A method of automatic field of view generation and path planning for automated x‐ray inspection

With the increasing accuracy and stability requirements of SMT equipment, automatic x‐ray inspection (AXI) is used as a new popular type of testing technology. First, an imaging constraint model is proposed to ensure that the detected object is not truncated. Second, an improved iterative self‐organ...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems Vol. 42; no. 1
Main Authors: Song, Guiling, Xu, Wei
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.01.2025
Subjects:
ISSN:0266-4720, 1468-0394
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the increasing accuracy and stability requirements of SMT equipment, automatic x‐ray inspection (AXI) is used as a new popular type of testing technology. First, an imaging constraint model is proposed to ensure that the detected object is not truncated. Second, an improved iterative self‐organizing clustering algorithm was proposed to realize an automatic optimal generation of the field of view and form a Hamiltonian path. Finally, the solution of the shortest Hamiltonian path problem is given by the proposed VTSP heuristic algorithm and VTSP + transformer deep learning algorithm. Experimental results show that, compared with the binary state compression DP method and the local shortest path planning method, the proposed method can support large‐scale nodes, and the performance is improved by 16% on 75 nodes and 31% on 200 nodes. The proposed method achieves a balance between x‐ray imaging efficiency and performance.
AbstractList With the increasing accuracy and stability requirements of SMT equipment, automatic x‐ray inspection (AXI) is used as a new popular type of testing technology. First, an imaging constraint model is proposed to ensure that the detected object is not truncated. Second, an improved iterative self‐organizing clustering algorithm was proposed to realize an automatic optimal generation of the field of view and form a Hamiltonian path. Finally, the solution of the shortest Hamiltonian path problem is given by the proposed VTSP heuristic algorithm and VTSP + transformer deep learning algorithm. Experimental results show that, compared with the binary state compression DP method and the local shortest path planning method, the proposed method can support large‐scale nodes, and the performance is improved by 16% on 75 nodes and 31% on 200 nodes. The proposed method achieves a balance between x‐ray imaging efficiency and performance.
Author Xu, Wei
Song, Guiling
Author_xml – sequence: 1
  givenname: Guiling
  orcidid: 0009-0006-2131-721X
  surname: Song
  fullname: Song, Guiling
  email: sgl@wxsc.edu.cn
  organization: Wuxi Vocational College of Science and Technology
– sequence: 2
  givenname: Wei
  orcidid: 0009-0003-1614-1713
  surname: Xu
  fullname: Xu, Wei
  email: Xuwei@unicomp.cn
  organization: Unicomp Technology
BookMark eNp9kN9KwzAUh4NMcJve-AQB74TOpE3T5HKM-QcGXqigVyFtky2jS2rSufXOR_AZfRK7VW89Nwd-fL9z4BuBgXVWAXCJ0QR3c6P2oZ3ghMT8BAwxoSxCCScDMEQxpRHJYnQGRiGsEUI4y-gQyCncqGblSug0lNvGbWRjCqiNqo7Rh1E7uFRW-S53Fkpbwlo2K1hX0lpjl1A7_1dUJdx_f3552UJjQ62KQ-UcnGpZBXXxu8fg5Xb-PLuPFo93D7PpIipiTnmUKI1RjnWaUaYTibjMUMZLxAuOCKc546wkiKYxo5qyIucs5wmPS1xgrlPCkzG46u_W3r1vVWjE2m297V6KBJOUpQhj0lHXPVV4F4JXWtTebKRvBUbioFAcFIqjwg7GPbwzlWr_IcX89emt7_wAHp92UQ
