Federated Learning-Assisted Predictive Beamforming for Extremely Large-Scale Antenna Array Systems With Rate-Splitting Multiple Access

Achieving perfect Channel State Information at the Transmitter (CSIT) is often infeasible in Extremely Large-scale Antenna Array (ELAA) systems due to user mobility and feedback/processing delay. This results in severe multi-user interference. Therefore, how to effectively and efficiently manage int...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in signal processing Ročník 19; číslo 2; s. 461 - 476
Hlavní autoři: Zhang, Shengyu, Mao, Yijie, Chen, Zihan, Clerckx, Bruno, Quek, Tony Q.S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1932-4553, 1941-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Achieving perfect Channel State Information at the Transmitter (CSIT) is often infeasible in Extremely Large-scale Antenna Array (ELAA) systems due to user mobility and feedback/processing delay. This results in severe multi-user interference. Therefore, how to effectively and efficiently manage interference with partial/historical CSIT is one of the most important challenges for implementing ELAA. In this paper, we propose a Federated Learning (FL)-assisted predictive beamforming framework for ELAA systems to address this challenge. Specifically, we introduce Rate-Splitting Multiple Access (RSMA) to relax the sensitivity to imperfect CSIT while still benefiting from the spatial resolution. Moreover, a predictive beamforming protocol is designed to optimize the precoder design under the imperfections in the channel estimate quality originating from user mobility and latency. To calculate the beamformers, we first propose a lightweight patch-mixing approach to split the historical CSIT data samples into smaller manageable segments. Then, we propose an FL-based training method that enables parallel processing of these CSI segments, thereby accelerating the training process. Simulation results show the effectiveness and efficacy of the proposed FL-assisted predictive beamforming framework, which paves the way for real-world implementation of ELAA.
AbstractList Achieving perfect Channel State Information at the Transmitter (CSIT) is often infeasible in Extremely Large-scale Antenna Array (ELAA) systems due to user mobility and feedback/processing delay. This results in severe multi-user interference. Therefore, how to effectively and efficiently manage interference with partial/historical CSIT is one of the most important challenges for implementing ELAA. In this paper, we propose a Federated Learning (FL)-assisted predictive beamforming framework for ELAA systems to address this challenge. Specifically, we introduce Rate-Splitting Multiple Access (RSMA) to relax the sensitivity to imperfect CSIT while still benefiting from the spatial resolution. Moreover, a predictive beamforming protocol is designed to optimize the precoder design under the imperfections in the channel estimate quality originating from user mobility and latency. To calculate the beamformers, we first propose a lightweight patch-mixing approach to split the historical CSIT data samples into smaller manageable segments. Then, we propose an FL-based training method that enables parallel processing of these CSI segments, thereby accelerating the training process. Simulation results show the effectiveness and efficacy of the proposed FL-assisted predictive beamforming framework, which paves the way for real-world implementation of ELAA.
Author Chen, Zihan
Zhang, Shengyu
Mao, Yijie
Clerckx, Bruno
Quek, Tony Q.S.
Author_xml – sequence: 1
  givenname: Shengyu
  orcidid: 0000-0002-6727-8336
  surname: Zhang
  fullname: Zhang, Shengyu
  email: shengyu_zhang@sutd.edu.sg
  organization: Information Systems Technology and Design Pillar, Singapore University of Technology and Design, Singapore
– sequence: 2
  givenname: Yijie
  orcidid: 0000-0001-5077-2998
  surname: Mao
  fullname: Mao, Yijie
  email: maoyj@shanghaitech.edu.cn
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 3
  givenname: Zihan
  surname: Chen
  fullname: Chen, Zihan
  email: zihan_chen@sutd.edu.sg
  organization: Information Systems Technology and Design Pillar, Singapore University of Technology and Design, Singapore
– sequence: 4
  givenname: Bruno
  orcidid: 0000-0001-5949-6459
  surname: Clerckx
  fullname: Clerckx, Bruno
  email: bruno.clerckx@gmail.com
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K
– sequence: 5
  givenname: Tony Q.S.
