A Multiscale Autoencoder (MSAE) Framework for End-to-End Neural Network Speech Enhancement

Neural network approaches to single-channel speech enhancement have received much recent attention. In particular, mask-based architectures have achieved significant performance improvements over conventional methods. This paper proposes a multiscale autoencoder (MSAE) for mask-based end-to-end neur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM transactions on audio, speech, and language processing Ročník 32; s. 2418 - 2431
Hlavní autoři: Borgstrom, Bengt J., Brandstein, Michael S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2329-9290, 2329-9304
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Neural network approaches to single-channel speech enhancement have received much recent attention. In particular, mask-based architectures have achieved significant performance improvements over conventional methods. This paper proposes a multiscale autoencoder (MSAE) for mask-based end-to-end neural network speech enhancement. The MSAE performs spectral decomposition of an input waveform within separate band-limited branches, each operating with a different rate and scale, to extract a sequence of multiscale embeddings. The proposed framework features intuitive parameterization of the autoencoder, including a flexible spectral band design based on the Constant-Q transform. Additionally, the MSAE is constructed entirely of differentiable operators, allowing it to be implemented within an end-to-end neural network, and be discriminatively trained. The MSAE draws motivation both from recent multiscale network topologies and from traditional multiresolution transforms in speech processing. Experimental results show the MSAE to provide clear performance benefits relative to conventional single-branch autoencoders. Additionally, the proposed framework is shown to outperform a variety of state-of-the-art enhancement systems, both in terms of objective speech quality metrics and automatic speech recognition accuracy.
AbstractList Neural network approaches to single-channel speech enhancement have received much recent attention. In particular, mask-based architectures have achieved significant performance improvements over conventional methods. This paper proposes a multiscale autoencoder (MSAE) for mask-based end-to-end neural network speech enhancement. The MSAE performs spectral decomposition of an input waveform within separate band-limited branches, each operating with a different rate and scale, to extract a sequence of multiscale embeddings. The proposed framework features intuitive parameterization of the autoencoder, including a flexible spectral band design based on the Constant-Q transform. Additionally, the MSAE is constructed entirely of differentiable operators, allowing it to be implemented within an end-to-end neural network, and be discriminatively trained. The MSAE draws motivation both from recent multiscale network topologies and from traditional multiresolution transforms in speech processing. Experimental results show the MSAE to provide clear performance benefits relative to conventional single-branch autoencoders. Additionally, the proposed framework is shown to outperform a variety of state-of-the-art enhancement systems, both in terms of objective speech quality metrics and automatic speech recognition accuracy.
Author Borgstrom, Bengt J.
Brandstein, Michael S.
Author_xml – sequence: 1
  givenname: Bengt J.
  orcidid: 0000-0001-8529-5378
  surname: Borgstrom
  fullname: Borgstrom, Bengt J.
  email: jonas.borgstrom@ll.mit.edu
  organization: MIT Lincoln Laboratory, Artificial Intelligence Technology and Systems Group, Lexington, MA, USA
– sequence: 2
  givenname: Michael S.
  orcidid: 0009-0008-7883-3658
  surname: Brandstein
  fullname: Brandstein, Michael S.