Cites_doi 10.1007/978-3-030-78230-6_25
10.3390/min12101296
10.1609/aaai.v33i01.33011443
10.1109/78.165668
10.1109/ICMCECS47690.2020.240847
10.21437/Interspeech.2020-2404
10.1007/978-3-319-99253-2_8
10.1609/aaai.v34i02.5509
10.1007/978-3-031-08011-1_14
10.1609/aaai.v35i8.16916
10.1007/978-3-030-56769-9_9
10.1007/s10601-022-09327-y
10.1016/j.ejor.2020.07.063
10.1002/jgt.22223
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.13429
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10_1111_exsy_13429
EXSY13429
Genre article
GrantInformation_xml – fundername: 2023 Jiangsu University Philosophy and Social Science Research General Project “Research on the Demand Side Guided Integration Model of Higher Vocational Education and Industry”, China
  funderid: 2023SJYB0995
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0B8
0R~
10A
1OB
1OC
24P
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
77I
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2969-3ef10b1f5768f3a09a7079d09c90496b898d4065286f68cb98b9392d1c19f5493
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001051539900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-4720
IngestDate Thu Aug 21 03:41:46 EDT 2025
Sat Nov 29 07:35:50 EST 2025
Wed Jan 22 17:14:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2969-3ef10b1f5768f3a09a7079d09c90496b898d4065286f68cb98b9392d1c19f5493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-1614-1713
0009-0006-2131-721X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.13429
PQID 3145850114
PQPubID 32130
PageCount 15
ParticipantIDs proquest_journals_3145850114
crossref_primary_10_1111_exsy_13429
wiley_primary_10_1111_exsy_13429_EXSY13429
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2025
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2002; 38
2000; 28
2019; 33
2019; 32
2022; 45
2020; 34
2020; 33
2018; 88
2022; 27
2021; 35
2021; 37
2017; 30
2015; 28
2017; 1050
2022
2021
2017a
2020
2022; 12
2019
2018
2016
2011; 27
2008; 594
2021; 290
1992; 40
e_1_2_8_28_1
Kwon Y. D. (e_1_2_8_23_1) 2020; 33
Vinyals O. (e_1_2_8_34_1) 2015; 28
e_1_2_8_27_1
Nowak A. (e_1_2_8_29_1) 2017; 1050
Lin S. C. (e_1_2_8_24_1) 2008
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Wang X. D. (e_1_2_8_35_1) 2000; 28
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
Xiao Y. K. (e_1_2_8_37_1) 2022; 45
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_13_1
e_1_2_8_16_1
Roughgarden T. (e_1_2_8_31_1) 2019
Wilder B. (e_1_2_8_36_1) 2019
Deudon M. (e_1_2_8_10_1) 2018
e_1_2_8_32_1
Dong M. (e_1_2_8_11_1) 2021; 37
Khalil E. (e_1_2_8_19_1) 2017; 30
e_1_2_8_12_1
e_1_2_8_33_1
Liu Q. L. (e_1_2_8_25_1) 2011; 27
Liu W. (e_1_2_8_26_1) 2002; 38
Gasse M. (e_1_2_8_14_1) 2019; 32
Gilmer J. (e_1_2_8_15_1) 2017
e_1_2_8_30_1
References_xml – start-page: 392
  year: 2021
  end-page: 409
– volume: 33
  start-page: 1443
  issue: 1
  year: 2019
  end-page: 1451
  article-title: Improving optimization bounds using machine learning: Decision diagrams meet deep reinforcement learning
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 1263
  year: 2017a
  end-page: 1272
– volume: 34
  start-page: 1504
  issue: 2
  year: 2020
  end-page: 1511
  article-title: Mipaal: Mixed integer program as a layer