  orcidid: 0000-0002-4037-3149
  surname: Quek
  fullname: Quek, Tony Q.S.
  email: tonyquek@sutd.edu.sg
  organization: Singapore University of Technology and Design, Singapore
BookMark eNp9kM1u2zAQhInAAfL7AkEOBHKWyx_REo9ukKQtXCSIEuQorKlVSkOiHJIO4hfoc5eqfSh6yGkXu_PNAHNCJm5wSMgFZ1POmf7yo3qqHqaCCTWVSgqWswNyzHXOM5aX-WTcpchypeQROQlhxZgqZjw_Jr9vsUEPERu6QPDOutdsHoIN4-XBY2NNtO9IvyL07eD79Kdp0puP6LHHbksX4F8xqwx0SOcuonNA597Dllbb5NIH-mLjL_qYMrJq3dkYR4-fmy7a9YgYgyGckcMWuoDn-3lKnm9vnq6_ZYv7u-_X80VmhJ7FTORatxJRQtFKaFjBCzNrikJBmz58VkiFZWt4aXSxbEoGS80akLwFAVqVjTwlVzvftR_eNhhivRo23qXIWnKtFc-5FkkldirjhxA8tvXa2x78tuasHvuu__Zdj33X-74TVP4HGRsh2sFFD7b7HL3coRYR_8kqlUg6-Qdi8JJl
CODEN IJSTGY
CitedBy_id crossref_primary_10_1007_s11432_024_4423_4
Cites_doi 10.1109/TSP.2024.3350329
10.1109/TWC.2020.3002891
10.1109/JSAC.2020.3000803
10.1109/JSAC.2022.3180803
10.1186/s13638-018-1104-7
10.48550/arXiv.1406.3269
10.1109/OJVT.2020.3032844
10.1109/MAP.2017.2706648
10.1109/TVT.2022.3191085
10.1109/TCOMM.2020.3014153
10.1109/TVT.2024.3454481
10.1109/COMST.2022.3191937
10.1109/TVT.2022.3193443
10.1109/LCOMM.2022.3172437
10.1109/TCOMM.2021.3138437
10.1109/TNNLS.2021.3131614
10.1109/tmc.2024.3462960
10.1109/TWC.2023.3323770
10.1109/JPROC.2024.3409428
10.1109/TWC.2021.3133433
10.1109/ACCESS.2023.3301468
10.1109/LWC.2023.3329065
10.1109/TWC.2024.3395670
10.1109/TWC.2021.3126384
10.1109/JSAC.2023.3280984
10.1109/98.656151
10.1109/ISWCS56560.2022.9940330
10.1109/OJVT.2020.3031656
10.1109/MCOM.2016.7470942
10.1109/TWC.2022.3218897
10.1109/TWC.2024.3489219
10.1109/LWC.2023.3339653
10.1109/LWC.2023.3329036
10.1109/TVT.2023.3321657
10.1109/LWC.2020.3009951
10.1109/LCOMM.2022.3160511
10.1109/TSP.2022.3214376
10.1109/OJCOMS.2023.3240163
10.1109/JIOT.2022.3152382
10.1109/TCOMM.2016.2603991
10.1109/LCOMM.2021.3129317
10.1109/TWC.2021.3095174
10.1109/LCOMM.2023.3347720
10.1109/TWC.2024.3486673
10.1109/MWC.008.2200157
10.1109/LWC.2020.3045150
10.1002/9781118631980
10.1109/TCOMM.2021.3098695
10.1109/TWC.2022.3217145
10.1109/TWC.2016.2543212
10.1109/OJCOMS.2021.3084799
10.1109/ICCAIS56082.2022.9990383
10.1109/TCOMM.2021.3067642
10.1109/lwc.2025.3543567
10.1109/TWC.2023.3330373
10.1109/TWC.2020.3046766
10.1109/LCOMM.2018.2855935
10.1109/LWC.2024.3358494
10.1109/TSP.2019.2923164
10.1109/TVT.2022.3180786
10.1109/LWC.2023.3333531
10.1109/LCOMM.2022.3170735
10.1109/TCOMM.2021.3085343
10.1109/LCOMM.2017.2724553
10.1109/LWC.2024.3381154
10.1109/TVT.2022.3168371
10.1109/JSAC.2023.3240716
10.1109/TMC.2024.3507286
10.1109/ISWCS49558.2021.9562192
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2025.3532040
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 476