  email: msb@ll.mit.edu
  organization: MIT Lincoln Laboratory, Artificial Intelligence Technology and Systems Group, Lexington, MA, USA
BookMark eNp9kEtLw0AUhQepYK39A-Ii4EYXqfPI6y5DaVVoVWjduAmTyR2ammbqZIL4700fgrhwdS7cc-7hfuekV5saCblkdMQYhbtlupi9jDjlwUiIBCLBT0ifCw4-CBr0fmYO9IwMm2ZNKWU0BoiDPnlLvXlbubJRskIvbZ3BWpkCrXczX6STW29q5QY_jX33tLHepC58Z_xOvCdsraw6cfvtYouoVp1hJWuFG6zdBTnVsmpweNQBeZ1OluMHf_Z8_zhOZ77iEDmfqziEXOQcoMi55hRimmsW0iJUrMgTweMoKJIwB5ogUzIqCqa5YlpKCJQOxIBcH-5urflosXHZ2rS27iqz7v0IOkZB1Ln4waWsaRqLOtvaciPtV8ZotsOY7TFmO4zZEWMXSv6EVOmkK03trCyr_6NXh2iJiL-6QhoAcPENfSGBOA
CODEN ITASFA
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3444596
crossref_primary_10_3390_app14114488
Cites_doi 10.1109/WASPAA.2019.8937186
10.1109/ICASSP.2012.6288811
10.1109/cvpr.2017.243
10.21437/Interspeech.2020-2650
10.1109/ICASSP.2010.5495701
10.1109/TASLP.2014.2311329
10.1121/1.400476
10.1109/TASSP.1980.1163394
10.1109/TASLP.2020.2968738
10.1109/ICASSP40776.2020.9052968
10.1016/b978-0-12-374370-1.x0001-8
10.5555/3045118.3045167
10.1109/TASLP.2021.3079813
10.21437/Interspeech.2016-159
10.1109/ICASSP.2018.8462068
10.1038/nn0402-292
10.1109/TASLP.2022.3225649
10.1109/TASLP.2018.2877909
10.21437/Interspeech.2018-1223
10.1109/TASLP.2019.2915167
10.1109/TASLP.2015.2512042
10.1109/ICASSP39728.2021.9413740
10.1109/CVPR.2017.634
10.1109/TASLP.2018.2821903
10.1016/0167-6393(93)90095-3
10.1109/TASLP.2019.2913512
10.1109/TASLP.2018.2828980
10.1109/TASLP.2014.2304637
10.1109/ICASSP43922.2022.9746169
10.1109/TASLP.2018.2842159
10.21437/Interspeech.2018-1454
10.1145/3422622
10.1109/TASSP.1985.1164550
10.1097/aud.0b013e31820512bb
10.1109/ICASSP.2015.7178964
10.1109/ICASSP.2018.8461737
10.1109/ICASSP.2018.8462593
10.21437/interspeech.2020-3038
10.1109/ICASSP.2001.941023
10.1109/TASSP.1984.1164453
10.21437/Interspeech.2018-2290
10.1109/ICASSP40776.2020.9054401
10.1109/ICASSP39728.2021.9413901
10.1109/ICSDA.2013.6709856
10.1109/ACSSC.2018.8645535
10.1109/ICASSP.2012.6288857
10.1109/CVPR.2018.00745
10.21437/interspeech.2020-2409
10.21437/Interspeech.2021-2207
10.1007/978-3-319-24574-4_28
10.1109/97.1001645
10.21437/Odyssey.2022-30
10.1109/TASL.2010.2045180
10.1109/TASLP.2020.3043655
10.1109/CVPR.2016.90
10.21437/Interspeech.2021-599
10.1109/MSPEC.1970.5213512
10.1109/TASLP.2019.2955276
10.21437/Interspeech.2016-1384
10.1007/978-3-319-22482-4_11
10.21437/Interspeech.2019-1924
10.1002/9781118392683
10.1109/LSP.2019.2953810
10.6028/nist.ir.4930
10.1109/TASL.2007.911054
10.1186/s13636-021-00207-6
10.1109/ICDSP.2009.5201259
10.1109/ICASSP.2018.8462622
10.1109/CVPR.2018.00255
10.1109/PROC.1974.9484
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7T9
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TASLP.2024.3389632
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9304
EndPage 2431
ExternalDocumentID 10_1109_TASLP_2024_3389632
10504992
Genre orig-research
GrantInformation_xml – fundername: U.S. Department of Defense; Department of Defense