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 190
  year: 2022
  end-page: 213
– start-page: 170
  year: 2018
  end-page: 181
– start-page: 4
  year: 2021
  end-page: 6
– volume: 38
  start-page: 58
  issue: 19
  year: 2002
  end-page: 60
  article-title: An approximate method to cover complex 2‐D graphics
  publication-title: Computer Engineering and Applications
– year: 2021
– volume: 35
  start-page: 7474
  issue: 8
  year: 2021
  end-page: 7482
  article-title: Generalize a small pre‐trained model to arbitrarily large TSP instances
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 30
  start-page: 6348
  year: 2017
  end-page: 6358
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: Advances in Neural Information Processing Systems
– volume: 40
  start-page: 2804
  issue: 11
  year: 1992
  end-page: 2813
  article-title: Image segmentation on a 2D array by a directed split and merge procedure
  publication-title: IEEE Transactions on Signal Processing
– volume: 33
  start-page: 21188
  year: 2020
  end-page: 21198
  article-title: Pomo: Policy optimization with multiple optima for reinforcement learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 27
  start-page: 232
  issue: 4
  year: 2011
  end-page: 234
  article-title: One fast algorithm apply to AOI field of view generation
  publication-title: Microcomputer Information
– year: 2016
– year: 2018
– volume: 32
  start-page: 15580
  year: 2019
  end-page: 15592
  article-title: Exact combinatorial optimization with graph convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 594
  start-page: 331
  year: 2008
  end-page: 338
– volume: 37
  start-page: 125
  issue: 6
  year: 2021
  end-page: 128
  article-title: AOI path planning based on particle swarm and ant colony optimization algorithm
  publication-title: Microcomputer Applications
– volume: 28
  start-page: 1
  issue: 2
  year: 2000
  end-page: 5
  article-title: A greedy algorithm for rectangle cover problem
  publication-title: Journal of Fuzhou University (Natural Science)
– volume: 28
  start-page: 2692
  year: 2015
  end-page: 2700
  article-title: Pointer networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 1296
  issue: 10
  year: 2022
  article-title: 3D geophysical predictive modeling by spectral feature subset selection in mineral exploration
  publication-title: Minerals
– volume: 88
  start-page: 434
  issue: 3
  year: 2018
  end-page: 448
  article-title: On Hamilton decompositions of infinite circulant graphs
  publication-title: Journal of Graph Theory
– volume: 1050
  start-page: 22
  year: 2017
  article-title: A note on learning algorithms for quadratic assignment with graph neural networks
  publication-title: Stata Journal
– volume: 45
  start-page: 11
  issue: 18
  year: 2022
  end-page: 16
  article-title: A hybrid path planning algorithm for wafer AOI system
  publication-title: Modern Electronics Technique
– year: 2020
– volume: 290
  start-page: 405
  issue: 2
  year: 2021
  end-page: 421
  article-title: Machine learning for combinatorial optimization: A methodological tour d'horizon
  publication-title: European Journal of Operational Research
– start-page: 95
  year: 2018
  end-page: 107
– volume: 27
  start-page: 70
  issue: 1–2
  year: 2022
  end-page: 98