ExternalDocumentID 10_1109_JSTSP_2025_3532040
10852202
Genre orig-research
GrantInformation_xml – fundername: Infocomm Media Development Authority under its Future Communications Research & Development Programme
– fundername: Shanghai Sailing Program
  grantid: 22YF1428400
– fundername: National Research Foundation Singapore; National Research Foundation, Singapore
  funderid: 10.13039/501100001381
– fundername: National Natural Science Foundation of China; National Nature Science Foundation of China
  grantid: 62201347
  funderid: 10.13039/501100001809
– fundername: UK Research and Innovation; UKRI
  grantid: EP/X040569/1; EP/Y037197/1; EP/X04047X/1; EP/Y037243/1
  funderid: 10.13039/100014013
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
H8D
L7M
ID FETCH-LOGICAL-c296t-2499f3ee3a7f3ad0717c6d775af49916735e8fc18c97bd80ab90da31fa2a958d3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001480531900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4553
IngestDate Tue Jul 22 15:12:45 EDT 2025
Sat Nov 29 07:58:55 EST 2025
Tue Nov 18 22:45:34 EST 2025
Wed Aug 27 01:53:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-2499f3ee3a7f3ad0717c6d775af49916735e8fc18c97bd80ab90da31fa2a958d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6727-8336
0000-0001-5949-6459
0000-0001-5077-2998
0000-0002-4037-3149
PQID 3199514192
PQPubID 75721
PageCount 16
ParticipantIDs crossref_primary_10_1109_JSTSP_2025_3532040
ieee_primary_10852202
crossref_citationtrail_10_1109_JSTSP_2025_3532040
proquest_journals_3199514192
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
ref60
Rubinstein (ref66) 2016
ref62
ref61
References_xml – ident: ref14
  doi: 10.1109/TSP.2024.3350329
– ident: ref24
  doi: 10.1109/TWC.2020.3002891
– ident: ref2
  doi: 10.1109/JSAC.2020.3000803
– ident: ref51
  doi: 10.1109/JSAC.2022.3180803
– ident: ref11
  doi: 10.1186/s13638-018-1104-7
– ident: ref63
  doi: 10.48550/arXiv.1406.3269
– ident: ref25
  doi: 10.1109/OJVT.2020.3032844
– ident: ref54
  doi: 10.1109/MAP.2017.2706648
– ident: ref19
  doi: 10.1109/TVT.2022.3191085
– ident: ref23
  doi: 10.1109/TCOMM.2020.3014153
– ident: ref64
  doi: 10.1109/TVT.2024.3454481
– ident: ref17
  doi: 10.1109/COMST.2022.3191937
– ident: ref58
  doi: 10.1109/TVT.2022.3193443
– ident: ref10
  doi: 10.1109/LCOMM.2022.3172437
– ident: ref39
  doi: 10.1109/TCOMM.2021.3138437
– ident: ref68
  doi: 10.1109/TNNLS.2021.3131614
– ident: ref65
  doi: 10.1109/tmc.2024.3462960
– ident: ref16
  doi: 10.1109/TWC.2023.3323770
– ident: ref36
  doi: 10.1109/JPROC.2024.3409428
– ident: ref20
  doi: 10.1109/TWC.2021.3133433
– ident: ref62
  doi: 10.1109/ACCESS.2023.3301468
– ident: ref6