  grantid: FA8702-15-D-0001
  funderid: 10.13039/100000005
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACIWK
ACM
ADBCU
AEBYY
AEFXT
AEJOY
AENSD
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
EBS
EJD
GUFHI
HGAVV
IFIPE
IPLJI
JAVBF
LHSKQ
M43
OCL
PQQKQ
RIA
RIE
RNS
ROL
AAYXX
CITATION
7SC
7T9
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-2c759b3b299db2f20970bf150d5c1db832764d85b908e1ca6dd1f2c1faa94cf43
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001209533900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-9290
IngestDate Mon Jun 30 04:03:19 EDT 2025
Sat Nov 29 02:44:51 EST 2025
Tue Nov 18 21:45:26 EST 2025
Wed Aug 27 02:06:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-2c759b3b299db2f20970bf150d5c1db832764d85b908e1ca6dd1f2c1faa94cf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8529-5378
0009-0008-7883-3658
PQID 3046911046
PQPubID 85426
PageCount 14
ParticipantIDs crossref_primary_10_1109_TASLP_2024_3389632
crossref_citationtrail_10_1109_TASLP_2024_3389632
ieee_primary_10504992
proquest_journals_3046911046
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/ACM transactions on audio, speech, and language processing
PublicationTitleAbbrev TASLP
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref10
ref54
Radford (ref79) 2023
Kingma (ref70) 2014
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
Quatieri (ref55) 2008
ref31
ref30
ref74
Hannun (ref78) 2014
ref33
ref77
ref32
ref76
Snyder (ref65) 2015
ref2
ref1
ref39
ref38
Smith (ref45) 2011
ref71
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
Fiscus (ref80) 2021
ref22
ref66
ref21
Ravanelli (ref75) 2021
ref28
ref27
ref29
Macartney (ref17) 2018
ref60
Li (ref42) 2021
ref62
ref61
References_xml – ident: ref26
  doi: 10.1109/WASPAA.2019.8937186
– ident: ref3
  doi: 10.1109/ICASSP.2012.6288811
– ident: ref49
  doi: 10.1109/cvpr.2017.243
– ident: ref51
  doi: 10.21437/Interspeech.2020-2650
– year: 2015
  ident: ref65
  article-title: Musan: A music, speech, and noise corpus
– year: 2014
  ident: ref70
  article-title: Adam: A method for stochastic optimization
– ident: ref72
  doi: 10.1109/ICASSP.2010.5495701
– ident: ref7
  doi: 10.1109/TASLP.2014.2311329
– ident: ref46
  doi: 10.1121/1.400476
– ident: ref8
  doi: 10.1109/TASSP.1980.1163394
– ident: ref31
  doi: 10.1109/TASLP.2020.2968738
– year: 2021
  ident: ref42
  article-title: Real-time monaural speech enhancement with short-time discrete cosine transform
– ident: ref30
  doi: 10.1109/ICASSP40776.2020.9052968
– ident: ref47
  doi: 10.1016/b978-0-12-374370-1.x0001-8
– volume-title: Discrete-Time Speech Signal Processing: Principles and Practice
  year: 2008
  ident: ref55
– ident: ref57
  doi: 10.5555/3045118.3045167
– ident: ref35
  doi: 10.1109/TASLP.2021.3079813
– ident: ref14
  doi: 10.21437/Interspeech.2016-159
– ident: ref20
  doi: 10.1109/ICASSP.2018.8462068
– ident: ref43
  doi: 10.1038/nn0402-292
– ident: ref38
  doi: 10.1109/TASLP.2022.3225649
– ident: ref69
  doi: 10.1109/TASLP.2018.2877909
– volume-title: Spectral Audio Signal Processing
  year: 2011
  ident: ref45
– ident: ref16
  doi: 10.21437/Interspeech.2018-1223
– ident: ref28
  doi: 10.1109/TASLP.2019.2915167
– ident: ref40
  doi: 10.1109/TASLP.2015.2512042
– ident: ref33
  doi: 10.1109/ICASSP39728.2021.9413740
– ident: ref48
  doi: 10.1109/CVPR.2017.634
– ident: ref21
  doi: 10.1109/TASLP.2018.2821903
– ident: ref66
  doi: 10.1016/0167-6393(93)90095-3
– ident: ref24
  doi: 10.1109/TASLP.2019.2913512
– ident: ref56
  doi: 10.1109/TASLP.2018.2828980
– ident: ref6
  doi: 10.1109/TASLP.2014.2304637
– ident: ref39
  doi: 10.1109/ICASSP43922.2022.9746169
– year: 2018
  ident: ref17
  article-title: Improved speech enhancement with the wave-u-net
– ident: ref68
  doi: 10.1109/TASLP.2018.2842159
– year: 2021
  ident: ref75
  article-title: SpeechBrain: A general-purpose speech toolkit
– ident: ref64
  doi: 10.21437/Interspeech.2018-1454
– ident: ref74
  doi: 10.1145/3422622
– ident: ref10
  doi: 10.1109/TASSP.1985.1164550
– ident: ref2
  doi: 10.1097/aud.0b013e31820512bb
– ident: ref60
  doi: 10.1109/ICASSP.2015.7178964
– ident: ref22
  doi: 10.1109/ICASSP.2018.8461737
– ident: ref15
  doi: 10.1109/ICASSP.2018.8462593
– ident: ref77
  doi: 10.21437/interspeech.2020-3038
– year: 2021
  ident: ref80
  article-title: SCTK, the NIST scoring toolkit
– ident: ref71
  doi: 10.1109/ICASSP.2001.941023
– ident: ref9
  doi: 10.1109/TASSP.1984.1164453
– ident: ref19
  doi: 10.21437/Interspeech.2018-2290
– ident: ref29
  doi: 10.1109/ICASSP40776.2020.9054401
– ident: ref37
  doi: 10.1109/ICASSP39728.2021.9413901
– ident: ref76
  doi: 10.1109/ICSDA.2013.6709856
– ident: ref54
  doi: 10.1109/ACSSC.2018.8645535
– ident: ref5
  doi: 10.1109/ICASSP.2012.6288857
– ident: ref58
  doi: 10.1109/CVPR.2018.00745
– ident: ref32
  doi: 10.21437/interspeech.2020-2409
– ident: ref34
  doi: 10.21437/Interspeech.2021-2207
– ident: ref53
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref11
  doi: 10.1109/97.1001645
– ident: ref52
  doi: 10.21437/Odyssey.2022-30
– ident: ref1
  doi: 10.1109/TASL.2010.2045180
– ident: ref12
  doi: 10.1109/TASLP.2020.3043655
– ident: ref59
  doi: 10.1109/CVPR.2016.90
– ident: ref36
  doi: 10.21437/Interspeech.2021-599
– ident: ref44
  doi: 10.1109/MSPEC.1970.5213512
– ident: ref41
  doi: 10.1109/TASLP.2019.2955276
– start-page: 28492
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2023
  ident: ref79
  article-title: Robust speech recognition via large-scale weak supervision
– ident: ref63
  doi: 10.21437/Interspeech.2016-1384
– ident: ref13
  doi: 10.1007/978-3-319-22482-4_11
– ident: ref18
  doi: 10.21437/Interspeech.2019-1924
– ident: ref4
  doi: 10.1002/9781118392683
– ident: ref25
  doi: 10.1109/LSP.2019.2953810
– ident: ref61
  doi: 10.6028/nist.ir.4930
– ident: ref73
  doi: 10.1109/TASL.2007.911054
– ident: ref27
  doi: 10.1186/s13636-021-00207-6
– ident: ref62
  doi: 10.1109/ICDSP.2009.5201259
– ident: ref23
  doi: 10.1109/ICASSP.2018.8462622
– ident: ref50
  doi: 10.1109/CVPR.2018.00255
– ident: ref67
  doi: 10.1109/PROC.1974.9484
– year: 2014
  ident: ref78
  article-title: Deep speech: Scaling up end-to-end speech recognition
SSID ssj0001079974
Score 2.298118
Snippet Neural network approaches to single-channel speech enhancement have received much recent attention. In particular, mask-based architectures have achieved...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2418
SubjectTerms Automatic speech recognition
Decoding
Ear
end-to-end neural networks
multiscale representations
mutliresolution transforms
Network topologies
Neural networks
Parameterization
Signal resolution
Speech
Speech enhancement
Speech processing
Speech recognition
Time-frequency analysis
Transforms
Voice recognition
Waveforms
Title A Multiscale Autoencoder (MSAE) Framework for End-to-End Neural Network Speech Enhancement
URI https://ieeexplore.ieee.org/document/10504992
https://www.proquest.com/docview/3046911046
Volume 32
WOSCitedRecordID wos001209533900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2329-9304
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001079974
  issn: 2329-9290
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nTKTl4UCQzbdOmORbZ8KBjsAnDS2k-yg6yjq3z7_clbXUiCl7aHvLSkN97yXvJ-0DoGmQozLM4JFYfICxShgifhiRmQorQRFIZ5YpN8OEwnk7FqA5Wd7EwxhjnfGZ69tPd5etCre1RGUh4aDV0WHG3OY-qYK2vAxXKhXBZl0FJEPBHQZsgGSruJ8n4aQTmoM96YJQB1_nfNiJXWeXHcuz2mMHBP0d3iPZrZRInFfpHaMvMj9HeRorBE_SaYBdjuwIsDE7WZWEzV2qzxDfP46R_iweNdxYG9RX355qUBYEXtmk7oPNh5SeOxwtj1AwazCyf2KG00cugP3l4JHU9BaJ8EZXEVzwUMpCwA2np5z4VnMocNEIdKk9LkG0eMR2HUtDYeCqLtPZyX3l5lgmmchacota8mJszhJUMoljHVKpAsxxo45wpyrgJIs24DjrIayY3VXWycVvz4i11RgcVqQMktYCkNSAddPdJs6hSbfzZum0h2GhZzX4HdRsQ01ocV6m9_oVVHZ7nv5BdoF3be3W40kWtcrk2l2hHvQNAyyvHaR8m4s6s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yBfXgtzidmoMHRTLTNv3IscjGxK0MNmF4KctH2UHasQ__fl_STiei4KXtIa8J-b2XvJe8D4RuQIb8bBz5xOgDhAVSE-5Sn0SMC-7rQEgtbbGJMEmi0Yj3q2B1GwujtbbOZ7ppPu1dvirk0hyVgYT7RkOHFXfTlM5yynCtryMVGnJu8y6DmsChT05XYTKUPwzjQbcPBqHLmmCWAd-537YiW1vlx4Jsd5n2_j_Hd4D2KnUSxyX-h2hD50dody3J4DF6jbGNsp0DGhrHy0VhclcqPcO3vUHcusPtlX8WBgUWt3JFFgWBFzaJO-DnSekpjgdTreUEGkwMp5ihnKCXdmv42CFVRQUiXR4siCtDnwtPwB6khJu5lIdUZKATKl86SoB0hwFTkS84jbQjx4FSTuZKJxuPOZMZ805RLS9yfYawFF4QqYgK6SmWAW2UMUlZqL1AsVB5deSsJjeVVbpxU_XiLbVmB-WpBSQ1gKQVIHV0_0kzLZNt_Nn6xECw1rKc_TpqrEBMK4Gcp-YCGNZ1eJ7_QnaNtjvDXjftPiXPF2jH9FQetTRQbTFb6ku0Jd8BrNmV5boPEjrR8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multiscale+Autoencoder+%28MSAE%29+Framework+for+End-to-End+Neural+Network+Speech+Enhancement&rft.jtitle=IEEE%2FACM+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Borgstrom%2C+Bengt+J.&rft.au=Brandstein%2C+Michael+S.&rft.date=2024&rft.pub=IEEE&rft.issn=2329-9290&rft.volume=32&rft.spage=2418&rft.epage=2431&rft_id=info:doi/10.1109%2FTASLP.2024.3389632&rft.externalDocID=10504992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9290&client=summon