  article-title: Learning the travelling salesperson problem requires rethinking generalization
  publication-title: Constraints
– year: 2019
– start-page: 1
  year: 2020
  end-page: 4
– volume: 33
  start-page: 1658
  year: 2019
  end-page: 1665
– ident: e_1_2_8_9_1
  doi: 10.1007/978-3-030-78230-6_25
– ident: e_1_2_8_20_1
– ident: e_1_2_8_2_1
  doi: 10.3390/min12101296
– ident: e_1_2_8_6_1
– volume: 1050
  start-page: 22
  year: 2017
  ident: e_1_2_8_29_1
  article-title: A note on learning algorithms for quadratic assignment with graph neural networks
  publication-title: Stata Journal
– volume: 45
  start-page: 11
  issue: 18
  year: 2022
  ident: e_1_2_8_37_1
  article-title: A hybrid path planning algorithm for wafer AOI system
  publication-title: Modern Electronics Technique
– volume: 28
  start-page: 1
  issue: 2
  year: 2000
  ident: e_1_2_8_35_1
  article-title: A greedy algorithm for rectangle cover problem
  publication-title: Journal of Fuzhou University (Natural Science)
– ident: e_1_2_8_8_1
  doi: 10.1609/aaai.v33i01.33011443
– ident: e_1_2_8_22_1
– volume: 37
  start-page: 125
  issue: 6
  year: 2021
  ident: e_1_2_8_11_1
  article-title: AOI path planning based on particle swarm and ant colony optimization algorithm
  publication-title: Microcomputer Applications
– volume: 33
  start-page: 21188
  year: 2020
  ident: e_1_2_8_23_1
  article-title: Pomo: Policy optimization with multiple optima for reinforcement learning
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_33_1
  doi: 10.1109/78.165668
– start-page: 1263
  volume-title: International conference on machine learning
  year: 2017
  ident: e_1_2_8_15_1
– ident: e_1_2_8_3_1
  doi: 10.1109/ICMCECS47690.2020.240847
– volume: 30
  start-page: 6348
  year: 2017
  ident: e_1_2_8_19_1
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_16_1
  doi: 10.21437/Interspeech.2020-2404
– ident: e_1_2_8_32_1
  doi: 10.1007/978-3-319-99253-2_8
– volume: 28
  start-page: 2692
  year: 2015
  ident: e_1_2_8_34_1
  article-title: Pointer networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 38
  start-page: 58
  issue: 19
  year: 2002
  ident: e_1_2_8_26_1
  article-title: An approximate method to cover complex 2‐D graphics
  publication-title: Computer Engineering and Applications
– ident: e_1_2_8_4_1
– ident: e_1_2_8_12_1
  doi: 10.1609/aaai.v34i02.5509
– start-page: 1658
  volume-title: Proceedings of the AAAI conference on artificial intelligence
  year: 2019
  ident: e_1_2_8_36_1
– volume: 32
  start-page: 15580
  year: 2019
  ident: e_1_2_8_14_1
  article-title: Exact combinatorial optimization with graph convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 170
  volume-title: 15th international conference, CPAIOR 2018
  year: 2018
  ident: e_1_2_8_10_1
– ident: e_1_2_8_27_1
– ident: e_1_2_8_21_1
  doi: 10.1007/978-3-031-08011-1_14
– volume-title: Algorithms illuminated
  year: 2019
  ident: e_1_2_8_31_1
– ident: e_1_2_8_13_1
  doi: 10.1609/aaai.v35i8.16916
– ident: e_1_2_8_28_1
  doi: 10.1007/978-3-030-56769-9_9
– ident: e_1_2_8_30_1
– ident: e_1_2_8_17_1
  doi: 10.1007/s10601-022-09327-y
– ident: e_1_2_8_18_1
– ident: e_1_2_8_5_1
  doi: 10.1016/j.ejor.2020.07.063
– ident: e_1_2_8_7_1
  doi: 10.1002/jgt.22223
– start-page: 331
  volume-title: Materials science forum