  doi: 10.1109/LWC.2023.3329065
– ident: ref32
  doi: 10.1109/TWC.2024.3395670
– ident: ref7
  doi: 10.1109/TWC.2021.3126384
– ident: ref67
  doi: 10.1109/JSAC.2023.3280984
– ident: ref44
  doi: 10.1109/98.656151
– ident: ref31
  doi: 10.1109/ISWCS56560.2022.9940330
– ident: ref26
  doi: 10.1109/OJVT.2020.3031656
– ident: ref1
  doi: 10.1109/MCOM.2016.7470942
– ident: ref5
  doi: 10.1109/TWC.2022.3218897
– ident: ref34
  doi: 10.1109/TWC.2024.3489219
– ident: ref12
  doi: 10.1109/LWC.2023.3339653
– ident: ref41
  doi: 10.1109/LWC.2023.3329036
– ident: ref61
  doi: 10.1109/TVT.2023.3321657
– ident: ref49
  doi: 10.1109/LWC.2020.3009951
– ident: ref4
  doi: 10.1109/LCOMM.2022.3160511
– ident: ref18
  doi: 10.1109/TSP.2022.3214376
– ident: ref28
  doi: 10.1109/OJCOMS.2023.3240163
– ident: ref30
  doi: 10.1109/JIOT.2022.3152382
– ident: ref35
  doi: 10.1109/TCOMM.2016.2603991
– ident: ref8
  doi: 10.1109/LCOMM.2021.3129317
– ident: ref55
  doi: 10.1109/TWC.2021.3095174
– ident: ref13
  doi: 10.1109/LCOMM.2023.3347720
– ident: ref33
  doi: 10.1109/TWC.2024.3486673
– ident: ref50
  doi: 10.1109/MWC.008.2200157
– ident: ref52
  doi: 10.1109/LWC.2020.3045150
– volume-title: Simulation and the Monte Carlo Method, 3rd ed
  year: 2016
  ident: ref66
  doi: 10.1002/9781118631980
– ident: ref3
  doi: 10.1109/TCOMM.2021.3098695
– ident: ref60
  doi: 10.1109/TWC.2022.3217145
– ident: ref38
  doi: 10.1109/TWC.2016.2543212
– ident: ref27
  doi: 10.1109/OJCOMS.2021.3084799
– ident: ref59
  doi: 10.1109/ICCAIS56082.2022.9990383
– ident: ref22
  doi: 10.1109/TCOMM.2021.3067642
– ident: ref53
  doi: 10.1109/lwc.2025.3543567
– ident: ref40
  doi: 10.1109/TWC.2023.3330373
– ident: ref45
  doi: 10.1109/TWC.2020.3046766
– ident: ref15
  doi: 10.1109/LCOMM.2018.2855935
– ident: ref48
  doi: 10.1109/LWC.2024.3358494
– ident: ref46
  doi: 10.1109/TSP.2019.2923164
– ident: ref57
  doi: 10.1109/TVT.2022.3180786
– ident: ref47
  doi: 10.1109/LWC.2023.3333531
– ident: ref9
  doi: 10.1109/LCOMM.2022.3170735
– ident: ref21
  doi: 10.1109/TCOMM.2021.3085343
– ident: ref37
  doi: 10.1109/LCOMM.2017.2724553
– ident: ref43
  doi: 10.1109/LWC.2024.3381154
– ident: ref56
  doi: 10.1109/TVT.2022.3168371
– ident: ref29
  doi: 10.1109/JSAC.2023.3240716
– ident: ref69
  doi: 10.1109/TMC.2024.3507286
– ident: ref42
  doi: 10.1109/ISWCS49558.2021.9562192
SSID ssj0057614
Score 2.4417853
Snippet Achieving perfect Channel State Information at the Transmitter (CSIT) is often infeasible in Extremely Large-scale Antenna Array (ELAA) systems due to user...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 461
SubjectTerms Antenna arrays
Antennas
Array signal processing
Beamforming
Computational modeling
Design optimization
Effectiveness
Extremely large-scale antenna array (ELAA)
Federated learning
federated learning (FL)
Feedback control systems
Information systems
Interference
Multiple access
Optimization
Parallel processing
patch-mixing
Precoding
Predictive models
Protocols
rate-splitting multiple access (RSMA)
Segments
Simulation
Spatial resolution
Splitting
Training
Transmitting antennas
Title Federated Learning-Assisted Predictive Beamforming for Extremely Large-Scale Antenna Array Systems With Rate-Splitting Multiple Access
URI https://ieeexplore.ieee.org/document/10852202
https://www.proquest.com/docview/3199514192
Volume 19
WOSCitedRecordID wos001480531900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057614
  issn: 1932-4553
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66eNCDb3F9kYM3ibZN2zTHVVw8qCyuoreS5qELuspaxf0D_m5n0qwsiIKnFpqkhS9Nvsl8M0PIflSZKHc6Y0qaFAwULVjFs4IBGdCJjpNcG-eLTYjLy-LuTvZCsLqPhbHWevGZPcRb78s3z_oNj8qOUCmfJJg6claIvAnWmiy7wJvj4EJOWJplfBIhE8kjmOP9HtiCSXbIsRACnnRM7UK-rMqPtdhvMN2lf37aMlkMTJJ2GuhXyIwdrpKFqfyCa-Szi6kigE0aGvKo3jPAA5E1tDdCHw2udvTYqickr_CcwpWeftR4bPg4pucoFGd9ANLSDqrdhwreOFJjGlKd09tB_UCv4B2sD3zWq6jpRVAp0o4vx7hObrqn1ydnLBReYDqRec3AJJOOW8uVcFwZNPl0boTIlEuRTwqe2cLpuNBSVKaIVCUjo3jsVKJkVhi-QVrD56HdJBT4mRGycpoXLjVRoWBsnlapVikH5lS1STwBotQhKzkWx3gsvXUSydKDVyJ4ZQCvTQ6--7w0OTn-bL2OcE21bJBqk50J4GX4b19LjhHrMXrGt37ptk3mcfRGhrZDWvXoze6SOf1eD15He35KfgGntN-e
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqqNRygD6oWB6tD9yQIfFjEx8XxArUZbXqUpVb5PhBkWBBS0DwB_jdzDhetBIqUk-JFDuO9Dn2N56ZbwjZzmqXdYNVzGgnwUCxBauFKhmQActtzrvWhVhsohgOy7MzPUrJ6jEXxnsfg8_8Lt5GX767tnd4VLaHkfKco3TkopKSZ2261mzhBeacJycyZ1IpMcuRyfQezPLxCKxBrnYFlkLAs465fSgWVnm1Gsctpr_ynx_3iSwnLkl7LfifyTs_-UKW5hQGv5KnPopFAJ90NCmpnjNABLF1dDRFLw2ud3Tfmyukr_CcwpUePjR4cHj5SAcYKs7GAKWnPYx3nxgYcWoeaRI7p38umr_0F4zBxsBoYxw1PUlxirQXCzKukt_9w9ODI5ZKLzDLdbdhYJTpILwXpgjCODT6bNcVhTJBIqMshPJlsHlpdVG7MjO1zpwReTDcaFU68Y0sTK4nfo1QYGiu0HWwogzSZaWBdwtZS2ukAO5Ud0g-A6KySZccy2NcVtE-yXQVwasQvCqB1yE7L31uWlWON1uvIlxzLVukOmRzBniV_tzbSmDOeo6-8fV_dPtBPhydngyqwfHw5wb5iCO1QWmbZKGZ3vkt8t7eNxe30-9xej4Dbgni5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning-Assisted+Predictive+Beamforming+for+Extremely+Large-Scale+Antenna+Array+Systems+With+Rate-Splitting+Multiple+Access&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Zhang%2C+Shengyu&rft.au=Mao%2C+Yijie&rft.au=Chen%2C+Zihan&rft.au=Clerckx%2C+Bruno&rft.date=2025-03-01&rft.pub=IEEE&rft.issn=1932-4553&rft.volume=19&rft.issue=2&rft.spage=461&rft.epage=476&rft_id=info:doi/10.1109%2FJSTSP.2025.3532040&rft.externalDocID=10852202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon