Hybrid quantum-classical algorithms for approximate graph coloring

We show how to apply the recursive quantum approximate optimization algorithm (RQAOA) to MAX- k -CUT, the problem of finding an approximate k -vertex coloring of a graph. We compare this proposal to the best known classical and hybrid classical-quantum algorithms. First, we show that the standard (n...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Quantum (Vienna, Austria) Ročník 6; s. 678
Hlavní autori: Bravyi, Sergey, Kliesch, Alexander, Koenig, Robert, Tang, Eugene
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Austria Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften 30.03.2022
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
ISSN:2521-327X, 2521-327X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We show how to apply the recursive quantum approximate optimization algorithm (RQAOA) to MAX- k -CUT, the problem of finding an approximate k -vertex coloring of a graph. We compare this proposal to the best known classical and hybrid classical-quantum algorithms. First, we show that the standard (non-recursive) QAOA fails to solve this optimization problem for most regular bipartite graphs at any constant level p : the approximation ratio achieved by QAOA is hardly better than assigning colors to vertices at random. Second, we construct an efficient classical simulation algorithm which simulates level- 1 QAOA and level- 1 RQAOA for arbitrary graphs. In particular, these hybrid algorithms give rise to efficient classical algorithms, and no benefit arising from the use of quantum mechanics is to be expected. Nevertheless, they provide a suitable testbed for assessing the potential benefit of hybrid algorithm: We use the simulation algorithm to perform large-scale simulation of level- 1 QAOA and RQAOA with up to 300 qutrits applied to ensembles of randomly generated 3 -colorable constant-degree graphs. We find that level- 1 RQAOA is surprisingly competitive: for the ensembles considered, its approximation ratios are often higher than those achieved by the best known generic classical algorithm based on rounding an SDP relaxation. This suggests the intriguing possibility that higher-level RQAOA may be a potentially useful algorithm for NISQ devices.
Bibliografia:USDOE
SC0018407; PHY-1733907
ISSN:2521-327X
2521-327X
DOI:10.22331/q-2022-03-30-678