  year: 2008
  ident: e_1_2_8_24_1
– volume: 27
  start-page: 232
  issue: 4
  year: 2011
  ident: e_1_2_8_25_1
  article-title: One fast algorithm apply to AOI field of view generation
  publication-title: Microcomputer Information
SSID ssj0001776
Score 2.342741
Snippet With the increasing accuracy and stability requirements of SMT equipment, automatic x‐ray inspection (AXI) is used as a new popular type of testing technology....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
automatic FOV generation
Automation
Clustering
constraint model
Field of view
Heuristic methods
Inspection
Machine learning
ML4CO
Nodes
shortest Hamiltonian path
Shortest path planning
X-rays
Title A method of automatic field of view generation and path planning for automated x‐ray inspection
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.13429
https://www.proquest.com/docview/3145850114
Volume 42
WOSCitedRecordID wos001051539900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7MzYMX50-cTgnoSagkbdc24GXohocxhjqZp5ImqezSjnWT7eaf4N_oX2KSttu8COItlKaU9_Jevi8_3gdwJWTMsWDC8gVuWa6aYyzKuG1hHgda3VbG5nr0S8_v94PRiA4qcFvehcnrQ6wW3HRkmHytA5xF2UaQy0W2vCGOyqdbUCPE8fWYtt3BKg8T30jLKZLhWa5v46I4qT7Hs-77czpaY8xNpGqmmm79fz-5B7sFxETtfEzsQ0UmB1Av5RtQEc2HwNoo149GaYzYfJaa6q3InGnTj_SmAXozZam19xBLBNICxmhSCB0hBXjLjlKgxdfH55Qt0TjJr2-myREMu53nuwerUFywuE09ajkyJjgisSYhscMwZbqAnsCUU8UkvCiggVAIoGUHnvIhj2gQUQWwBOGExoppOsdQTdJEngAKpAJ3PlOETDKX2jZ1Ha76M6maHpakAZel4cNJXlgjLAmJtlporNaAZumTsAiuLHSIq0iOZnINuDbW_-ULYWf09Gpap395-Qx2bK30axZbmlCdTefyHLb5-2ycTS_MQLuA2v1jd9j7Blz02PU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3oFPTF-YnTqQF9Eipp2rXN45CNiXMMnDKfSpYP2Us7tinbmz_B3-gvMUnbbb4I4lsoTSk3ubnnJDf3AFwJqTgWTDihwDXH1zHGoYwTB3MVGXVbqez16Od22OlE_T7t5rk55i5MVh9iseFmPMOu18bBzYb0ipfL2WR-43p6QV2HDV-HJZPRR_zuYiF2Q6stp1lG4PghwXl1UpPIs-z7Mx4tQeYqVLWxpln-51_uwk4OMlE9mxV7sCaTfSgXAg4o9-cDYHWUKUijVCH2Nk1t_VZks9rMI3NsgF5tYWozfoglAhkJYzTKpY6QhrxFRynQ7Ovjc8zmaJhkFzjT5BCemo3ebcvJNRccTmhAHU8qFw9cZWiI8himzJTQE5hyqrlEMIhoJDQGqJEo0KPIBzQaUA2xhMtdqjTX9I6glKSJPAYUSQ3vQqYpmWQ-JYT6Htf9mdTNAEu3ApeF5eNRVlojLiiJsVpsrVaBajEoce5ek9hzfU1zDJerwLU1_y9fiBv9xxfbOvnLyxew1eo9tOP2Xef-FLaJ0f21Wy9VKE3Hb_IMNvn7dDgZn9tZ9w1r-Ns5
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPHFecXp1IA-CZU07drmceiG4hgDL8ynkuYie2nHLrK9-RP8jf4Sk7Sd80UQ30JpSjnJOfm-5OR8ABdCKo4FE04ocMPx9RrjUMaJg7mKjLqtVPZ69HMn7Hajfp_2itwccxcmrw-x2HAznmHjtXFwORRqycvlbDy_cj0dUFdhzW-E1i-J31sEYje02nKaZQSOHxJcVCc1iTzffX-uR98gcxmq2rWmXf3nX27DVgEyUTOfFTuwItNdqJYCDqjw5z1gTZQrSKNMITadZLZ-K7JZbeaROTZAr7YwtRk_xFKBjIQxGhZSR0hD3rKjFGj2-f4xYnM0SPMLnFm6D0_t1uP1rVNoLjic0IA6nlQuTlxlaIjyGKbMlNATmHKquUSQRDQSGgM0SBToUeQJjRKqIZZwuUuV5preAVTSLJWHgCKp4V3INCWTzKeEUN_juj-Tuhlg6dbgvLR8PMxLa8QlJTFWi63ValAvByUu3Gsce66vaY7hcjW4tOb_5Qtxq__wYltHf3n5DDZ6N-24c9e9P4ZNYmR_7c5LHSqT0VSewDp_mwzGo1M76b4ALbratA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+of+automatic+field+of+view+generation+and+path+planning+for+automated+x%E2%80%90ray+inspection&rft.jtitle=Expert+systems&rft.au=Song%2C+Guiling&rft.au=Xu%2C+Wei&rft.date=2025-01-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=42&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fexsy.13429&rft.externalDBID=10.1111%252Fexsy.13429&rft.externalDocID=EXSY13429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon