskii functions to decrease the number of decision variables, which improves the reliability and robustness of the control algorithm. Finally, we propose an intelligent event-triggered controller supervised by mini-batch machine learning and validate it on the joint CarSim-Simulink platform. Experimental results demonstrate that our approach reduces the sensitivity of autonomous vehicle systems to network fluctuations while ensuring system stability under network congestion caused by DoS attacks.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2023.3308933